Artificial Intelligence in Biomedicine: A Systematic Review from Nanomedicine to Neurology and Hepatology
Abstract
1. Introduction
2. Methods
- Nanomedicine: Studies employing AI or machine learning models for nanoparticle design, drug delivery optimization, or nano-bio interface characterization were included.
- Cardiology: Eligible studies focused on AI-assisted diagnosis, risk prediction, or image-based assessment (echocardiography, CT, or MRI) of cardiovascular diseases.
- Neurology: Included studies addressed AI applications in neuroimaging, neurodegenerative diseases (Alzheimer’s, Parkinson’s), or neurological outcome prediction.
- Hepatology: Studies were included if they used AI tools for liver disease diagnosis, fibrosis staging, hepatocellular carcinoma detection, or treatment outcome prediction.
3. AI in Medicine
3.1. AI in Cancer Therapy
3.1.1. Emerging Methodological Developments
3.1.2. Recent Paradigms in Biomedical AI
3.1.3. Application of AI in Nanomedicine for Cancer Healthcare
- (a)
- Theranostic nanoplatforms: AI-powered theranostic platforms combine diagnostic and therapeutic functions within a single nanostructure. These platforms can detect cancer biomarkers, deliver targeted therapy, and monitor treatment responses in real-time, offering a comprehensive personalized management solution [53].
- (b)
- AI-driven nano-robotics: AI-controlled nano-robots demonstrate promise in precise drug delivery and tumor targeting. These nano-robots autonomously navigate through the bloodstream, identify cancer cells, and release therapeutics in a controlled manner, minimizing damage to healthy tissues [54].
- (c)
- Multi-omics data integration: AI algorithms integrate genomic, transcriptomic, and proteomic data with nanomedicine approaches to uncover novel biomarkers and predict therapeutic responses. This integration enhances patient stratification and informs the development of personalized nano-therapeutics [55].
- (d)
- Quantum computing for nanomedicine: Quantum computing, combined with AI, enables rapid simulation of complex biological environments. This enhances nanoparticle modeling and expedites the development of next-generation nanomedicines [56].
3.2. AI in Cardiology
3.2.1. AI in Heart Failure (HF)
3.2.2. AI in Coronary Artery Disease
3.2.3. CT vs. MRI
3.3. AI in Neuronal Diseases
3.3.1. Evolution of AI in Neurological Diagnostics
3.3.2. AI in Parkinson Disease (PD)
| Aspect | Description | Ref. |
|---|---|---|
| Role of Smartphone Technology in PD Assessment | The widespread availability and computing power of smartphones have enabled the development of accessible, non-invasive, and scalable digital biomarker platforms for PD monitoring. These systems use built-in sensors and software to capture behavioral and physiological data. | [117,118] |
| Motor Assessment through Sensor-Based Applications | Finger-tapping apps measure motor speed and variability, serving as indicators of bradykinesia. | [119,120] |
| Speech-Based Biomarkers | Voice recording applications analyze speech fluency and tremor-related vocal disruptions, key symptoms of PD. | [119,120] |
| Remote Monitoring and Telehealth | Smartphone-based biomarkers allow continuous and passive monitoring of patients in real-world environments. This enhances personalized care, supports timely interventions, and improves patient engagement. | [121,122] |
| Application in Low-Resource Settings | These technologies provide cost-effective screening and early detection solutions for rural or resource-limited areas, helping reduce healthcare disparities. | [121,122] |
| Advanced Computational Capabilities | Modern smartphones perform real-time signal processing using edge computing and machine learning to analyze tremor patterns, gait variability, and speech signals directly on the device, ensuring privacy and faster feedback. | [123] |
| Federated Learning Approaches | Enable continuous improvement of diagnostic algorithms without sharing sensitive data, enhancing personalization and accuracy across diverse populations. | [123] |
| Aspect | Description | Ref. |
|---|---|---|
| AI in Treatment Optimization | AI and machine learning are transforming PD treatment by analyzing complex patient response patterns to dopaminergic therapy. These models integrate longitudinal data such as symptom fluctuations, medication adherence, and side-effect profiles to predict individual treatment efficacy more accurately than traditional methods. | [124,125] |
| Personalized Pharmacological Regimens | Predictive modeling allows clinicians to tailor drug dosages and schedules to individual patients, minimizing adverse drug reactions and enhancing therapeutic outcomes. | [124,125] |
| AI-Driven Decision Support Systems | Integrated into electronic health records, these systems assist clinicians with real-time dosage adjustments and dynamic care models. | [126,127] |
| Deep Reinforcement Learning in Neuromodulation | AI algorithms fine-tune deep brain stimulation (DBS) by simulating different stimulation scenarios and learning from patient feedback to optimize therapeutic outcomes and minimize side effects. | [128,129] |
| Improved Clinical Efficiency and Quality of Life | Intelligent DBS optimization reduces clinician workload, resource use, and patient side effects, improving quality of life and clinical efficiency. | [128,129] |
| Predictive Modelling for Disease Progression | Advanced ML models combine clinical, imaging, genetic, and digital biomarker data to predict long-term outcomes such as motor complications, cognitive decline, and quality of life deterioration. | [130] |
| Risk Stratification and Patient Selection | AI tools identify patients most likely to benefit from interventions like DBS or clinical trials, supporting precision medicine and resource optimization. | [130] |
3.3.3. AI in Alzheimer’s Disease (AD)
3.3.4. Deep Learning in AD Diagnosis and Classification
3.3.5. Prediction/Prognosis
3.4. AI in Liver Diseases
4. Qualitative Appraisal of Study Quality
4.1. Advantages, Limitations, and Mitigation Strategies of Artificial Intelligence in Biomedicine
4.2. Regulatory and Governance Context of AI in Healthcare (2024–2025)
- Proper classification as medical device software (SaMD) following IMDRF risk categories to determine the required level of clinical evidence [215].
- Implementation of a Predetermined Change Control Plan (PCCP) early in development—clearly defining what model parameters may be updated, how re-training will be validated, and criteria for model acceptance [211].
- Adherence to Good Machine Learning Practice (GMLP): ensure data representativeness, traceability of versions, bias assessment, and robust documentation of design decisions [212].
- Integration of AI-specific risk management standards (ISO/IEC 23894 and ISO 14971) to identify and mitigate hazards unique to adaptive algorithms [216].
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hirani, R.; Noruzi, K.; Khuram, H.; Hussaini, A.S.; Aifuwa, E.I.; Ely, K.E.; Lewis, J.M.; Gabr, A.E.; Smiley, A.; Tiwari, R.K.; et al. Artificial Intelligence and Healthcare: A Journey through History, Present Innovations, and Future Possibilities. Life 2024, 14, 557. [Google Scholar] [CrossRef] [PubMed]
- Avanzo, M.; Stancanello, J.; Pirrone, G.; Drigo, A.; Retico, A. The Evolution of Artificial Intelligence in Medical Imaging: From Computer Science to Machine and Deep Learning. Cancers 2024, 16, 3702. [Google Scholar] [CrossRef] [PubMed]
- Gou, F.; Liu, J.; Xiao, C.; Wu, J. Research on Artificial-Intelligence-Assisted Medicine: A Survey on Medical Artificial Intelligence. Diagnostics 2024, 14, 1472. [Google Scholar] [CrossRef] [PubMed]
- Chakroborty, S.; Nath, N.; Jain, A.; Yadav, T.; Yadav, A.S.; Pandey, F.P.; Sharma, A.; Agrawal, Y. Recent developments and trends in silver nanoparticles for biomedical applications. AIP Conf. Proc. 2024, 3178, 090002. [Google Scholar] [CrossRef]
- Liu, Y.; Shi, J. Antioxidative nanomaterials and biomedical applications. Nano Today 2019, 27, 146–177. [Google Scholar] [CrossRef]
- Onciul, R.; Tataru, C.-I.; Dumitru, A.V.; Crivoi, C.; Serban, M.; Covache-Busuioc, R.-A.; Radoi, M.P.; Toader, C. Artificial Intelligence and Neuroscience: Transformative Synergies in Brain Research and Clinical Applications. J. Clin. Med. 2025, 14, 550. [Google Scholar] [CrossRef]
- Zhu, X.; Li, Y.; Gu, N. Application of Artificial Intelligence in the Exploration and Optimization of Biomedical Nanomaterials. Nano Biomed. Eng. 2023, 15, 342–353. [Google Scholar] [CrossRef]
- Giansanti, D. Revolutionizing Medical Imaging: The Transformative Role of Artificial Intelligence in Diagnostics and Treatment. Diagnostics 2025, 15, 1557. [Google Scholar] [CrossRef]
- Naik, G.G.; Jagtap, V.A. Two heads are better than one: Unravelling the potential Impact of Artifocial Intelligence in nanotechnology. Nano TransMed. 2024, 3, 100041. [Google Scholar] [CrossRef]
- Introduction to nanotechnology. In Nanomaterials in Clinical Therapeutics: Synthesis and Applications; Wiley Online Library: Hoboken, NJ, USA, 2022.
- Naik, G.G.; Minocha, T.; Verma, A.; Yadav, S.K.; Saha, S.; Agrawal, A.K.; Singh, S.; Sahu, A.N. Asparagus racemosus root-derived carbon nanodots as a nano-probe for biomedical applications. J. Mater. Sci. 2022, 57, 20380–20401. [Google Scholar] [CrossRef]
- Naik, G.G.; Madavi, R.; Minocha, T.; Mohapatra, D.; Pratap, R.; Shreya, S.; Patel, P.K.; Yadav, S.K.; Parmar, A.; Patra, A.; et al. In vitro cytotoxic potential of cow dung and expired tomato sauces-derived carbon nanodots against A-375 human melanoma cell line. Arab. J. Chem. 2024, 17, 105576. [Google Scholar] [CrossRef]
- Fahim, Y.A.; Hasani, I.W.; Kabba, S.; Ragab, W.M. Artificial Intelligence in Healthcare and Medicine: Clinical Applications, Therapeutic Advances, and Future Perspectives. Eur. J. Med. Res. 2025, 30, 848. [Google Scholar] [CrossRef] [PubMed]
- Parvin, N.; Joo, S.W.; Jung, J.H.; Mandal, T.K. Multimodal AI in Biomedicine: Pioneering the Future of Biomaterials, Diagnostics, and Personalized Healthcare. Nanomaterials 2025, 15, 895. [Google Scholar] [CrossRef] [PubMed]
- Jandoubi, B.; Akhloufi, M.A. Multimodal Artificial Intelligence in Medical Diagnostics. Information 2025, 16, 591. [Google Scholar] [CrossRef]
- Naik, G.G.; Mohapatra, D.; Shreya, S.; Madavi, R.; Shambhavi; Patel, P.K.; Sahu, A.N. Nip in the bud: Can carbon/quantum dots be a prospective nano-theranostics against COVID-19? Bull. Mater. Sci. 2023, 47, 6. [Google Scholar] [CrossRef]
- Caballero, D.; Sánchez-Margallo, J.A.; Pérez-Salazar, M.J.; Sánchez-Margallo, F.M. Applications of Artificial Intelligence in Minimally Invasive Surgery Training: A Scoping Review. Surgeries 2025, 6, 7. [Google Scholar] [CrossRef]
- Pouwels, S.; Mwangi, A.; Koutentakis, M.; Mendoza, M.; Rathod, S.; Parajuli, S.; Singhal, S.; Lakshani, U.; Yang, W.; Au, K.; et al. The Role of Artificial Intelligence and Information Technology in Enhancing and Optimizing Stapling Efficiency in Metabolic and Bariatric Surgery: A Comprehensive Narrative Review. Gastrointest. Disord. 2025, 7, 63. [Google Scholar] [CrossRef]
- Acharya, B.; Behera, A.; Behera, S.; Moharana, S. Recent advances in nanotechnology-based drug Delivery systems for the diagnosis and treatment of Reproductive disorders. ACS Appl. Bio Mater. 2024, 7, 1336–1361. [Google Scholar] [CrossRef]
- Galieri, G.; Orlando, V.; Altieri, R.; Barbarisi, M.; Olivi, A.; Sabatino, G.; La Rocca, G. Current Trends and Future Directions in Lumbar Spine Surgery: A Review of Emerging Techniques and Evolving Management Paradigms. J. Clin. Med. 2025, 14, 3390. [Google Scholar] [CrossRef]
- The rise of artificial intelligence in healthcare applications. In Artificial Intelligence in Healthcare; Elsevier: Amsterdam, The Netherlands, 2020.
- Konstantinova, J.; Jiang, A.; Althoefer, K.; Dasgupta, P.; Nanayakkara, T. Implementation of tactile sensing for palpation in robot-assisted minimally invasive surgery: A review. IEEE Sens. J. 2014, 14, 2490–2501. [Google Scholar] [CrossRef]
- Hu, M.; Ge, X.; Chen, X.; Mao, W.; Qian, X.; Yuan, W.-E. Micro/Nanorobot: A promising targeted drug delivery system. Pharmaceutics 2020, 12, 665. [Google Scholar] [CrossRef] [PubMed]
- Goglia, M.; Pavone, M.; D’Andrea, V.; De Simone, V.; Gallo, G. Minimally Invasive Rectal Surgery: Current Status and Future Perspectives in the Era of Digital Surgery. J. Clin. Med. 2025, 14, 1234. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Martinez, S.; Camara, O.; Piella, G.; Cikes, M.; González-Ballester, M.Á.; Miron, M.; Vellido, A.; Gómez, E.; Fraser, A.G.; Bijnens, B. Machine learning for clinical decision-making:challenges and opportunities in cardiovascular imaging. Front. Cardiovasc. Med. 2022, 8, 765693. [Google Scholar] [CrossRef] [PubMed]
- Bush, B.; Nifong, L.W.; Alwair, H.; Chitwood, W.R. Robotic mitral valve surgery-current status and future directions. Ann. Cardiothorac. Surg. 2013, 2, 814–817. [Google Scholar]
- Nobbenhuis, M.A.E.; Gul, N.; Barton-Smith, P.; O’Sullivan, O.; Moss, E.; Ind, T.E.J.; Royal College of Obstetricians and Gynaecologists. Robotic surgery in gynaecology: Scientific Impact Paper No. 71 (July 2022). BJOG 2023, 130, e1–e8. [Google Scholar] [CrossRef]
- Garisto, J.; Ramakrishnan, V.M.; Bertolo, R.; Kaouk, J. The re-discovery of alternative access to the pelvic fossa: The role of the single-port robotic platform. In Single-Port Robotic Surgery in Urology; Elsevier: Amsterdam, The Netherlands, 2022; pp. 35–59. [Google Scholar]
- You, Y.; Lai, X.; Pan, Y.; Zheng, H.; Vera, J.; Liu, S.; Deng, S.; Zhang, L. Artificial intelligence in cancer target identification and drug discovery. Signal Transduct. Target. Ther. 2022, 7, 156. [Google Scholar] [CrossRef]
- Vijayakumar, M.; Shetty, R. Robotic surgery in oncology. Indian. J. Surg. Oncol. 2020, 11, 549–551. [Google Scholar] [CrossRef]
- Yang, Y.; Song, L.; Huang, J.; Cheng, X.; Luo, Q. A uniportal right upper lobectomy by three-arm robotic-assisted thoracoscopic surgery using the da Vinci (Xi) Surgical System in the treatment of early-stage lung cancer. Transl. Lung Cancer Res. 2021, 10, 1571–1575. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, S.; Zhang, Y.; Fu, X.; Liu, X. Robotic surgery in rectal cancer: Potential, challenges, and opportunities. Curr. Treat. Options Oncol. 2022, 23, 961–979. [Google Scholar] [CrossRef]
- Mehta, C.H.; Narayan, R.; Nayak, U.Y. Computational modeling for formulation design. Drug Discov. Today 2019, 24, 781–788. [Google Scholar] [CrossRef]
- Cao, X.; Zheng, Y.-Z.; Liao, H.-Y.; Guo, X.; Li, Y.; Wang, Z.; Zhang, L.; Wang, X.-D.; Wang, X. A clinical nomogram and heat map for assessing survival in patients with stage I nonsmall cell lung cancer after complete resection. Ther. Adv. Med. Oncol. 2020, 12, 1758835920970063. [Google Scholar] [CrossRef] [PubMed]
- Yaqoob, A.; Musheer Aziz, R.; Verma, N.K. Applications and techniques of machine learning in cancer classification: A systematic review. Hum.-Centric Intell. Syst. 2023, 3, 588–615. [Google Scholar] [CrossRef]
- Jiang, X.; Hu, Z.; Wang, S.; Zhang, Y. Deep learning for medical image-based cancer diagnosis. Cancers 2023, 15, 3608. [Google Scholar] [CrossRef] [PubMed]
- Hassan, S.U.; Abdulkadir, S.J.; Zahid, M.S.M.; Al-Selwi, S.M. Local interpretable model-agnostic explanation approach for medical imaging analysis: A systematic literature review. Comput. Biol. Med. 2025, 185, 109569. [Google Scholar] [CrossRef]
- Rana, M.; Bhushan, M. Machine learning and deep learning approach for medical image analysis: Diagnosis to detection. Multimed. Tools Appl. 2022, 82, 26731–26769. [Google Scholar] [CrossRef]
- Yamazaki, K.; Vo-Ho, V.-K.; Bulsara, D.; Le, N. Spiking Neural Networks and Their Applications: A Review. Brain Sci. 2022, 12, 863. [Google Scholar] [CrossRef]
- Madan, S.; Lentzen, M.; Brandt, J.; Rueckert, D.; Hofmann-Apitius, M.; Fröhlich, H. Transformer models in biomedicine. BMC Med. Inf. Decis. Mak. 2024, 24, 214. [Google Scholar] [CrossRef]
- Dumachi, A.I.; Buiu, C. Applications of Machine Learning in Cancer Imaging: A Review of Diagnostic Methods for Six Major Cancer Types. Electronics 2024, 13, 4697. [Google Scholar] [CrossRef]
- Huhulea, E.N.; Huang, L.; Eng, S.; Sumawi, B.; Huang, A.; Aifuwa, E.; Hirani, R.; Tiwari, R.K.; Etienne, M. Artificial Intelligence Advancements in Oncology: A Review of Current Trends and Future Directions. Biomedicines 2025, 13, 951. [Google Scholar] [CrossRef]
- Cheng, C.H.; Shi, S.S. Artificial Intelligence in Cancer: Applications, Challenges, and Future Perspectives. Mol. Cancer 2025, 24, 274. [Google Scholar] [CrossRef]
- Selvaraj, C.; Cho, W.C.; Langeswaran, K.; Alothaim, A.S.; Vijayakumar, R.; Jayaprakashvel, M.; Desai, D. Artificial Intelligence in Cancer Care: Revolutionizing Diagnosis, Treatment, and Precision Medicine amid Emerging Challenges and Future Opportunities. 3 Biotech 2025, 15, 355. [Google Scholar] [CrossRef]
- Alshawwa, S.Z.; Kassem, A.A.; Farid, R.M.; Mostafa, S.K.; Labib, G.S. Nanocarrier drug delivery systems: Characterization, limitations, future perspectives and implementation of artificial intelligence. Pharmaceutics 2022, 14, 883. [Google Scholar] [CrossRef] [PubMed]
- Samathoti, P.; Kumarachari, R.K.; Bukke, S.P.N.; Rajasekhar, E.S.K.; Jaiswal, A.A.; Eftekhari, Z. The Role of Nanomedicine and Artificial Intelligence in Cancer Health Care: Individual Applications and Emerging Integrations—A Narrative Review. Discov. Oncol. 2025, 16, 697. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.-M.; Li, Z.-Z.; Zhong, N.-N.; Cao, L.-M.; Xiao, Y.; Li, J.-Q.; Huo, F.-Y.; Liu, B.; Xu, C.; Zhao, Y.; et al. Revolutionizing Lymph Node Metastasis Imaging: The Role of Drug Delivery Systems and Future Perspectives. J. Nanobiotechnol. 2024, 22, 135. [Google Scholar] [CrossRef] [PubMed]
- Chow, J.C.L. Nanomaterial-based molecular imaging in cancer: Advances in simulation and AI integration. Biomolecules 2025, 15, 444. [Google Scholar] [CrossRef]
- Kulkarni, S.; Lin, B.; Radhakrishnan, R. Machine learning enabled multiscale model for nanoparticle margination and physiology based pharmacokinetics. Comput. Chem. Eng. 2025, 198, 109081. [Google Scholar] [CrossRef]
- Shirzad, M.; Salahvarzi, A.; Razzaq, S.; Javid-Naderi, M.J.; Rahdar, A.; Fathi-Karkan, S.; Ghadami, A.; Kharaba, Z.; Ferreira, L.F.R. Revolutionizing prostate cancer therapy: Artificial intelligence—Based nanocarriers for precision diagnosis and treatment. Crit. Rev. Oncol. 2025, 208, 104653. [Google Scholar] [CrossRef]
- Bhange, M.; Telange, D. Convergence of nanotechnology and artificial intelligence in the fight against liver cancer: A comprehensive review. Discov. Onc. 2025, 16, 77. [Google Scholar] [CrossRef]
- Vora, L.K.; Gholap, A.D.; Jetha, K.; Thakur, R.R.S.; Solanki, H.K.; Chavda, V.P. Artificial intelligence in pharmaceutical technology and drug delivery design. Pharmaceutics 2023, 15, 1916. [Google Scholar] [CrossRef]
- Govindan, B.; Sabri, M.A.; Hai, A.; Banat, F.; Haija, M.A. A review of advanced multifunctional magnetic nanostructures for cancer diagnosis and therapy integrated into an artificial intelligence approach. Pharmaceutics 2023, 15, 868. [Google Scholar] [CrossRef]
- Xu, M.; Qin, Z.; Chen, Z.; Wang, S.; Peng, L.; Li, X.; Yuan, Z. Nanorobots mediated drug delivery for brain cancer active targeting and controllable therapeutics. Nanoscale Res. Lett. 2024, 19, 183. [Google Scholar] [CrossRef] [PubMed]
- Wasilewski, T.; Kamysz, W.; Gębicki, J. AI-assisted detection of biomarkers by sensors and biosensors for early diagnosis and monitoring. Biosensors 2024, 14, 356. [Google Scholar] [CrossRef] [PubMed]
- Das, K.P. Nanoparticles and convergence of artificial intelligence for targeted drug delivery for cancer therapy: Current progress and challenges. Front. Med. Technol. 2023, 4, 1067144. [Google Scholar] [CrossRef] [PubMed]
- Hannun, A.Y.; Rajpurkar, P.; Haghpanahi, M.; Tison, G.H.; Bourn, C.; Turakhia, M.P.; Ng, A.Y. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat. Med. 2019, 25, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Staszak, K.; Tylkowski, B.; Staszak, M. From data to diagnosis: How machine learning is changing heart health monitoring. Int. J. Environ. Res. Public Health 2023, 20, 4605. [Google Scholar] [CrossRef] [PubMed]
- Aziz, S.; Ahmed, S.; Alouini, M.S. ECG-based machine-learning algorithms for heartbeat classification. Sci. Rep. 2021, 11, 18738. [Google Scholar] [CrossRef]
- Karatzia, L.; Aung, N.; Aksentijevic, D. Artificial intelligence in cardiology: Hope for the future and power for the present. Front. Cardiovasc. Med. 2022, 9, 945726. [Google Scholar] [CrossRef]
- Khalifa, M.; Albadawy, M. AI in diagnostic imaging: Revolutionising accuracy and efficiency. Comput. Methods Programs Biomed. Updat. 2024, 5, 100146. [Google Scholar] [CrossRef]
- Siranart, N.; Deepan, N.; Techasatian, W.; Phutinart, S.; Sowalertrat, W.; Kaewkanha, P.; Pajareya, P.; Tokavanich, N.; Prasitlumkum, N.; Chokesuwattanaskul, R. Diagnostic accuracy of artificial intelligence in detecting left ventricular hypertrophy by electrocardiograph: A systematic review and meta-analysis. Sci. Rep. 2024, 14, 15882. [Google Scholar] [CrossRef]
- Yu, Y.; Gupta, A.; Wu, C.; Masoudi, F.A.; Du, X.; Zhang, J.; Krumholz, H.M.; Li, J. Characteristics, management, and outcomes of patients hospitalized for heart failure in China: The China PEACE retrospective heart failure study. J. Am. Heart Assoc. 2019, 8, e012884. [Google Scholar] [CrossRef]
- Kagiyama, N.; Piccirilli, M.; Yanamala, N.; Shrestha, S.; Farjo, P.D.; Casaclang-Verzosa, G.; Tarhuni, W.M.; Nezarat, N.; Budoff, M.J.; Narula, J.; et al. Machine learning assessment of left ventricular diastolic function based on electrocardiographic features. J. Am. Coll. Cardiol. 2020, 76, 930–941. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.; Guo, N.; Ge, Y.; Zhang, L.; Oudkerk, M.; Xie, X. Development and application of artificial intelligence in cardiac imaging. Br. J. Radiol. 2020, 93, 20190812. [Google Scholar] [CrossRef] [PubMed]
- Neisius, U.; El-Rewaidy, H.; Nakamori, S.; Rodriguez, J.; Manning, W.J.; Nezafat, R. Radiomic analysis of myocardial native T(1) imaging discriminates between hypertensive heart disease and hypertrophic cardiomyopathy. JACC Cardiovasc. Imaging 2019, 12, 1946–1954. [Google Scholar] [CrossRef] [PubMed]
- Lipkin, I.; Telluri, A.; Kim, Y.; Sidahmed, A.; Krepp, J.M.; Choi, B.G.; Jonas, R.; Marques, H.; Chang, H.-J.; Choi, J.H.; et al. Coronary CTA with AI-QCT interpretation: Comparison with myocardial perfusion imaging for detection of obstructive stenosis using invasive angiography as reference standard. AJR Am. J. Roentgenol. 2022, 219, 407–419. [Google Scholar] [CrossRef]
- Chiou, A.; Hermel, M.; Sidhu, R.; Hu, E.; van Rosendael, A.; Bagsic, S.; Udoh, E.; Kosturakis, R.; Aziz, M.; Ruiz, C.R.; et al. Artificial intelligence coronary computed tomography, coronary computed tomography angiography using fractional flow reserve, and physician visual interpretation in the per-vessel prediction of abnormal invasive adenosine fractional flow reserve. Eur. Heart J. Imaging Methods Pract. 2024, 2, qyae035. [Google Scholar] [CrossRef]
- Lu, M.T.; Ferencik, M.; Roberts, R.S.; Lee, K.L.; Ivanov, A.; Adami, E.; Mark, D.B.; Jaffer, F.A.; Leipsic, J.A.; Douglas, P.S.; et al. Noninvasive FFR derived from coronary CT angiography: Management and outcomes in the PROMISE trial. JACC Cardiovasc. Imaging 2017, 10, 1350–1358. [Google Scholar] [CrossRef]
- Martin, S.S.; Mastrodicasa, D.; van Assen, M.; De Cecco, C.N.; Bayer, R.R.; Tesche, C.; Varga-Szemes, A.; Fischer, A.M.; Jacobs, B.E.; Sahbaee, P.; et al. Value of machine learning-based coronary CT fractional flow reserve applied to triple-rule-out CT angiography in acute chest pain. Radiol. Cardiothorac. Imaging 2020, 2, e190137. [Google Scholar] [CrossRef]
- Sufian, A.; Hamzi, W.; Sharifi, T.; Zaman, S.; Alsadder, L.; Lee, E.; Hakim, A.; Hamzi, B. AI-driven thoracic X-ray diagnostics: Transformative transfer learning for clinical validation in pulmonary radiography. J. Pers. Med. 2024, 14, 856. [Google Scholar] [CrossRef]
- Kaba, Ş.; Haci, H.; Isin, A.; Ilhan, A.; Conkbayir, C. The application of deep learning for the segmentation and classification of coronary arteries. Diagnostics 2023, 13, 2274. [Google Scholar] [CrossRef]
- Xue, Y.; Shen, J.; Hong, W.; Zhou, W.; Xiang, Z.; Zhu, Y.; Huang, C.; Luo, S. Risk stratification of ST-segment elevation myocardial infarction (STEMI) patients using machine learning based on lipid profiles. Lipids Heal. Dis. 2021, 20, 48. [Google Scholar] [CrossRef]
- Oikonomou, E.K.; Holste, G.; Yuan, N.; Coppi, A.; McNamara, R.L.; Haynes, N.A.; Vora, A.N.; Velazquez, E.J.; Li, F.; Menon, V.; et al. A multimodal video-based AI biomarker for aortic stenosis development and progression. JAMA Cardiol. 2024, 9, 534–544. [Google Scholar] [CrossRef]
- Tseng, A.S.; Shelly-Cohen, M.; Attia, I.Z.; Noseworthy, P.A.; Friedman, P.A.; Oh, J.K.; Lopez-Jimenez, F. Spectrum bias in algorithms derived by artificial intelligence: A case study in detecting aortic stenosis using electrocardiograms. Eur. Heart J. Digit. Health 2021, 2, 561–567. [Google Scholar] [CrossRef] [PubMed]
- Narula, S.; Shameer, K.; Salem Omar, A.M.; Dudley, J.T.; Sengupta, P.P. Machine-learning algorithms to automate morphological and functional assessments in 2D echocardiography. J. Am. Coll. Cardiol. 2016, 68, 2287–2295. [Google Scholar] [CrossRef] [PubMed]
- Agatston, A.S.; Janowitz, W.R.; Hildner, F.J.; Zusmer, N.R.; Viamonte, M., Jr.; Detrano, R. Quantification of coronary artery calcium using ultrafast computed tomography. J. Am. Coll. Cardiol. 1990, 15, 827–832. [Google Scholar] [CrossRef]
- Wolterink, J.M.; Leiner, T.; de Vos, B.D.; van Hamersvelt, R.W.; Viergever, M.A.; Išgum, I. Automatic coronary artery calcium scoring in cardiac CT angiography using paired convolutional neural networks. Med. Image Anal. 2016, 34, 123–136. [Google Scholar] [CrossRef] [PubMed]
- Martin, S.S.; van Assen, M.; Rapaka, S.; Hudson, H.T.; Fischer, A.M.; Varga-Szemes, A.; Sahbaee, P.; Schwemmer, C.; Gulsun, M.A.; Cimen, S.; et al. Evaluation of a deep learning-based automated CT coronary artery calcium scoring algorithm. JACC Cardiovasc. Imaging 2020, 13, 524–526. [Google Scholar] [CrossRef]
- Cano-Espinosa, C.; González, G.; Washko, G.R.; Cazorla, M.; Estépar, R.S. Automated Agatston score computation in non-ECG gated CT scans using deep learning. Proc. SPIE Int. Soc. Opt. Eng. 2018, 10574, 105742K. [Google Scholar] [CrossRef]
- van Hamersvelt, R.W.; Zreik, M.; Voskuil, M.; Viergever, M.A.; Išgum, I.; Leiner, T. Deep learning analysis of left ventricular myocardium in CT angiographic intermediate-degree coronary stenosis improves the diagnostic accuracy for identification of functionally significant stenosis. Eur. Radiol. 2019, 29, 2350–2359. [Google Scholar] [CrossRef]
- Biasiolli, L.; Hann, E.; Lukaschuk, E.; Carapella, V.; Paiva, J.M.; Aung, N.; Rayner, J.J.; Werys, K.; Fung, K.; Puchta, H.; et al. Automated localization and quality control of the aorta in cine CMR can significantly accelerate processing of the UK Biobank population data. PLoS ONE. 2019, 14, e0212272. [Google Scholar] [CrossRef]
- Simulation and Synthesis in Medical Imaging; Springer: New York, NY, USA, 2018.
- Olawade, D.B.; Aderinto, N.; Olatunji, G.; Kokori, E.; David-Olawade, A.C.; Hadi, M. Advancements and applications of Artificial Intelligence in cardiology: Current trends and future prospects. J. Med. Surg. Public Health 2024, 3, 100109. [Google Scholar] [CrossRef]
- Makimoto, H.; Kohro, T. Adopting artificial intelligence in cardiovascular medicine: A scoping review. Hypertens. Res. 2024, 47, 685–699. [Google Scholar] [CrossRef] [PubMed]
- Tarroni, G.; Oktay, O.; Bai, W.; Schuh, A.; Suzuki, H.; Passerat-Palmbach, J.; de Marvao, A.; O’REgan, D.P.; Cook, S.; Glocker, B.; et al. Learning-based quality control for cardiac MR images. IEEE Trans. Med. Imaging 2019, 38, 1127–1138. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Gooya, A.; Pereanez, M.; Dong, B.; Piechnik, S.K.; Neubauer, S.; Petersen, S.E.; Frangi, A.F. Automatic assessment of full left ventricular coverage in cardiac cine magnetic resonance imaging with fisher-discriminative 3-D CNN. IEEE Trans. Biomed. Eng. 2018, 66, 1975–1986. [Google Scholar] [CrossRef] [PubMed]
- Xue, H.; Tseng, E.; Knott, K.D.; Kotecha, T.; Brown, L.; Plein, S.; Fontana, M.; Moon, J.C.; Kellman, P. Automated detection of left ventricle in arterial input function images for inline perfusion mapping using deep learning: A study of 15,000 patients. Magn. Reson. Med. 2020, 84, 2788–2800. [Google Scholar] [CrossRef]
- Tan, L.K.; McLaughlin, R.A.; Lim, E.; Abdul Aziz, Y.F.; Liew, Y.M. Fully automated segmentation of the left ventricle in cine cardiac MRI using neural network regression. J. Magn. Reson. Imaging 2018, 48, 140–152. [Google Scholar] [CrossRef]
- Du, X.; Zhang, W.; Zhang, H.; Chen, J.; Zhang, Y.; Warrington, J.C.; Brahm, G.; Li, S. Deep regression segmentation for cardiac bi-ventricle MR images. IEEE Access 2018, 6, 3828–3838. [Google Scholar] [CrossRef]
- Bernard, O.; Lalande, A.; Zotti, C.; Cervenansky, F.; Yang, X.; Heng, P.-A.; Cetin, I.; Lekadir, K.; Camara, O.; Ballester, M.A.G.; et al. Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: Is the problem solved? IEEE Trans. Med. Imaging 2018, 37, 2514–2525. [Google Scholar] [CrossRef]
- Fahmy, A.S.; Rausch, J.; Neisius, U.; Chan, R.H.; Maron, M.S.; Appelbaum, E.; Menze, B.; Nezafat, R. Automated cardiac MR scar quantification in hypertrophic cardiomyopathy using deep convolutional neural networks. JACC Cardiovasc. Imaging 2018, 11, 1917–1918. [Google Scholar] [CrossRef]
- Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images are more than pictures, they are data. Radiology 2016, 278, 563–577. [Google Scholar] [CrossRef]
- Baessler, B.; Luecke, C.; Lurz, J.; Klingel, K.; Das, A.; von Roeder, M.; de Waha-Thiele, S.; Besler, C.; Rommel, K.-P.; Maintz, D.; et al. Cardiac MRI and texture analysis of myocardial T1 and T2 maps in myocarditis with acute versus chronic symptoms of heart failure. Radiology 2019, 292, 608–617. [Google Scholar] [CrossRef]
- Shen, D.; Wu, G.; Suk, H.I. Deep learning in medical image analysis. Annu. Rev. Biomed. Eng. 2017, 19, 221–248. [Google Scholar] [CrossRef]
- Miotto, R.; Wang, F.; Wang, S.; Jiang, X.; Dudley, J.T. Deep learning for healthcare: Review, opportunities and challenges. Brief. Bioinform. 2018, 19, 1236–1246. [Google Scholar] [CrossRef] [PubMed]
- Prashanth, R.; Dutta Roy, S.; Mandal, P.K.; Ghosh, S. High-accuracy detection of early Parkinson’s disease through multimodal features and machine learning. Int. J. Med. Inform. 2016, 90, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Amoroso, N.; La Rocca, M.; Monaco, A.; Bellotti, R.; Tangaro, S. Complex networks reveal early MRI markers of Parkinson’s disease. Med. Image Anal. 2018, 48, 12–24. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Ha, S.; Im, H.J.; Paek, S.H.; Lee, D.S. Refining diagnosis of Parkinson’s disease with deep learning-based interpretation of dopamine transporter imaging. NeuroImage 2017, 16, 586–594. [Google Scholar] [CrossRef]
- Prashanth, R.; Roy, S.D.; Mandal, P.K.; Ghosh, S. Automatic classification and prediction models for early Parkinson’s disease diagnosis from SPECT imaging. Expert Syst. Appl. 2014, 41, 3333–3342. [Google Scholar] [CrossRef]
- Rana, B.; Juneja, A.; Saxena, M.; Gudwani, S.; Kumaran, S.S.; Behari, M.; Agrawal, R.K. Graph-theory-based spectral feature selection for computer-aided diagnosis of Parkinson’s disease using T1-weighted MRI. Expert Syst. Appl. 2015, 25, 245–255. [Google Scholar] [CrossRef]
- Poewe, W.; Seppi, K.; Tanner, C.M.; Halliday, G.M.; Brundin, P.; Volkmann, J.; Schrag, A.E.; Lang, A.E. Parkinson disease. Nat. Rev. Dis. Primers 2017, 3, 17013. [Google Scholar] [CrossRef]
- Burciu, R.G.; Vaillancourt, D.E. Imaging of motor cortex physiology in Parkinson’s disease. Mov. Disord. 2018, 33, 1688–1699. [Google Scholar] [CrossRef]
- Cao, R.; Wang, X.; Gao, Y.; Li, T.; Zhang, H.; Hussain, W.; Xie, Y.; Wang, J.; Wang, B.; Xiang, J. Abnormal anatomical rich-club organization and structural-functional coupling in mild cognitive impairment and Alzheimer’s disease. Front. Neurol. 2020, 11, 53. [Google Scholar] [CrossRef]
- Duncan, G.W.; Firbank, M.J.; Yarnall, A.J.; Khoo, T.K.; Brooks, D.J.; Barker, R.A.; Burn, D.J.; O’Brien, J.T. Gray and white matter imaging: A biomarker for cognitive impairment in early Parkinson’s disease? Mov. Disord. 2016, 31, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, S.T.; Afzal, M.; Morgan, P.S.; Bajaj, N.; Gowland, P.A.; Auer, D.P. The ‘swallow tail’ appearance of the healthy nigrosome—A new accurate test of Parkinson’s disease: A case-control and cohort study. Lancet Neurol. 2014, 13, 461–470. [Google Scholar] [CrossRef]
- Rusz, J.; Cmejla, R.; Ruzickova, H.; Ruzicka, E. Quantitative acoustic measurements for characterization of speech and voice disorders in early untreated Parkinson’s disease. J. Acoust. Soc. Am. 2011, 129, 350–367. [Google Scholar] [CrossRef] [PubMed]
- Harel, B.; Cannizzaro, M.; Snyder, P.J. Variability in fundamental frequency during speech in prodromal and incipient Parkinson’s disease: A longitudinal case study. Brain Cogn. 2004, 56, 24–29. [Google Scholar] [CrossRef]
- Tsanas, A.; Little, M.A.; McSharry, P.E.; Spielman, J.; Ramig, L.O. Novel speech signal processing algorithms for high-accuracy classification of Parkinson’s disease. IEEE. Trans. Biomed. Eng. 2012, 59, 1264–1271. [Google Scholar] [CrossRef]
- Sakar, C.O.; Serbes, G.; Gunduz, A.; Tunc, H.C.; Nizam, H.; Sakar, B.E.; Tutuncu, M.; Aydin, T.; Isenkul, M.E.; Apaydin, H. A comparative analysis of speech signal processing algorithms for Parkinson’s disease classification and the use of the tunable Q-factor wavelet transform. Appl. Soft Comput. 2019, 74, 255–263. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N. Attention is all you need. Adv. Neural Inf. Proces. Syst. 2017, 30, 5998–6008. [Google Scholar]
- Moro-Velázquez, L.; Gómez-García, J.A.; Godino-Llorente, J.I.; Villalba, J.; Orozco-Arroyave, J.R.; Dehak, N. Analysis of speaker recognition methodologies and the influence of kinetic changes to automatically detect Parkinson’s disease. Appl. Soft Comput. 2017, 62, 649–666. [Google Scholar] [CrossRef]
- Espay, A.J.; Bonato, P.; Nahab, F.B.; Maetzler, W.; Dean, J.M.; Klucken, J.; Eskofier, B.M.; Merola, A.; Horak, F.; Lang, A.E.; et al. Technology in Parkinson’s disease: Challenges and opportunities. Mov. Disord. 2016, 31, 1272–1282. [Google Scholar] [CrossRef]
- Del Din, S.; Godfrey, A.; Mazza, C.; Lord, S.; Rochester, L. Free-living monitoring of Parkinson’s disease: Lessons from the field. Mov. Disord. 2016, 31, 1293–1313. [Google Scholar] [CrossRef]
- Pereira, C.R.; Pereira, D.R.; Silva, F.A.; Masieiro, J.P.; Weber, S.A.; Hook, C.; Papa, J.P. A new computer vision-based approach to aid the diagnosis of Parkinson’s disease. Comput. Methods Prog. Biomed. 2016, 136, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Galna, B.; Lord, S.; Burn, D.J.; Rochester, L. Progression of gait dysfunction in incident Parkinson’s disease: Impact of medication and phenotype. Mov. Disord. 2015, 30, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Bot, B.M.; Suver, C.; Neto, E.C.; Kellen, M.; Klein, A.; Bare, C.; Doerr, M.; Pratap, A.; Wilbanks, J.; Dorsey, E.R.; et al. The mPower study, Parkinson’s disease mobile data collected using ResearchKit. Sci. Data 2016, 3, 160011. [Google Scholar] [CrossRef] [PubMed]
- Zhan, A.; Mohan, S.; Tarolli, C.; Schneider, R.B.; Adams, J.L.; Sharma, S.; Elson, M.J.; Spear, K.L.; Glidden, A.M.; Little, M.A.; et al. Using smartphones and machine learning to quantify Parkinson disease severity: The mobile Parkinson disease score. JAMA Neurol. 2018, 75, 876–880. [Google Scholar] [CrossRef]
- Arora, S.; Venkataraman, V.; Zhan, A.; Donohue, S.; Biglan, K.; Dorsey, E.; Little, M. Detecting and monitoring the symptoms of Parkinson’s disease using smartphones: A pilot study. Parkinsonism Relat. Disord. 2015, 21, 650–653. [Google Scholar] [CrossRef]
- Stamatakis, J.; Ambroise, J.; Crémers, J.; Sharei, H.; Delvaux, V.; Macq, B.; Garraux, G. Finger tapping clinometric score prediction in Parkinson’s disease using low-cost accelerometers. Comput. Intell. Neurosci. 2013, 717853, 1–13. [Google Scholar] [CrossRef]
- Prince, J.; Andreotti, F.; De Vos, M. Multi-source ensemble learning for the remote prediction of Parkinson’s disease in the presence of source-wise missing data. IEEE Trans. Biomed. Eng. 2019, 66, 1402–1411. [Google Scholar] [CrossRef]
- Rusz, J.; Hlavnicka, J.; Cmejla, R.; Ruzicka, E. Automatic evaluation of speech rhythm instability and acceleration in dysarthrias associated with basal ganglia dysfunction. Front. Bioeng. Biotechnol. 2015, 3, 104. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar] [CrossRef]
- Olanow, C.W.; Rascol, O.; Hauser, R.; Feigin, P.D.; Jankovic, J.; Lang, A.; Langston, W.; Melamed, E.; Poewe, W.; Stocchi, F.; et al. A double-blind, delayed-start trial of rasagiline in Parkinson’s disease. N. Engl. J. Med. 2009, 361, 1268–1278. [Google Scholar] [CrossRef]
- Verschuur, C.V.; Suwijn, S.R.; Boel, J.A.; Post, B.; Bloem, B.R.; van Hilten, J.J.; van Laar, T.; Tissingh, G.; Munts, A.G.; Deuschl, G.; et al. Randomized delayed-start trial of levodopa in Parkinson’s disease. N. Engl. J. Med. 2019, 380, 315–324. [Google Scholar] [CrossRef]
- Pahwa, R.; Lyons, K.E.; Wilkinson, S.B.; Simpson, R.K.; Ondo, W.G.; Tarsy, D.; Norregaard, T.; Hubble, J.P.; Smith, D.A.; Hauser, R.A.; et al. Long-term evaluation of deep brain stimulation of the thalamus. J. Neurosurg. 2006, 104, 506–512. [Google Scholar] [CrossRef] [PubMed]
- Weaver, F.M.; Follett, K.; Stern, M.; Hur, K.; Harris, C.; Marks, W.J., Jr.; Rothlind, J.; Sagher, O.; Reda, D.; Moy, C.S.; et al. Bilateral deep brain stimulation vs best medical therapy for patients with advanced Parkinson disease: A randomized controlled trial. JAMA 2009, 301, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Katzman, J.L.; Shaham, U.; Cloninger, A.; Bates, J.; Jiang, T.; Kluger, Y. DeepSurv: Personalized treatment recommender system using a Cox proportional hazards deep neural network. BMC Med. Res. Methodol. 2018, 18, 24. [Google Scholar] [CrossRef] [PubMed]
- Rosa, M.; Arlotti, M.; Ardolino, G.; Cogiamanian, F.; Marceglia, S.; Di Fonzo, A.; Cortese, F.; Rampini, P.M.; Priori, A. Adaptive deep brain stimulation in a freely moving parkinsonian patient. Mov. Disord. 2015, 30, 1003–1005. [Google Scholar] [CrossRef]
- Twala, B. AI-driven precision diagnosis and treatment in Parkinson’s disease: A comprehensive review and experimental analysis. Front. Aging Neurosci. 2025, 17, 1638340. [Google Scholar] [CrossRef]
- He, J.; Baxter, S.L.; Xu, J.; Xu, J.; Zhou, X.; Zhang, K. The practical implementation of artificial intelligence technologies in medicine. Nat. Med. 2019, 25, 30–36. [Google Scholar] [CrossRef]
- Ghassemi, M.; Oakden-Rayner, L.; Beam, A.L. The false hope of current approaches to explainable artificial intelligence in health care. Lancet Digit. Health 2021, 3, e745–e750. [Google Scholar] [CrossRef]
- Larrazabal, A.J.; Nieto, N.; Peterson, V.; Milone, D.H.; Ferrante, E. Gender imbalance in medical imaging datasets produces biased classifiers for computer-aided diagnosis. Proc. Natl. Acad. Sci. USA 2020, 117, 12592–12594. [Google Scholar] [CrossRef]
- Gianfrancesco, M.A.; Tamang, S.; Yazdany, J.; Schmajuk, G. Potential biases in machine learning algorithms using electronic health record data. JAMA Intern. Med. 2018, 178, 1544–1547. [Google Scholar] [CrossRef]
- Muehlematter, U.J.; Daniore, P.; Vokinger, K.N. Approval of artificial intelligence and machine learning-based medical devices in the USA and Europe (2015-20): A comparative analysis. Lancet Digit. Health 2021, 3, e195–e203. [Google Scholar] [CrossRef] [PubMed]
- Sendak, M.P.; Gao, M.; Brajer, N.; Balu, S. Presenting machine learning model information to clinical end users with model facts labels. NPJ Digit. Med. 2020, 3, 41. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Steinfeld, A.; Rosé, C.; Zimmerman, J. Re-examining whether, why, and how human-AI interaction is uniquely difficult to design. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, Honolulu, HI, USA, 25–30 April 2020. [Google Scholar]
- Cortez, J.; Torres, C.G.; Parraguez, V.H.; De los Reyes, M.; Peralta, O.A. Bovine adipose tissue-derived mesenchymal stem cells self-assemble with testicular cells and integrates and modifies the structure of a testicular organoids. Theriogenology 2024, 215, 259–271. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Jiang, X.; Qiao, L.; Liu, M. Modularity-Guided Functional Brain Network Analysis for Early-Stage Dementia Identification. Front. Neurosci. 2021, 15, 720909. [Google Scholar] [CrossRef]
- Jiao, F.; Wang, M.; Sun, X.; Ju, Z.; Lu, J.; Wang, L.; Jiang, J.; Zuo, C. Based on Tau PET Radiomics Analysis for the Classification of Alzheimer’s Disease and Mild Cognitive Impairment. Brain Sci. 2023, 13, 367. [Google Scholar] [CrossRef]
- Elmotelb, A.S.; Sherif, F.F.; Abohamama, A.S.; Fakhr, M.; Abdelatif, A.M. A Novel Deep Learning Technique for Multiclassification of Alzheimer’s Disease: A Hyperparameter Optimization Approach. Front. Artif. Intell. 2025, 8, 1558725. [Google Scholar] [CrossRef]
- Nuvoli, S.; Bianconi, F.; Rondini, M.; Lazzarato, A.; Marongiu, A.; Fravolini, M.L.; Cascianelli, S.; Amici, S.; Filippi, L.; Spanu, A.; et al. Differential Diagnosis of Alzheimer Disease vs. Mild Cognitive Impairment Based on Left Temporal Lateral Lobe Hypomethabolism on 18F-FDG PET/CT and Automated Classifiers. Diagnostics 2022, 12, 2425. [Google Scholar] [CrossRef]
- Akramifard, H.; Balafar, M.; Razavi, S.; Ramli, A.R. Emphasis Learning, Features Repetition in Width Instead of Length to Improve Classification Performance: Case Study-Alzheimer’s Disease Diagnosis. Sensors 2020, 20, 941. [Google Scholar] [CrossRef]
- Wang, L.; Sheng, J.; Zhang, Q.; Zhou, R.; Li, Z.; Xin, Y. Functional Brain Network Measures for Alzheimer’s Disease Classification. IEEE Access 2025, 11, 111832–111845. [Google Scholar] [CrossRef]
- Lama, R.K.; Kwon, G.R. Diagnosis of Alzheimer’s Disease Using Brain Network. Front. Neurosci. 2021, 15, 605115. [Google Scholar] [CrossRef]
- Choi, R.Y.; Coyner, A.S.; Kalpathy-Cramer, J.; Chiang, M.F.; Campbell, J.P. Introduction to Machine Learning, Neural Networks, and Deep Learning. Transl. Vis. Sci. Technol. 2020, 9, 14. [Google Scholar] [PubMed]
- van Loon, W.; de Vos, F.; Fokkema, M.; Szabo, B.; Koini, M.; Schmidt, R.; de Rooij, M. Analyzing Hierarchical Multi-View MRI Data with StaPLR: An Application to Alzheimer’s Disease Classification. Front. Neurosci. 2022, 16, 830630. [Google Scholar] [CrossRef] [PubMed]
- Khan, Y.F.; Kaushik, B.; Chowdhary, C.L.; Srivastava, G. Ensemble Model for Diagnostic Classification of Alzheimer’s Disease Based on Brain Anatomical Magnetic Resonance Imaging. Diagnostics 2022, 12, 3193. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.W.; Wang, Z.J.; Shea, Y.F.; Chiu, P.K.-C.; Kwan, J.S.; Chan, F.H.-W.; Mak, H.K.-F. Combined Quantitative amyloid-β PET and Structural MRI Features Improve Alzheimer’s Disease Classification in Random Forest Model—A Multicenter Study. Acad. Radiol. 2024, 31, 5154–5163. [Google Scholar] [CrossRef]
- Song, M.; Jung, H.; Lee, S.; Kim, D.; Ahn, M. Diagnostic classification and biomarker identification of alzheimer’s disease with random forest algorithm. Brain Sci. 2021, 11, 453. [Google Scholar] [CrossRef]
- Keles, M.K.; Kilic, U. Classification of Brain Volumetric Data to Determine Alzheimer’s Disease Using Artificial Bee Colony Algorithm as Feature Selector. IEEE Access 2022, 10, 82989–83001. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Kim, C.M.; Lee, W. Classification of Alzheimer’s Disease Using Ensemble Convolutional Neural Network with LFA Algorithm. IEEE Access 2023, 11, 143004–143015. [Google Scholar] [CrossRef]
- Mujahid, M.; Rehman, A.; Alam, T.; Alamri, F.S.; Fati, S.M.; Saba, T. An Efficient Ensemble Approach for Alzheimer’s Disease Detection Using an Adaptive Synthetic Technique and Deep Learning. Diagnostics 2023, 13, 2489. [Google Scholar] [CrossRef]
- Khan, R.; Akbar, S.; Mehmood, A.; Shahid, F.; Munir, K.; Ilyas, N.; Asif, M.; Zheng, Z. A transfer learning approach for multiclass classification of Alzheimer’s disease using MRI images. Front. Neurosci. 2023, 16, 1050777. [Google Scholar] [CrossRef]
- Dhillon, A.; Verma, G.K. Convolutional neural network: A review of models, methodologies and applications to object detection. Prog. Artif. Intell. 2020, 9, 85–112. [Google Scholar] [CrossRef]
- Chen, D.; Hu, F.; Nian, G.; Yang, T. Deep Residual Learning for Nonlinear Regression. Entropy 2020, 22, 193. [Google Scholar] [CrossRef]
- Odusami, M.; Maskeliūnas, R.; Damaševičius, R.; Krilavičius, T. Analysis of Features of Alzheimer’s Disease: Detection of Early Stage from Functional Brain Changes in Magnetic Resonance Images Using a Finetuned ResNet18 Network. Diagnostics 2021, 11, 1071. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Tang, K.; Cai, W.; Chen, A.; Zhou, G.; Li, L.; Liu, R. MPC-STANet: Alzheimer’s Disease Recognition Method Based on Multiple Phantom Convolution and Spatial Transformation Attention Mechanism. Front. Aging Neurosci. 2022, 14, 918462. [Google Scholar] [CrossRef] [PubMed]
- Odusami, M.; Maskeliūnas, R.; Damaševičius, R. An Intelligent System for Early Recognition of Alzheimer’s Disease Using Neuroimaging. Sensors 2022, 22, 740. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Wang, Q.; Liu, X.; Hu, B. An Attention-Based CoT-ResNet with Channel Shuffle Mechanism for Classification of Alzheimer’s Disease Levels. Front. Aging Neurosci. 2022, 14, 930584. [Google Scholar] [CrossRef]
- Pusparani, Y.; Lin, C.Y.; Jan, Y.K.; Lin, F.-Y.; Liau, B.-Y.; Ardhianto, P.; Farady, I.; Alex, J.S.R.; Aparajeeta, J.; Chao, W.-H.; et al. Diagnosis of Alzheimer’s Disease Using Convolutional Neural Network with Select Slices by Landmark on Hippocampus in MRI Images. IEEE Access 2023, 11, 61688–61697. [Google Scholar] [CrossRef]
- Sun, H.; Wang, A.; Wang, W.; Liu, C. An Improved Deep Residual Network Prediction Model for the Early Diagnosis of Alzheimer’s Disease. Sensors 2021, 21, 4182. [Google Scholar] [CrossRef]
- AlSaeed, D.; Omar, S.F. Brain MRI Analysis for Alzheimer’s Disease Diagnosis Using CNN-Based Feature Extraction and Machine Learning. Sensors 2022, 22, 2911. [Google Scholar] [CrossRef]
- Syed Jamalullah, R.; Mary Gladence, L.; Ahmed, M.A.; Lydia, E.L.; Ishak, M.K.; Hadjouni, M.; Mostafa, S.M. Leveraging Brain MRI for Biomedical Alzheimer’s Disease Diagnosis Using Enhanced Manta Ray Foraging Optimization Based Deep Learning. IEEE Access 2023, 11, 81921–81929. [Google Scholar] [CrossRef]
- Carcagnì, P.; Leo, M.; Del Coco, M.; Distante, C.; De Salve, A. Convolution Neural Networks and Self-Attention Learners for Alzheimer Dementia Diagnosis from Brain MRI. Sensors 2023, 23, 1694. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Gupta, S.; Gupta, D.; Altameem, A.; Saudagar, A.K.J.; Poonia, R.C.; Nayak, S.R. HTLML: Hybrid AI Based Model for Detection of Alzheimer’s Disease. Diagnostics 2022, 12, 1833. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Mo, X.; Chen, R.; Feng, P.; Li, H. A Reparametrized CNN Model to Distinguish Alzheimer’s Disease Applying Multiple Morphological Metrics and Deep Semantic Features From Structural MRI. Front. Aging Neurosci. 2022, 14, 856391. [Google Scholar] [CrossRef] [PubMed]
- Khagi, B.; Kwon, G.R. 3D CNN Design for the Classification of Alzheimer’s Disease Using Brain MRI and PET. IEEE Access 2020, 8, 217830–217847. [Google Scholar] [CrossRef]
- Kaya, M.; Cetin-Kaya, Y. A Novel Deep Learning Architecture Optimization for Multiclass Classification of Alzheimer’s Disease Level. IEEE Access 2024, 12, 46562–46581. [Google Scholar] [CrossRef]
- Shamrat, F.M.J.M.; Akter, S.; Azam, S.; Karim, A.; Ghosh, P.; Tasnim, Z.; Hasib, K.M.; De Boer, F.; Ahmed, K. AlzheimerNet:An Effective Deep Learning Based Proposition for Alzheimer’s Disease Stages Classification From Functional Brain Changes in Magnetic Resonance Images. IEEE Access 2023, 11, 16376–16395. [Google Scholar] [CrossRef]
- Hazarika, R.A.; Maji, A.K.; Kandar, D.; Jasinska, E.; Krejci, P.; Leonowicz, Z.; Jasinski, M. An Approach for Classification of Alzheimer’s Disease Using Deep Neural Network and Brain Magnetic Resonance Imaging (MRI). Electronics 2023, 12, 676. [Google Scholar] [CrossRef]
- Fareed, M.M.S.; Zikria, S.; Ahmed, G.; Din, M.Z.; Mahmood, S.; Aslam, M.; Jillani, S.F.; Moustafa, A. ADD-Net: An Effective Deep Learning Model for Early Detection of Alzheimer Disease in MRI Scans. IEEE Access 2022, 10, 96930–96951. [Google Scholar] [CrossRef]
- Sait, A.R.W.; Nagaraj, R. A Feature-Fusion Technique-Based Alzheimer’s Disease Classification Using Magnetic Resonance Imaging. Diagnostics 2024, 14, 2363. [Google Scholar] [CrossRef]
- Chabib, C.M.; Hadjileontiadis, L.J.; Shehhi, A.A. DeepCurvMRI: Deep Convolutional Curvelet Transform-Based MRI Approach for Early Detection of Alzheimer’s Disease. IEEE Access 2023, 11, 44650–44659. [Google Scholar] [CrossRef]
- Murugan, S.; Venkatesan, C.; Sumithra, M.G.; Gao, X.-Z.; Elakkiya, B.; Akila, M.; Manoharan, S. DEMNET: A Deep Learning Model for Early Diagnosis of Alzheimer Diseases and Dementia from MR Images. IEEE Access 2021, 9, 90319–90329. [Google Scholar] [CrossRef]
- Ganokratanaa, T.; Ketcham, M.; Pramkeaw, P. Advancements in Cataract Detection: The Systematic Development of LeNet-Convolutional Neural Network Models. J. Imaging 2023, 9, 197. [Google Scholar] [CrossRef] [PubMed]
- Hazarika, R.A.; Abraham, A.; Kandar, D.; Maji, A.K. An Improved LeNet-Deep Neural Network Model for Alzheimer’s Disease Classification Using Brain Magnetic Resonance Images. IEEE Access 2021, 9, 161194–161207. [Google Scholar] [CrossRef]
- Dey, R.; Salem, F.M. Gate-variants of Gated Recurrent Unit (GRU) neural networks. In Proceedings of the 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS), Boston, MA, USA, 6–9 August 2017; pp. 1597–1600. [Google Scholar]
- Mahim, S.M.; Ali, M.S.; Hasan, M.O.; Nafi, A.A.N.; Sadat, A.; Al Hasan, S.; Shareef, B.; Ahsan, M.; Islam, K.; Miah, S.; et al. Unlocking the Potential of XAI for Improved Alzheimer’s Disease Detection and Classification Using a ViT-GRU Model. IEEE Access 2024, 12, 8390–8412. [Google Scholar] [CrossRef]
- Zhao, Y.; Guo, Q.; Zhang, Y.; Zheng, J.; Yang, Y.; Du, X.; Feng, H.; Zhang, S. Application of Deep Learning for Prediction of Alzheimer’s Disease in PET/MR Imaging. Bioengineering 2023, 10, 1120. [Google Scholar] [CrossRef]
- Al-Otaibi, S.; Mujahid, M.; Khan, A.R.; Nobanee, H.; Alyami, J.; Saba, T. Dual Attention Convolutional AutoEncoder for Diagnosis of Alzheimer’s Disorder in Patients Using Neuroimaging and MRI Features. IEEE Access 2024, 12, 58722–58739. [Google Scholar] [CrossRef]
- Guo, H.; Zhang, Y. Resting State fMRI and Improved Deep Learning Algorithm for Earlier Detection of Alzheimer’s Disease. IEEE Access 2020, 8, 115383–115392. [Google Scholar] [CrossRef]
- Yi, X.; Walia, E.; Babyn, P. Generative adversarial network in medical imaging: A review. Med. Image Anal. 2019, 58, 101552. [Google Scholar] [CrossRef]
- Chui, K.T.; Gupta, B.B.; Alhalabi, W.; Alzahrani, F.S. An MRI Scans-Based Alzheimer’s Disease Detection via Convolutional Neural Network and Transfer Learning. Diagnostics 2022, 12, 1531. [Google Scholar] [CrossRef]
- Cao, Y.; Kuai, H.; Liang, P.; Pan, J.S.; Yan, J.; Zhong, N. BNLoop-GAN: A multi-loop generative adversarial model on brain network learning to classify Alzheimer’s disease. Front. Neurosci. 2023, 17, 1202382. [Google Scholar] [CrossRef]
- Kale, M.; Wankhede, N.; Pawar, R.; Ballal, S.; Kumawat, R.; Goswami, M.; Khalid, M.; Taksande, B.; Upaganlawar, A.; Umekar, M.; et al. AI-driven innovations in Alzheimer’s disease: Integrating early diagnosis, personalized treatment, and prognostic modelling. Ageing Res. Rev. 2024, 101, 102497. [Google Scholar] [CrossRef]
- Aqeel, A.; Hassan, A.; Khan, M.A.; Rehman, S.; Tariq, U.; Kadry, S.; Majumdar, A.; Thinnukool, O. A Long Short-Term Memory Biomarker-Based Prediction Framework for Alzheimer’s Disease. Sensors 2022, 22, 1475. [Google Scholar] [CrossRef]
- Khalid, A.; Senan, E.M.; Al-Wagih, K.; Al-Azzam, M.M.A.; Alkhraisha, Z.M. Automatic Analysis of MRI Images for Early Prediction of Alzheimer’s Disease Stages Based on Hybrid Features of CNN and Handcrafted Features. Diagnostics 2023, 13, 1654. [Google Scholar] [CrossRef] [PubMed]
- Jain, V.; Nankar, O.; Jerrish, D.J.; Gite, S.; Patil, S.; Kotecha, K. A Novel AI-Based System for Detection and Severity Prediction of Dementia Using MRI. IEEE Access 2021, 9, 154324–154346. [Google Scholar] [CrossRef]
- Peng, J.; Wang, W.; Song, Q.; Hou, J.; Jin, H.; Qin, X.; Yuan, Z.; Wei, Y.; Shu, Z. 18F-FDG-PET Radiomics Based on White Matter Predicts The Progression of Mild Cognitive Impairment to Alzheimer Disease: A Machine Learning Study. Acad. Radiol. 2023, 30, 1874–1884. [Google Scholar] [CrossRef]
- Lin, W.; Gao, Q.; Yuan, J.; Chen, Z.; Feng, C.; Chen, W.; Du, M.; Tong, T. Predicting Alzheimer’s Disease Conversion From Mild Cognitive Impairment Using an Extreme Learning Machine-Based Grading Method with Multimodal Data. Front. Aging Neurosci. 2020, 12, 77. [Google Scholar] [CrossRef] [PubMed]
- Fakoya, A.A.; Parkinson, S. A Novel Image Casting and Fusion for Identifying Individuals at Risk of Alzheimer’s Disease Using MRI and PET Imaging. IEEE Access 2024, 12, 134101–134114. [Google Scholar] [CrossRef]
- Pan, D.; Zeng, A.; Yang, B.; Lai, G.; Hu, B.; Song, X.; Jiang, T.; Alzheimer’s Disease Neuroimaging Initiative (ADNI). Deep Learning for Brain MRI Confirms Patterned Pathological Progression in Alzheimer’s Disease. Adv. Sci. 2023, 10, e2204717. [Google Scholar] [CrossRef]
- Kim, S.T.; Kucukaslan, U.; Navab, N. Longitudinal Brain MR Image Modeling Using Personalized Memory for Alzheimer’s Disease. IEEE Access 2021, 9, 143212–143221. [Google Scholar] [CrossRef]
- Crystal, O.; Maralani, P.J.; Black, S.; Fischer, C.; Moody, A.R.; Khademi, A. Brain Age Estimation on a Dementia Cohort Using FLAIR MRI Biomarkers. Am. J. Neuroradiol. 2023, 44, 1384–1390. [Google Scholar] [CrossRef]
- Wang, M.; Wei, M.; Wang, L.; Song, J.; Rominger, A.; Shi, K.; Jiang, J. Tau Protein Accumulation Trajectory-Based Brain Age Prediction in the Alzheimer’s Disease Continuum. Brain Sci. 2024, 14, 575. [Google Scholar] [CrossRef]
- Chattopadhyay, T.; Ozarkar, S.S.; Buwa, K.; Joshy, N.A.; Komandur, D.; Naik, J.; Thomopoulos, S.I.; Steeg, G.V.; Ambite, J.L.; Thompson, P.M. Comparison of deep learning architectures for predicting amyloid positivity in Alzheimer’s disease, mild cognitive impairment, and healthy aging, from T1-weighted brain structural MRI. Front. Neurosci. 2024, 18, 1387196. [Google Scholar] [CrossRef] [PubMed]
- Habuza, T.; Zaki, N.; Mohamed, E.A.; Statsenko, Y. Deviation from Model of Normal Aging in Alzheimer’s Disease: Application of Deep Learning to Structural MRI Data and Cognitive Tests. IEEE Access 2022, 10, 53234–53249. [Google Scholar] [CrossRef]
- Liang, W.; Zhang, K.; Cao, P.; Liu, X.; Yang, J.; Zaiane, O.R. Exploiting task relationships for Alzheimer’s disease cognitive score prediction via multi-task learning. Comput. Biol. Med. 2023, 152, 106367. [Google Scholar] [CrossRef] [PubMed]
- Gerussi, A.; Verda, D.; Bernasconi, D.P.; Carbone, M.; Komori, A.; Abe, M.; Inao, M.; Namisaki, T.; Mochida, S.; Yoshiji, H.; et al. Machine learning in primary biliary cholangitis: A novel approach for risk stratification. Liver Int. 2022, 42, 615–627. [Google Scholar] [CrossRef] [PubMed]
- Tovoli, F.; Renzulli, M.; Negrini, G.; Brocchi, S.; Ferrarini, A.; Andreone, A.; Benevento, F.; Golfieri, R.; Morselli-Labate, A.M.; Mastroroberto, M.; et al. Interoperator variability and source of errors in tumour response assessment for hepatocellular carcinoma treated with sorafenib. Eur. Radiol. 2018, 28, 3611–3620. [Google Scholar] [CrossRef]
- Nam, D.; Chapiro, J.; Paradis, V.; Seraphin, T.P.; Kather, J.N. Artificial Intelligence in liver diseases: Improving diagnostics, prognostics and response prediction. JHEP Rep. 2022, 4, 100443. [Google Scholar] [CrossRef]
- Gerussi, A.; Scaravaglio, M.; Cristoferi, L.; Verda, D.; Milani, C.; De Bernardi, E.; Ippolito, D.; Asselta, R.; Invernizzi, P.; Kather, J.N.; et al. Artificial Intelligence for precision medicine in autoimmune liver disease. Front. Immunol. 2022, 13, 966329. [Google Scholar] [CrossRef]
- Cherqui, D.; Ciria, R.; Kwon, C.H.D.; Kim, K.H.; Broering, D.; Wakabayashi, G.; Samstein, B.; Troisi, R.I.; Han, H.S.; Rotellar, F.; et al. Expert consensus guidelines on minimally invasive donor hepatectomy for living donor liver transplantation from innovation to implementation: A joint initiative from the International Laparoscopic Liver Society (ILLS) and the Asian-Pacific Hepato-Pancreato-Biliary Association (A-PHPBA). Ann Surg 2021, 273, 96–108. [Google Scholar]
- Lee, K.-W.; Hong, S.K.; Suh, K.-S.; Kim, H.-S.; Ahn, S.-W.; Yoon, K.C.; Lee, J.-M.; Cho, J.-H.; Kim, H.; Yi, N.-J. One hundred fifteen cases of pure laparoscopic living donor right hepatectomy at a single center. Transplantation 2018, 102, 1878–1884. [Google Scholar] [CrossRef]
- Chen, P.-D.; Wu, C.-Y.; Hu, R.-H.; Chen, C.-N.; Yuan, R.-H.; Liang, J.-T.; Lai, H.-S.; Wu, Y.-M. Robotic major hepatectomy: Is there a learning curve? Surgery 2017, 161, 642–649. [Google Scholar] [CrossRef]
- Burra, P.; Giannini, E.G.; Caraceni, P.; Corradini, S.G.; Rendina, M.; Volpes, R.; Toniutto, P. Specific issues concerning the management of patients on the waiting list and after liver transplantation. Liver Int. 2018, 38, 1338–1362. [Google Scholar] [CrossRef]
- Bertsimas, D.; Kung, J.; Trichakis, N.; Wang, Y.; Hirose, R.; Vagefi, P.A. Development and validation of an optimized prediction of mortality for candidates awaiting liver transplantation. Am. J. Transplant 2019, 19, 1109–1118. [Google Scholar] [CrossRef]
- Kwong, A.; Ebel, N.; Kim, W.; Lake, J.; Smith, J.; Schladt, D.; Skeans, M.; Foutz, J.; Gauntt, K.; Cafarella, M.; et al. OPTN/SRTR2020 annual data report: Liver. Am. J. Transpl. Transplant. 2022, 22, 204–309. [Google Scholar] [CrossRef]
- Predetermined Change Control Plan for AI/ML-Enabled Device Software Functions: Guidance for Industry and FDA Staff; U.S. Food and Drug Administration (FDA): Silver Spring, MD, USA, 2024.
- Good Machine Learning Practice for Medical Device Development: Guiding Principles; FDA: Silver Spring, MD, USA; Health Canada: Ottawa, ON, Canada; MHRA: London, UK, 2021.
- Artificial Intelligence Act (Regulation (EU) 2024/1689); L168/1; Official Journal of the European Union: Brussels, Belgum, 2024.
- Software and AI as a Medical Device Change Programme (AIaMD); Medicines and Healthcare Products Regulatory Agency: London, UK, 2024.
- Software as a Medical Device (SaMD): Key Definitions and Risk Categorization; IMDRF: Silver Spring, MD, USA, 2021.
- Artificial Intelligence—Guidance on Risk Management; International Organization for Standardization (ISO): Geneva, Switzerland, 2023.
- Artificial Intelligence Management System Standard; International Organization for Standardization (ISO): Geneva, Switzerland, 2023.
- Medical Devices—Quality Management Systems—Requirements for Regulatory Purposes; International Organization for Standardization (ISO): Geneva, Switzerland, 2016.
- Medical Devices—Application of Risk Management to Medical Devices; International Organization for Standardization (ISO): Geneva, Switzerland, 2019.
- Medical Device Software—Software Life Cycle Processes; International Electrotechnical Commission (IEC): Geneva, Switzerland, 2015.
- Ethics and Governance of Artificial Intelligence for Health; WHO: Geneva, Switzerland, 2023.



| Topic/Area | Description | Ref. |
|---|---|---|
| AI in Medicine | AI enables computers and robots to emulate human behavior, assist in healthcare diagnosis, and perform surgical procedures. Applications include drug development, medical data generation, and disease analysis such as cancer. | [21] |
| AI-Powered Robotics | AI-driven surgical robots and nanorobots improve precision and efficacy by enabling targeted drug delivery. | [22,23] |
| AI-Enhanced Soft Robotics | Machine learning–driven soft robotic systems mimic physiological functions for diagnostic and therapeutic applications. Recent advances include ML-enhanced soft robotic platforms inspired by rectal functions to model fecal continence mechanisms and investigate neuromuscular coordination, highlighting the convergence of AI, robotics, and biomedical engineering. | [24] |
| Machine Learning and Deep Learning in Healthcare | ML and deep learning support clinical diagnostics and treatment decisions. AI-assisted surgical robots are used in procedures like heart valve repair, gynecology, and prostatectomy. Future cancer treatments may rely on unsupervised and reinforcement learning for pattern recognition and strategy optimization. | [25,26,27,28] |
| AI in Computational Biology and Molecular Medicine | AI contributes to identifying medicinal targets, managing protein interactions, and advancing genetics and molecular medicine. | [29] |
| Robotic Surgery in Oncology | The review highlights the advantages, challenges, and Indian context of robotic surgery in oncology. | [30] |
| Case Example: Da Vinci Robotic Surgical System | Yang et al. described a uniportal right upper lobectomy performed with the 4th generation Da Vinci Xi system, demonstrating advanced robotic-assisted surgery capabilities and fast patient recovery. | [31] |
| Robotic Surgery in Rectal Cancer | Robotic surgery helps overcome limitations of traditional laparoscopy, improving radical operation outcomes. Innovations include the Verb Surgical project and developments in robotic mesorectal excision, lymph node dissection, and AI integration in surgery. | [32] |
| Computational Methods in Drug Formulation | Computational modeling optimizes drug formulations (e.g., methotrexate nanosuspension) by analyzing molecular interactions and aggregation. Tools like LAMMPS and GROMACS assess nanoparticle behavior. Mehta et al. reviewed these modeling tools, emphasizing their role in personalized medicine and improved therapeutic outcomes. | [33] |
| Modality | AI Application/Task | Clinical/Research Use | Advantages | Limitations/Challenges | Ref. |
|---|---|---|---|---|---|
| CT—Opportunistic risk stratification (DASSi) | AI-based biomarker extraction from echocardiographic + CMR inputs (Digital Aortic Stenosis Severity Index, DASSi) | Screening and follow-up; risk stratification using even handheld devices for opportunistic screening | Enables personalized screening without complex imaging setups; usable on lower-resource platforms | Depends on heterogenous inputs (echo + CMR); needs cross-modality harmonization and validation across populations | [74] |
| CT—AI screening for valve disease (mitral/aortic) | Automated detection/classification of valve disease severity from imaging and ECG/clinical inputs | Large-scale screening, triage, identification of severe aortic stenosis (AS) | High diagnostic performance (AUCs reported >0.88–0.91 in extreme-spectrum cohorts); enables fast triage | Spectrum and selection bias in training data; model interpretability issues; variable imaging acquisition protocols | [75,76] |
| CT—Coronary artery calcium scoring (CAC, Agatston) automated | Automated CAC detection and Agatston score estimation from non-contrast/low-dose chest CT or CCTA | Risk stratification for coronary atherosclerosis; population screening (e.g., lung CT cohorts) | High throughput; reduces labor for manual scoring; can be applied opportunistically to lung screening CTs | Image noise, motion or blooming artifacts degrade accuracy; requires robust pre-processing and well-labelled training sets | [77,78,79,80] |
| CT—CCTA + myocardial analysis for ischemia prediction | Deep learning analysis of left ventricular (LV) myocardium (multiscale CNN + auto-encoding) to predict functionally significant stenosis and stress ischemia | Noninvasive functional assessment adjunct to stenosis grading; improve prediction of ischemia beyond stenosis % | Adds myocardial functional info from standard CCTA; improved discrimination (AUC~0.76 vs. anatomy alone) | Moderate specificity in some reports (e.g., sensitivity 84.6%, specificity 48.4%); method complexity and need for robust validation | [81] |
| CT—Automated coronary segmentation & classification | DL architectures (EfficientNet, DenseNet201, ResNet101, Xception, MobileNet-v2) for artery segmentation and lesion classification | Automated reporting, quantification of stenosis and plaque characterization | Very high reported metrics in some models (DenseNet201: accuracy 0.90; AUC 0.9694; specificity 0.9833) | Black-box models, potential overfitting to homogeneous datasets; generalizability issues | [71,72] |
| CT—Lipid/phenogroup clustering for risk prediction (non-imaging input) | Unsupervised ML to derive phenogroups from lipid profiles to predict outcomes in STEMI | Risk stratification and phenotyping for prognosis and personalized management | Reveals biologically meaningful patient subgroups; strong statistical associations with outcomes | Requires large cohorts and external validation; confounding by treatment and comorbidities | [73] |
| MRI—Automated QA and pre-processing checks | Automated assessment of image quality and slice selection (e.g., ascending vs. descending aorta detection; basal/apical slice identification; motion-artifact detection) | Quality control before downstream analysis; ensures standardized inputs for segmentation and quantification | Reduces manual QC burden; ensures consistent inputs for AI pipelines; lowers inter-scan variability | Models need to handle wide scanning protocols and scanner vendors; edge cases (severe artifacts) may fail | [82,83,84,85] |
| MRI—Left ventricle (LV) detection and segmentation | CNNs/boundary-regression/regression-based networks for LV identification and segmentation across cardiac cycle | Automated EF calculation, volumetry, mass, wall motion analysis for clinical and research use | Extremely high detection/segmentation accuracy reported (e.g., LV detection success ~99.98%; Dice scores up to ~0.95); much faster than manual tracing | Requires large annotated datasets (tens of thousands of scans); variation across centers; need for robust external validation | [86,87,88,89,90,91] |
| MRI—Scar quantification and tissue characterization | Deep CNNs for scar volume (late gadolinium enhancement), T1/T2-mapping radiomics, and myocardial tissue feature extraction | Phenotyping for HCM, ischemic scar, fibrosis assessment, prognosis | Enables quantitative, reproducible tissue characterization; radiomics can discriminate diseases (e.g., HCM vs. hypertensive disease) | Radiomics feature reproducibility across scanners and protocols is challenging; requires harmonization and large multisite datasets | [92,93,94] |
| Algorithm/Model | Description and Study Findings | Ref. |
|---|---|---|
| Support Vector Machine (SVM) | A supervised ML tool used to classify AD and MCI by detecting patterns in labeled imaging data. Widely used in neuroimaging for AD/MCI diagnosis. | [138] |
| Modular-LASSO Feature Selection (MLFS) + SVM | Zhang et al. developed a hybrid MLFS–SVM method incorporating Fuzzy Bayesian Networks for feature detection in resting-state fMRI, enhancing AD/MCI classification accuracy. | [139] |
| Radiomics-Based SVM Models | Jiao et al. applied SVM to identify radiomics signatures from tau tracer PET images, achieving higher accuracy (84.8 ± 4.5%) compared to SUVR (73.1 ± 3.6%). | [140,141] |
| SVM for FDG PET Imaging | Nuvoli et al. used linear SVM on FDG PET imaging for AD/MCI differential diagnosis, reporting 76.23% accuracy based on temporal lobe hypometabolism. | [142] |
| Emphasis Learning with SVM | Akramifard et al. improved classification performance by repeating key features in smaller datasets (emphasis learning), achieving 98.81% accuracy between AD and normal controls. | [143] |
| SVM + Graph Theory (fMRI) | Wang et al. combined SVM with graph-based measures for fMRI analysis, yielding 96.80% accuracy in distinguishing AD from healthy controls. Slightly lower accuracy was seen in MCI classification. | [144] |
| SVM + LASSO (Graph-based fMRI) | Combined SVM and LASSO feature selection provided high accuracy in classifying AD, MCI, and healthy controls, outperforming traditional methods. | [145] |
| Logistic Regression (LR) | LR explores input–output correlations using a sigmoid curve. Van Loon et al. introduced StaPLR (stacked penalized logistic regression) for multimodal MRI data fusion, achieving a mean AUC of 0.942, outperforming elastic net regression (AUC 0.848). | [146,147] |
| Decision Tree (DT) and Random Forest (RF) | Supervised ML methods that classify data hierarchically; RF uses multiple DTs to predict outcomes. Widely applied for AD classification. | [145,148,149,150] |
| Multimodal RF (Aβ PET + sMRI) | Bao et al. demonstrated improved AD classification accuracy using multimodal fusion (AUC = 0.89) compared to single-modality models (AUC = 0.71). | [149] |
| RF in Feature Selection (Combined with SVM) | Keles et al. used RF as a classifier in combination with optimization algorithms (BABC, BPSO, BGWO, BDE), achieving accuracies of 0.863–0.905. | [151] |
| Comparison of RF, SVM, MLP, and CNN | Song et al. compared multiple models for AD classification using 63, 29, and 22 features. All models showed high accuracy, but RF exhibited the smallest performance drop (−3.8%), confirming its robustness across feature sets and modalities. | [150] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trasca, D.-M.; Dorin, P.I.; Carmen, S.; Varut, R.-M.; Singer, C.E.; Radivojevic, K.; Stoica, G.A. Artificial Intelligence in Biomedicine: A Systematic Review from Nanomedicine to Neurology and Hepatology. Pharmaceutics 2025, 17, 1564. https://doi.org/10.3390/pharmaceutics17121564
Trasca D-M, Dorin PI, Carmen S, Varut R-M, Singer CE, Radivojevic K, Stoica GA. Artificial Intelligence in Biomedicine: A Systematic Review from Nanomedicine to Neurology and Hepatology. Pharmaceutics. 2025; 17(12):1564. https://doi.org/10.3390/pharmaceutics17121564
Chicago/Turabian StyleTrasca, Diana-Maria, Pluta Ion Dorin, Sirbulet Carmen, Renata-Maria Varut, Cristina Elena Singer, Kristina Radivojevic, and George Alin Stoica. 2025. "Artificial Intelligence in Biomedicine: A Systematic Review from Nanomedicine to Neurology and Hepatology" Pharmaceutics 17, no. 12: 1564. https://doi.org/10.3390/pharmaceutics17121564
APA StyleTrasca, D.-M., Dorin, P. I., Carmen, S., Varut, R.-M., Singer, C. E., Radivojevic, K., & Stoica, G. A. (2025). Artificial Intelligence in Biomedicine: A Systematic Review from Nanomedicine to Neurology and Hepatology. Pharmaceutics, 17(12), 1564. https://doi.org/10.3390/pharmaceutics17121564

