Eco-Friendly Synthesis of Copper Oxide Nanoparticles Using Geranium Pelargonium x hortorum Leaf Extract and Its Biological Applications
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Plant Sources
2.2. Green Synthesis of Copper Oxide Nanoparticles (CuONPs)
2.3. Characterization
2.4. Antimicrobial Test
2.5. Disk Diffusion and Microdilution Method
2.6. Cytotoxicity Assay
3. Discussion of Results
3.1. UV–Visible Spectroscopic Analysis
3.2. Fourier Transform Infrared (FT-IR) Analysis
3.3. X-Ray Diffraction (XRD) Analysis
3.4. Energy Dispersive X-Ray (EDX) Analysis
3.5. X-Ray Photoelectron Spectroscopy (XPS) Analysis
3.6. Transmission Electron Microscopy (TEM) Analysis
3.7. Antimicrobial Activity
3.8. Cytotoxicity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al-Rajhi, A.M.H.; Salem, S.S.; Alharbi, A.A.; Abdelghany, T.M. Ecofriendly Synthesis of Silver Nanoparticles Using Kei-Apple (Dovyalis caffra) Fruit and Their Efficacy against Cancer Cells and Clinical Pathogenic Microorganisms. Arab. J. Chem. 2022, 15, 103927. [Google Scholar] [CrossRef]
- Roy, A.; Bulut, O.; Some, S.; Mandal, A.K.; Yilmaz, M.D. Green Synthesis of Silver Nanoparticles: Biomolecule–Nanoparticle Organizations Targeting Antimicrobial Activity. RSC Adv. 2019, 9, 2673–2702. [Google Scholar] [CrossRef]
- Baig, N.; Kammakakam, I.; Falath, W.; Kammakakam, I. Nanomaterials: A Review of Synthesis Methods, Properties, Recent Progress, and Challenges. Mater. Adv. 2021, 2, 1821–1871. [Google Scholar] [CrossRef]
- Akintelu, S.A.; Folorunso, A.S.; Folorunso, F.A.; Oyebamiji, A.K. Green Synthesis of Copper Oxide Nanoparticles for Biomedical Application and Environmental Remediation. Heliyon 2020, 6, e04508. [Google Scholar] [CrossRef] [PubMed]
- ur Rehman, K.; Ullah Khan, A.; Tahir, K.; Nazir, S.; Albalawi, K.; Hassan, H.M.A.; Alabbad, E.A.; Refat, M.S.; Al-Shehri, H.S.; Mohammed Aldawsari, A. Facile Synthesis of Copper Oxide Nanoparticles (CuONPs) Using Green Method to Promote Photocatalytic and Biocidal Applications. J. Mol. Liq. 2022, 360, 119453. [Google Scholar] [CrossRef]
- Azooz, E.A.; Ridha, R.K.; Abdulridha, H.A. The Fundamentals and Recent Applications of Micellar System Extraction for Nanoparticles and Bioactive Molecules: A Review. Nano Biomed. Eng. 2021, 13, 264–278. [Google Scholar] [CrossRef]
- Akpomie, K.G.; Ghosh, S.; Gryzenhout, M.; Conradie, J. One-Pot Synthesis of Zinc Oxide Nanoparticles via Chemical Precipitation: Bromophenol Blue Adsorption and Antifungal Activity against Filamentous Fungi. Sci. Rep. 2021, 11, 87819. [Google Scholar] [CrossRef]
- Ying, S.; Guan, Z.; Ofoegbu, P.C.; Clubb, P.; Rico, C.; He, F.; Hong, J. Green Synthesis of Nanoparticles: Current Developments and Limitations. Environ. Technol. Innov. 2022, 27, 102336. [Google Scholar] [CrossRef]
- Dikshit, P.K.; Kumar, J.; Das, A.K.; Sadhu, S.; Sharma, S.; Singh, S.; Gupta, P.K.; Kim, B.S. Green Synthesis of Metallic Nanoparticles: Applications and Limitations. Catalysts 2021, 11, 902. [Google Scholar] [CrossRef]
- Javed, R.; Usman, M.; Yücesan, B.; Zia, M.; Gürel, E. Effect of Zinc Oxide Nanoparticles on Steviol Glycosides Production in Stevia rebaudiana. Plant Physiol. Biochem. 2017, 110, 94–99. [Google Scholar] [CrossRef]
- Haider, A.J.; Al-Anbari, R.H.; Kadhim, G.R.; Salame, C.T. Exploring Potential Environmental Applications of TiO2 Nanoparticles. Energy Procedia 2017, 119, 332–345. [Google Scholar] [CrossRef]
- Nguyen, N.T.H.; Tran, G.T.; Nguyen, N.T.T.; Nguyen, T.T.T.; Nguyen, D.T.C.; Van Tran, T. Biosynthesis, Properties, and Applications of Green MnO2 Nanoparticles: A Critical Review. Environ. Res. 2023, 231, 116262. [Google Scholar] [CrossRef]
- Pansambal, S.; Oza, R.; Borgave, S.; Chauhan, A.; Bardapurkar, P.; Vyas, S.; Ghotekar, S. Bioengineered Cerium Oxide (CeO2) Nanoparticles and Their Applications. Appl. Nanosci. 2023, 13, 6067–6092. [Google Scholar] [CrossRef]
- Elemike, E.E.; Nna, P.J.; Nzete, S.C.; Onwudiwe, D.C.; Oghenekohwiroro, E.; Singh, M.; Hossain, I. Green Synthesis and Antimicrobial Properties of Iron Oxide Nanoparticles. Nanotechnol. Environ. Eng. 2024, 9, 437–444. [Google Scholar] [CrossRef]
- Cuong, H.N.; Pansambal, S.; Ghotekar, S.; Oza, R.; Hai, N.T.T.; Viet, N.M.; Nguyen, V.-H. Plant Extract–Mediated Biosynthesis of Copper Oxide Nanoparticles: A Review. Environ. Res. 2022, 203, 111858. [Google Scholar] [CrossRef] [PubMed]
- Murugan, B.; Rahman, M.Z.; Fatimah, I.; Lett, J.A.; Annaraj, J.; Kaus, N.H.M.; Al-Anber, M.A.; Sagadevan, S. Green Synthesis of CuO Nanoparticles for Biological Applications. Inorg. Chem. Commun. 2023, 152, 111088. [Google Scholar] [CrossRef]
- Flores-Rábago, K.M.; Rivera-Mendoza, D.; Vilchis-Nestor, A.R.; Juarez-Moreno, K.; Castro-Longoria, E. Antibacterial Activity of Biosynthesized CuONPs Using Ganoderma sessile. Antibiotics 2023, 12, 1251. [Google Scholar] [CrossRef]
- Tshireletso, P.; Ateba, C.N.; Fayemi, O.E. Spectroscopic and Antibacterial Properties of CuONPs from Citrus Peels. Molecules 2021, 26, 30586. [Google Scholar] [CrossRef]
- Alshehri, B. The geranium genus: A comprehensive study on ethnomedicinal uses, phytochemical compounds, and pharmacological importance. Saudi J. Biol. Sci. 2024, 31, 103940. [Google Scholar] [CrossRef]
- López-Ayuso, C.A.; Garcia-Contreras, R.; Manisekaran, R.; Figueroa, M.; Arenas-Arrocena, M.C.; Hernandez-Padron, G.; Pozos-Guillén, A.; Acosta-Torres, L.S. Biological Responses of Silver Nanoparticles Synthesized Using Pelargonium x hortorum. RSC Adv. 2023, 13, 29784–29800. [Google Scholar] [CrossRef]
- Massa, D.; Malorgio, F.; Lazzereschi, S.; Carmassi, G.; Prisa, D.; Burchi, G. Use of Composts for Geranium Cultivation. Sci. Hortic. 2018, 228, 213–221. [Google Scholar] [CrossRef]
- Amel, H.A.; Kamel, H.; Meriem, F.; Abdelkader, K. Traditional Uses of Pelargonium graveolens. Trop. J. Nat. Prod. Res. 2022, 6, 1547–1569. [Google Scholar] [CrossRef]
- Alqahtani, A.A.; El Raey, M.A.; Abdelsalam, E.; Ibrahim, A.M.; Alqahtani, O.; Torky, Z.A.; Attia, H.G. The Biosynthesized Zinc Oxide Nanoparticles’ Antiviral Activity in Combination with Pelargonium zonale Extract against the Human Corona 229E Virus. Molecules 2022, 27, 8362. [Google Scholar] [CrossRef] [PubMed]
- Serrano-Díaz, P.; Williams, D.W.; Vega-Arreguin, J.; Manisekaran, R.; Twigg, J.; Morse, D.; García-Contreras, R.; Arenas-Arrocena, M.C.; Acosta-Torres, L.S. Geranium leaf-mediated synthesis of silver nanoparticles and their transcriptomic effects on Candida albicans. Green Process. Synth. 2023, 12, 20228105. [Google Scholar] [CrossRef]
- Illanes Tormena, R.P.; Medeiros Salviano Santos, M.K.; da Silva, A.O.; Félix, F.M.; Chaker, J.A.; Freire, D.O.; da Silva, I.C.R.; Moya, S.E.; Sousa, M.H. Enhancing the antimicrobial activity of silver nanoparticles against pathogenic bacteria by using Pelargonium sidoides DC extract in microwave assisted green synthesis. RSC Adv. 2024, 14, 22035–22043. [Google Scholar] [CrossRef]
- Mahabadi, A.G.; Mirzakhani, A.; Azizi, A.; Chavoshi, S.; Khaghani, S. Extracts of Pelargonium hortorum: A natural and efficient fluid for fast and eco-friendly biosynthesis of CeO2 nanoparticles for antioxidant and photocatalytic applications. Inorg. Chem. Commun. 2021, 127, 108553. [Google Scholar] [CrossRef]
- Jafarizad, A.; Safaee, K.; Gharibian, S.; Omidi, Y.; Ekinci, D. Biosynthesis and In-Vitro Study of Gold Nanoparticles Using Mentha and Pelargonium Extracts. Procedia Mater. Sci. 2015, 11, 224–230. [Google Scholar] [CrossRef]
- Jabeen, A.; Khan, A.; Ahmad, P.; Khalid, A.; Majeed, Z.; Anjum, Z.; Modafer, Y.; Jefri, O.A.; Alanazi, A.M.; Saeedi, A.M.; et al. Biomedical and Photocatalytic Dye Degradation Studies of Cymbopogon citratus–Mediated Copper Oxide Nanoparticles (CuO NPs). J. Drug Deliv. Sci. Technol. 2023, 87, 104795. [Google Scholar] [CrossRef]
- Wongpisutpaisan, N.; Charoonsuk, P.; Vittayakorn, N.; Pecharapa, W. Sonochemical Synthesis and Characterization of Copper Oxide Nanoparticles. Energy Procedia 2011, 9, 404–409. [Google Scholar] [CrossRef]
- CLSI Supplement M100; Performance Standards for Antimicrobial Susceptibility Testing, 31st ed. Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2021.
- Ameen, F.; AlYahya, S.; Govarthanan, M.; Aljahdali, N.; Al-Enazi, N.; Alsamhary, K.; Alshehri, W.A.; Alwakeel, S.S.; Alharbi, S.A. Soil Bacteria Cupriavidus sp. Mediates the Extracellular Synthesis of Antibacterial Silver Nanoparticles. J. Mol. Struct. 2020, 1202, 127233. [Google Scholar] [CrossRef]
- Manimaran, K.; Yanto, D.H.Y.; Kamaraj, C.; Selvaraj, K.; Pandiaraj, S.; Elgorban, A.M.; Vignesh, S.; Kim, H. Eco-friendly approaches of mycosynthesized copper oxide nanoparticles (CuONPs) using Pleurotus citrinopileatus mushroom extracts and their biological applications. Environ. Res. 2023, 232, 116319. [Google Scholar] [CrossRef] [PubMed]
- Sivakumar, S.R.; Manimaran, K.; Govindasamy, M.; Alzahrani, F.M.; Alsaiari, N.S. Green synthesis and characterization of CuO nanoparticles using Halymenia dilatata extract and its evaluation of antimicrobial, anticancer activity. Biomass Convers. Biorefin. 2023, 14, 27623–27632. [Google Scholar] [CrossRef]
- Ghorbi, E.; Namavar, M.; Rashedi, V.; Farhadinejad, S.; Pilban Jahromi, S.; Zareian, M. Influence of Nano-Copper Oxide Concentration on Bactericidal Properties of Silver–Copper Oxide Nanocomposite. Colloids Surf. A Physicochem. Eng. Asp. 2019, 580, 123732. [Google Scholar] [CrossRef]
- Sisira, S.; Hithisha, K.S.; Syama Sankar, J.; Nazirin, N.; Vimalraj, R.K.; Kalaimathi, M. Facile Synthesis and Optimization of CuONPs Using Illicium verum and Polianthes tuberosa and Their Anticancer Activity. Inorg. Chem. Commun. 2022, 145, 109961. [Google Scholar] [CrossRef]
- Vishveshvar, K.; Aravind Krishnan, M.V.; Haribabu, K.; Vishnuprasad, S. Green Synthesis of Copper Oxide Nanoparticles Using Ixiro coccinea Plant Leaves and its Characterization. Bionanoscience 2018, 8, 554–558. [Google Scholar] [CrossRef]
- Badawy, A.A.; Abdelfattah, N.A.H.; Salem, S.S.; Awad, M.F.; Fouda, A. Efficacy Assessment of Biosynthesized Copper Oxide Nanoparticles (CuO-NPs) on Stored Grain Insects and Their Impacts on Morphological and Physiological Traits of Whea (Triticum aestivum L.) Plant. Biology 2021, 10, 233. [Google Scholar] [CrossRef]
- Luna, I.Z.; Hilary, L.N.; Chowdhury, A.M.S.; Gafur, M.A.; Khan, N.; Khan, R.A. Preparation and Characterization of Copper Oxide Nanoparticles Synthesized via Chemical Precipitation Method. Open Access Libr. J. 2015, 2, 1–8. [Google Scholar] [CrossRef]
- Ali, K.; Sajid, M.; Abu Bakar, S.; Younus, A.; Ali, H.; Zahid Rashid, M.S. Synthesis of copper oxide (CuO) via coprecipitation method: Tailoring structural and optical properties of CuO nanoparticles for optoelectronic device applications. Hybrid Adv. 2024, 6, 100250. [Google Scholar] [CrossRef]
- Bin Mobarak, M.; Hossain, M.S.; Chowdhury, F.; Ahmed, S.S. Synthesis and characterization of CuO nanoparticles utilizing waste fish scale and exploitation of XRD peak profile analysis for approximating the structural parameters. Arab. J. Chem. 2022, 15, 104117. [Google Scholar] [CrossRef]
- Peng, F.; Sun, Y.; Yu, W.; Lu, Y.; Hao, J.; Cong, R.; Ge, M.; Shi, J.; Dai, N. Sensing Properties and Mechanism of CuO Nanoparticles to H2S Gas. Nanomaterials 2020, 10, 774. [Google Scholar] [CrossRef]
- Peternela, J.; Silva, M.F.; Vieira, M.F.; Bergamasco, R.; Vieira, A.M.S. Synthesis and Impregnation of Copper Oxide Nanoparticles on Activated Carbon through Green Synthesis for Water Pollutant Removal. Mater. Res. 2018, 21, e20160460. [Google Scholar] [CrossRef]
- Piñon-Espitia, M.; Lardizabal-Gutiérrez, D.; Camacho-Ríos, M.L.; Herrera-Pérez, G.; Ochoa-Lara, M.T. Electronic structure comparison of Cu 2p and O 1s X-Ray photoelectron spectra for CuxO nanofibers (x = 1, 2, i). Mater. Chem. Phys. 2021, 272, 124981. [Google Scholar] [CrossRef]
- Biesinger, M.C.; Lau, L.W.M.; Gerson, A.R.; Smart, R.S.C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl. Surf. Sci. 2010, 257, 887–898. [Google Scholar] [CrossRef]
- Stadnichenko, A.; Sorokin, M.; Boronin, I. XPS, UPS and STM Studies of Nanostructured CuO Films. J. Struct. Chem. 2008, 49, 341–347. [Google Scholar] [CrossRef]
- Tamuly, C.; Saikia, I.; Hazarika, M.; Das, M.R. Reduction of aromatic nitro compounds catalyzed by biogenic CuO nanoparticles. RSC Adv. 2014, 4, 53229–53236. [Google Scholar] [CrossRef]
- Xu, V.W.; Nizami, M.Z.I.; Yin, I.X.; Yu, O.Y.; Lung, C.Y.K.; Chu, C.H. Application of Copper Nanoparticles in Dentistry. Nanomaterials 2022, 12, 805. [Google Scholar] [CrossRef]
- Ameh, T.; Gibb, M.; Stevens, D.; Pradhan, S.H.; Braswell, E.; Sayes, C.M. Silver and Copper Nanoparticles Induce Oxidative Stress in Bacteria and Mammalian Cells. Nanomaterials 2022, 12, 2402. [Google Scholar] [CrossRef]
- Maťátková, O.; Michailidu, J.; Miškovská, A.; Kolouchová, I.; Masák, J.; Čejková, A. Antimicrobial properties and applications of metal nanoparticles biosynthesized by green methods. Biotechnol. Adv. 2022, 56, 107905. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, W.; Yao, Q. Copper-Based Biomaterials for Bone and Cartilage Tissue Engineering. J. Orthop. Transl. 2021, 28, 60–71. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, B.; Wu, J.; Pei, X.; Zhang, X.; Zhu, Z.; Chen, J.; Wang, J.; Wang, J. Ten-Gram-Scale Green Synthesis of Copper-Based Bio-MOF for Enhanced Vascularized Bone Regeneration. SSRN 2023. [Google Scholar] [CrossRef]
- Mendes, C.; Thirupathi, A.; Corrêa, M.E.A.B.; Gu, Y.; Silveira, P.C.L. The Use of Metallic Nanoparticles in Wound Healing: New Perspectives. Int. J. Mol. Sci. 2022, 23, 15376. [Google Scholar] [CrossRef]
- Iavicoli, I.; Leso, V.; Fontana, L.; Calabrese, E.J. Nanoparticle Exposure and Hormetic Dose–Responses: An Update. Int. J. Mol. Sci. 2018, 19, 805. [Google Scholar] [CrossRef]
- Salvo, J.; Sandoval, C. Role of copper nanoparticles in wound healing for chronic wounds: Literature review. Burns Trauma 2022, 10, tkab047. [Google Scholar] [CrossRef]











| Pelargonium Species | Nanoparticle Type | Main Applications |
|---|---|---|
| P. hortorum | ZnONPs | Antibacterial, photocatalytic [23] |
| P. graveolens | AgNPs | Antimicrobial, antioxidant [24] |
| P. reniforme | AgNPs | Antifungal, antibacterial [25] |
| P. sidoides | CeO2NPs | Antimicrobial, antioxidant, [26] |
| P. graveolens | AuNPs | Catalysis, biomedical [27] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Guadarrama, A.; López-Ayuso, C.A.; Garza-Hernández, R.; García-Carvajal, S.; Arenas-Arrocena, M.C.; Aguilar-Guadarrama, A.B.; Acosta-Torres, L.S. Eco-Friendly Synthesis of Copper Oxide Nanoparticles Using Geranium Pelargonium x hortorum Leaf Extract and Its Biological Applications. Pharmaceutics 2025, 17, 1562. https://doi.org/10.3390/pharmaceutics17121562
Hernández-Guadarrama A, López-Ayuso CA, Garza-Hernández R, García-Carvajal S, Arenas-Arrocena MC, Aguilar-Guadarrama AB, Acosta-Torres LS. Eco-Friendly Synthesis of Copper Oxide Nanoparticles Using Geranium Pelargonium x hortorum Leaf Extract and Its Biological Applications. Pharmaceutics. 2025; 17(12):1562. https://doi.org/10.3390/pharmaceutics17121562
Chicago/Turabian StyleHernández-Guadarrama, Alexis, Christian Andrea López-Ayuso, Raquel Garza-Hernández, Sarahi García-Carvajal, Ma. Concepción Arenas-Arrocena, A. Berenice Aguilar-Guadarrama, and Laura Susana Acosta-Torres. 2025. "Eco-Friendly Synthesis of Copper Oxide Nanoparticles Using Geranium Pelargonium x hortorum Leaf Extract and Its Biological Applications" Pharmaceutics 17, no. 12: 1562. https://doi.org/10.3390/pharmaceutics17121562
APA StyleHernández-Guadarrama, A., López-Ayuso, C. A., Garza-Hernández, R., García-Carvajal, S., Arenas-Arrocena, M. C., Aguilar-Guadarrama, A. B., & Acosta-Torres, L. S. (2025). Eco-Friendly Synthesis of Copper Oxide Nanoparticles Using Geranium Pelargonium x hortorum Leaf Extract and Its Biological Applications. Pharmaceutics, 17(12), 1562. https://doi.org/10.3390/pharmaceutics17121562

