Nanoparticle-Based Oral Insulin Delivery: Challenges, Advances, and Future Directions
Abstract
1. Introduction
2. Insulin Analogs and Limitations of Subcutaneous Injections
3. Nanoparticle-Based Strategies to Prevent Degradation of Oral Insulin
4. Nanoparticles-Based Approaches for Mucus Penetration and Mucus Adhesion
5. Nanoparticle-Based Approaches to Improve Epithelial Transport and Targeted Insulin Delivery
6. Clinical Translation of Nanoparticles for Oral Insulin Delivery
7. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| T1DM | Type 1 Diabetes Mellitus |
| T2DM | Type 2 Diabetes Mellitus |
| GI | Gastrointestinal |
| SLNs | Solid Lipid Nanoparticles |
| CS/GS | Chitosan/Glucose Copolymer |
| QDs | Quantum Dots |
| INS-QDs | Insulin Quantum Dots |
| oGTTs | Oral Glucose Tolerance Tests |
| AUC | Area Under the Curve |
| NOD | Non-Obese Diabetic |
| STZ | Streptozotocin |
| TEM | Transmission Electron Microscopy |
| AFM | Atomic Force Microscopy |
| EE | Encapsulation Efficiency |
| PLGA | Poly Lactic-co-Glycolic Acid |
| FDA | Food and Drug Administration |
| EMA | European Medicines Agency |
| PLHMGA | Poly(lactic-co-hydroxymethyl glycolic acid) |
| HAp NPs | Hydroxyapatite Nanoparticles |
| PEG | Polyethylene Glycol |
| PAT1 | Proton-Assisted Amino Acid Transporter 1 |
| DSPE-PCB | 1,2-distearoyl-sn-glycero-3-phosphoethanolamine |
| VB12 | Vitamin B12 |
| VB12-CS | Vitamin B12-Chitosan |
| IL | Ionic Liquids |
| FA | Folic Acid |
| HSPC | High-Transition-Temperature Phospholipids |
| DC | Deoxycholic Acid |
| DCS | Deoxycholic Acid-Modified Chitosan |
| DNPs | Deoxycholic Acid-Modified Nanoparticles |
| ASBT | Apical Sodium-Dependent Bile Acid Transporter |
| γ-PGA | Gamma-Polyglutamic Acid |
References
- Kumar, A.; Gangwar, R.; Ahmad Zargar, A.; Kumar, R.; Sharma, A. Prevalence of Diabetes in India: A Review of IDF Diabetes Atlas 10thEdition. Curr. Diabetes Rev. 2024, 20, e130423215752. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.; Mbanya, J.C.; et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 2022, 183, 109119. [Google Scholar] [CrossRef]
- Cnop, M.; Welsh, N.; Jonas, J.-C.; Jörns, A.; Lenzen, S.; Eizirik, D.L. Mechanisms of Pancreatic β-Cell Death in Type 1 and Type 2 Diabetes. Diabetes 2005, 54, S97–S107. [Google Scholar] [CrossRef]
- Cerf, M.E. Beta Cell Dysfunction and Insulin Resistance. Front. Endocrinol. 2013, 4, 37. [Google Scholar] [CrossRef]
- Emad-Eldin, M.; Balata, G.F.; Elshorbagy, E.A.; Hamed, M.S.; Attia, M.S. Insulin therapy in type 2 diabetes: Insights into clinical efficacy, patient-reported outcomes, and adherence challenges. World J. Diabetes 2024, 15, 828–852. [Google Scholar] [CrossRef] [PubMed]
- Farmer, T.D.; Jenkins, E.C.; O’Brien, T.P.; McCoy, G.A.; Havlik, A.E.; Nass, E.R.; Nicholson, W.E.; Printz, R.L.; Shiota, M. Comparison of the physiological relevance of systemic vs. portal insulin delivery to evaluate whole body glucose flux during an insulin clamp. Am. J. Physiol.-Endocrinol. Metab. 2015, 308, E206–E222. [Google Scholar] [CrossRef]
- Najjar, S.M.; Perdomo, G. Hepatic Insulin Clearance: Mechanism and Physiology. Physiology 2019, 34, 198–215. [Google Scholar] [CrossRef] [PubMed]
- Marschütz, M.K.; Bernkop-Schnürch, A. Oral peptide drug delivery: Polymer–inhibitor conjugates protecting insulin from enzymatic degradation in vitro. Biomaterials 2000, 21, 1499–1507. [Google Scholar] [CrossRef]
- Kraft, G.; Coate, K.C.; Smith, M.; Farmer, B.; Scott, M.; Hastings, J.; Cherrington, A.D.; Edgerton, D.S. Profound Sensitivity of the Liver to the Direct Effect of Insulin Allows Peripheral Insulin Delivery to Normalize Hepatic but Not Muscle Glucose Uptake in the Healthy Dog. Diabetes 2023, 72, 196–209. [Google Scholar] [CrossRef]
- Mazzotta, F.A.; Paoli, L.L.; Rizzi, A.; Tartaglione, L.; Leo, M.L.; Popolla, V.; Barberio, A.; Viti, L.; Di Leo, M.; Pontecorvi, A.; et al. Unmet needs in the treatment of type 1 diabetes: Why is it so difficult to achieve an improvement in metabolic control? Nutr. Diabetes 2024, 14, 58. [Google Scholar] [CrossRef]
- Aronson, R. The Role of Comfort and Discomfort in Insulin Therapy. Diabetes Technol. Ther. 2012, 14, 741–747. [Google Scholar] [CrossRef]
- Wong, C.Y.; Martinez, J.; Dass, C.R. Oral delivery of insulin for treatment of diabetes: Status quo, challenges and opportunities. J. Pharm. Pharmacol. 2016, 68, 1093–1108. [Google Scholar] [CrossRef]
- Zhang, E.; Zhu, H.; Song, B.; Shi, Y.; Cao, Z. Recent advances in oral insulin delivery technologies. J. Control. Release 2024, 366, 221–230. [Google Scholar] [CrossRef]
- Grand View Research. Insulin Market (2025–2030). 2025. Available online: https://www.grandviewresearch.com/industry-analysis/insulin-market-report (accessed on 5 November 2025).
- Xiang, W.; Jiang, X.; Guo, L. A Bibliometric Analysis of Microneedle-Mediated Drug Delivery: Trends, Hotspots, and Future Directions. Drug Des. Devel. Ther. 2025, 19, 3805–3825. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Mittal, A.; Mehra, A. Oral Insulin Delivery: A Patent Review. Pharm. Pat. Anal. 2022, 11, 199–212. [Google Scholar] [CrossRef] [PubMed]
- Caturano, A.; Nilo, R.; Nilo, D.; Russo, V.; Santonastaso, E.; Galiero, R.; Rinaldi, L.; Monda, M.; Sardu, C.; Marfella, R.; et al. Advances in Nanomedicine for Precision Insulin Delivery. Pharmaceuticals 2024, 17, 945. [Google Scholar] [CrossRef]
- Han, Y.; Spicer, J.; Huang, Y.; Bunt, C.; Liu, M.; Wen, J. Advancements in oral insulin: A century of research and the emergence of targeted nanoparticle strategies. Eur. J. Lipid Sci. Technol. 2024, 126, 2300271. [Google Scholar] [CrossRef]
- Ali Hazis, N.U.; Aneja, N.; Rajabalaya, R.; David, S.R. Systematic Patent Review of Nanoparticles in Drug Delivery and Cancer Therapy in the Last Decade. Recent Adv. Drug Deliv. Formul. 2021, 15, 59–74. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.Y.; Martinez, J.; Carnagarin, R.; Dass, C.R. In-vitro evaluation of enteric coated insulin tablets containing absorption enhancer and enzyme inhibitor. J. Pharm. Pharmacol. 2017, 69, 285–294. [Google Scholar] [CrossRef]
- Cui, F.; Tao, A.; Cun, D.; Zhang, L.; Shi, K. Preparation of insulin loaded PLGA-Hp55 nanoparticles for oral delivery. J. Pharm. Sci. 2007, 96, 421–427. [Google Scholar] [CrossRef]
- Lane, M.E.; O’Driscoll, C.M.; Corrigan, O.I. Quantitative estimation of the effects of bile salt surfactant systems on insulin stability and permeability in the rat intestine using a mass balance model. J. Pharm. Pharmacol. 2005, 57, 169–175. [Google Scholar] [CrossRef]
- Glynn, A.; Igra, A.M.; Sand, S.; Ilbäck, N.G.; Hellenäs, K.E.; Rosén, J.; Aspenström-Fagerlund, B. Are additive effects of dietary surfactants on intestinal tight junction integrity an overlooked human health risk?—A mixture study on Caco-2 monolayers. Food Chem. Toxicol. 2017, 106, 314–323. [Google Scholar] [CrossRef]
- Hubálek, F.; Refsgaard, H.H.F.; Gram-Nielsen, S.; Peter, M.; Erica, N.; Martin, M.; Christian, L.B.; Carsten, E.S.; Christian, H.C.; Erik, M.W.; et al. Molecular engineering of safe and efficacious oral basal insulin. Nat. Commun. 2020, 11, 3746. [Google Scholar] [CrossRef]
- Wang, M.; Wang, C.; Ren, S.; Pan, J.; Wang, Y.; Shen, Y.; Zeng, Z.; Cui, H.; Zhao, X. Versatile Oral Insulin Delivery Nanosystems: From Materials to Nanostructures. Int. J. Mol. Sci. 2022, 23, 3362. [Google Scholar] [CrossRef]
- Li, J.; Qiang, H.; Yang, W.; Xu, Y.; Feng, T.; Cai, H.; Wang, S.; Liu, Z.; Zhang, Z.; Zhang, J. Oral insulin delivery by epithelium microenvironment-adaptive nanoparticles. J. Control. Release 2022, 341, 31–43. [Google Scholar] [CrossRef]
- Lin, S.; Wu, F.; Cao, Z.; Liu, J. Advances in Nanomedicines for Interaction with the Intestinal Barrier. Adv. NanoBiomed Res. 2022, 2, 2100147. [Google Scholar] [CrossRef]
- Agrawal, A.K.; Harde, H.; Thanki, K.; Jain, S. Improved Stability and Antidiabetic Potential of Insulin Containing Folic Acid Functionalized Polymer Stabilized Multilayered Liposomes Following Oral Administration. Biomacromolecules 2014, 15, 350–360. [Google Scholar] [CrossRef]
- Sarkhel, S.; Shuvo, S.M.; Ansari, A.; Mondal, S.; Kapat, P.; Ghosh, A.; Sarkar, T.; Biswas, R.; Atanase, L.I.; Carauleanu, A. Nanotechnology-Based Approaches for the Management of Diabetes Mellitus: An Innovative Solution to Long-Lasting Challenges in Antidiabetic Drug Delivery. Pharmaceutics 2024, 16, 1572. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.-W.; Sonaje, K.; Liao, Z.-X.; Hsu, L.-W.; Chuang, E.-Y. pH-Responsive Nanoparticles Shelled with Chitosan for Oral Delivery of Insulin: From Mechanism to Therapeutic Applications. Acc. Chem. Res. 2012, 45, 619–629. [Google Scholar] [CrossRef] [PubMed]
- Benyettou, F.; Kaddour, N.; Prakasam, T.; Das, G.; Sharma, S.K.; Thomas, S.A.; Bekhti-Sari, F.; Whelan, J.; Alkhalifah, M.A.; Khair, M.; et al. In vivo oral insulin delivery via covalent organic frameworks. Chem. Sci. 2021, 12, 6037–6047. [Google Scholar] [CrossRef] [PubMed]
- Halberg, I.B.; Lyby, K.; Wassermann, K.; Heise, T.; Zijlstra, E.; Plum-Mörschel, L. Efficacy and safety of oral basal insulin versus subcutaneous insulin glargine in type 2 diabetes: A randomised, double-blind, phase 2 trial. Lancet Diabetes Endocrinol. 2019, 7, 179–188. [Google Scholar] [CrossRef]
- Fonte, P.; Araújo, F.; Reis, S.; Sarmento, B. Oral Insulin Delivery: How Far are We? J. Diabetes Sci. Technol. 2013, 7, 520–531. [Google Scholar] [CrossRef] [PubMed]
- Hartman, I. Insulin Analogs: Impact on Treatment Success, Satisfaction, Quality of Life, and Adherence. Clin. Med. Res. 2008, 6, 54–67. [Google Scholar] [CrossRef]
- Seshiah, V.; Kalra, S.; Balaji, V.; Balaji, M. Insulin aspart for the treatment of Type 2 diabetes. Diabetes Manag. 2015, 5, 127–134. [Google Scholar] [CrossRef]
- Porcellati, F.; Rossetti, P.; Ricci, N.B.; Pampanelli, S.; Torlone, E.; Campos, S.H.; Andreoli, A.M.; Bolli, G.B.; Fanelli, C.G. Pharmacokinetics and Pharmacodynamics of the Long-Acting Insulin Analog Glargine After 1 Week of Use Compared With Its First Administration in Subjects With Type 1 Diabetes. Diabetes Care 2007, 30, 1261–1263. [Google Scholar] [CrossRef]
- Guerci, B.; Sauvanet, J.P. Subcutaneous insulin: Pharmacokinetic variability and glycemic variability. Diabetes Metab. 2005, 31, 4S7–4S24. [Google Scholar] [CrossRef]
- Goykhman, S.; Drincic, A.; Desmangles, J.C.; Rendell, M. Insulin Glargine: A review 8 years after its introduction. Expert Opin. Pharmacother. 2009, 10, 705–718. [Google Scholar] [CrossRef]
- Yang, Z.; Zeng, X.; Zhao, Y.; Chen, R. AlphaFold2 and its applications in the fields of biology and medicine. Signal Transduct. Target. Ther. 2023, 8, 115. [Google Scholar] [CrossRef]
- Wu, L.; Wang, L.; Liu, X.; Bai, Y.; Wu, R.; Li, X.; Mao, Y.; Zhang, L.; Zheng, Y.; Gong, T.; et al. Milk-derived exosomes exhibit versatile effects for improved oral drug delivery. Acta Pharm. Sin. B 2022, 12, 2029–2042. [Google Scholar] [CrossRef]
- Chalasani, K.B.; Russell-Jones, G.J.; Yandrapu, S.K.; Diwan, P.V.; Jain, S.K. A novel vitamin B12-nanosphere conjugate carrier system for peroral delivery of insulin. J. Control. Release 2007, 117, 421–429. [Google Scholar] [CrossRef] [PubMed]
- Fan, W.; Xia, D.; Zhu, Q.; Li, X.; He, S.; Zhu, C.; Guo, S.; Hovgaard, L.; Yang, M.; Gan, Y. Functional nanoparticles exploit the bile acid pathway to overcome multiple barriers of the intestinal epithelium for oral insulin delivery. Biomaterials 2018, 151, 13–23. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, J.; Sun, Y.; Luo, F.; Guan, M.; Ma, H.; Dong, X.; Feng, J. A nano-delivery system based on preventing degradation and promoting absorption to improve the oral bioavailability of insulin. Int. J. Biol. Macromol. 2023, 244, 125263. [Google Scholar] [CrossRef] [PubMed]
- Hunt, N.J.; Lockwood, G.P.; Heffernan, S.J.; Daymond, J.; Ngu, M.; Narayanan, R.K.; Westwood, L.J.; Mohanty, B.; Esser, L.; Williams, C.C.; et al. Oral nanotherapeutic formulation of insulin with reduced episodes of hypoglycaemia. Nat. Nanotechnol. 2024, 19, 534–544. [Google Scholar] [CrossRef]
- Prusty, A.K.; Sahu, S.K. Development and Evaluation of Insulin Incorporated Nanoparticles for Oral Administration. ISRN Nanotechnol. 2013, 2013, 591751. [Google Scholar] [CrossRef]
- Volpatti, L.R.; Matranga, M.A.; Cortinas, A.B.; Delcassian, D.; Daniel, K.B.; Langer, R.; Anderson, D.G. Glucose-Responsive Nanoparticles for Rapid and Extended Self-Regulated Insulin Delivery. ACS Nano 2020, 14, 488–497. [Google Scholar] [CrossRef]
- Ansari, M.J.; Anwer, K.; Jamil, S.; Al-Shdefat, R.; Ali, B.E.; Ahmad, M.M.; Ansari, M.N. Enhanced oral bioavailability of insulin-loaded solid lipid nanoparticles: Pharmacokinetic bioavailability of insulin-loaded solid lipid nanoparticles in diabetic rats. Drug Deliv. 2015, 23, 1972–1979. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Jiang, H.; Zhu, W.; Wu, L.; Song, L.; Wu, Q.; Ren, Y. Improving the Stability of Insulin in Solutions Containing Intestinal Proteases in Vitro. Int. J. Mol. Sci. 2008, 9, 2376–2387. [Google Scholar] [CrossRef]
- Boushra, M.; Tous, S.; Fetih, G.; Korzekwa, K.; Lebo, D.B.; Xue, H.Y.; Wong, H.L. Development and evaluation of viscosity-enhanced nanocarrier (VEN) for oral insulin delivery. Int. J. Pharm. 2016, 511, 462–472. [Google Scholar] [CrossRef]
- Song, M.; Wang, H.; Chen, K.; Zhang, S.; Yu, L.; Elshazly, E.H.; Ke, L.; Gong, R. Oral insulin delivery by carboxymethyl-β-cyclodextrin-grafted chitosan nanoparticles for improving diabetic treatment. Artif. Cells Nanomed. Biotechnol. 2018, 46, 774–782. [Google Scholar] [CrossRef]
- Mukhopadhyay, P.; Sarkar, K.; Bhattacharya, S.; Bhattacharyya, A.; Mishra, R.; Kundu, P. pH sensitive N-succinyl chitosan grafted polyacrylamide hydrogel for oral insulin delivery. Carbohydr. Polym. 2014, 112, 627–637. [Google Scholar] [CrossRef]
- Singh, G.; Verma, A.K.; Kumar, V. Catalytic properties, functional attributes and industrial applications of β-glucosidases. 3 Biotech 2016, 6, 3. [Google Scholar] [CrossRef]
- Gorai, B.; Vashisth, H. Progress in Simulation Studies of Insulin Structure and Function. Front. Endocrinol. 2022, 13, 908724. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, L.; Khurana, R.; Coats, A.; Frokjaer, S.; Brange, J.; Vyas, S.; Uversky, V.N.; Fink, A.L. Effect of Environmental Factors on the Kinetics of Insulin Fibril Formation: Elucidation of the Molecular Mechanism. Biochemistry 2001, 40, 6036–6046. [Google Scholar] [CrossRef] [PubMed]
- Fagihi, M.H.A.; Bhattacharjee, S. Amyloid Fibrillation of Insulin: Amelioration Strategies and Implications for Translation. ACS Pharmacol. Transl. Sci. 2022, 5, 1050–1061. [Google Scholar] [CrossRef]
- Qafary, M.; Rashno, F.; Khajeh, K.; Khaledi, M.; Moosavi-Movahedi, A.A. Insulin fibrillation: Strategies for inhibition. Prog. Biophys. Mol. Biol. 2022, 175, 49–62. [Google Scholar] [CrossRef] [PubMed]
- Brange, J.; Andersen, L.; Laursen, E.D.; Meyn, G.; Rasmussen, E. Toward Understanding Insulin Fibrillation. J. Pharm. Sci. 1997, 86, 517–525. [Google Scholar] [CrossRef]
- AlBab, N.D.; Hameed, M.K.; Maresova, A.; Ahmady, I.M.; Arooj, M.; Han, C.; Workie, B.; Chehimi, M.; Mohamed, A.A. Inhibition of amyloid fibrillation, enzymatic degradation and cytotoxicity of insulin at carboxyl tailored gold-aryl nanoparticles surface. Colloids Surf. Physicochem. Eng. Asp. 2020, 586, 124279. [Google Scholar] [CrossRef]
- Franco, P.; De Marco, I. Eudragit: A Novel Carrier for Controlled Drug Delivery in Supercritical Antisolvent Coprecipitation. Polymers 2020, 12, 234. [Google Scholar] [CrossRef]
- Jain, D.; Panda, A.K.; Majumdar, D.K. Eudragit S100 entrapped insulin microspheres for oral delivery. AAPS PharmSciTech 2005, 6, E100–E107. [Google Scholar] [CrossRef]
- Morelli, L.; Gimondi, S.; Sevieri, M.; Salvioni, L.; Guizzetti, M.; Colzani, B.; Palugan, L.; Foppoli, A.; Talamini, L.; Morosi, L.; et al. Monitoring the Fate of Orally Administered PLGA Nanoformulation for Local Delivery of Therapeutic Drugs. Pharmaceutics 2019, 11, 658. [Google Scholar] [CrossRef]
- Yu, F.; Li, Y.; Liu, C.S.; Chen, Q.; Wang, G.H.; Guo, W.; Wu, X.E.; Li, D.H.; Wu, W.D.; Chen, X.D. Enteric-coated capsules filled with mono-disperse micro-particles containing PLGA-lipid-PEG nanoparticles for oral delivery of insulin. Int. J. Pharm. 2015, 484, 181–191. [Google Scholar] [CrossRef]
- Yang, J.; Zeng, H.; Luo, Y.; Chen, Y.; Wang, M.; Wu, C.; Hu, P. Recent Applications of PLGA in Drug Delivery Systems. Polymers 2024, 16, 2606. [Google Scholar] [CrossRef]
- Santander-Ortega, M.J.; Bastos-González, D.; Ortega-Vinuesa, J.L.; Alonso, M.J. Insulin-Loaded PLGA Nanoparticles for Oral Administration: An In Vitro Physico-Chemical Characterization. J. Biomed. Nanotechnol. 2009, 5, 45–53. [Google Scholar] [CrossRef]
- Han, F.Y.; Thurecht, K.J.; Whittaker, A.K.; Smith, M.T. Bioerodable PLGA-Based Microparticles for Producing Sustained-Release Drug Formulations and Strategies for Improving Drug Loading. Front. Pharmacol. 2016, 7, 185. [Google Scholar] [CrossRef] [PubMed]
- Ghassemi, A.; van Steenbergen, M.; Talsma, H.; van Nostrum, C.; Jiskoot, W.; Crommelin, D.; Hennink, W. Preparation and characterization of protein loaded microspheres based on a hydroxylated aliphatic polyester, poly(lactic-co-hydroxymethyl glycolic acid). J. Control. Release 2009, 138, 57–63. [Google Scholar] [CrossRef]
- Wang, L.; Wang, P.; Liu, Y.; Mahayyudin, M.A.M.; Li, R.; Zhang, W.; Zhan, Y.; Li, Z. The Effect of Different Factors on Poly(lactic-co-glycolic acid) Nanoparticle Properties and Drug Release Behaviors When Co-Loaded with Hydrophilic and Hydrophobic Drugs. Polymers 2024, 16, 865. [Google Scholar] [CrossRef]
- García-Díaz, M.; Foged, C.; Nielsen, H.M. Improved insulin loading in poly(lactic-co-glycolic) acid (PLGA) nanoparticles upon self-assembly with lipids. Int. J. Pharm. 2015, 482, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Ghiasi, B.; Sefidbakht, Y.; Mozaffari-Jovin, S.; Gharehcheloo, B.; Mehrarya, M.; Khodadadi, A.; Rezaei, M.; Siadat, S.O.R.; Uskoković, V. Hydroxyapatite as a biomaterial—A gift that keeps on giving. Drug Dev. Ind. Pharm. 2020, 46, 1035–1062. [Google Scholar] [CrossRef] [PubMed]
- Scudeller, L.A.; Mavropoulos, E.; Tanaka, M.N.; Costa, A.M.; Braga, C.A.; López, E.O.; Mello, A.; Rossi, A.M. Effects on insulin adsorption due to zinc and strontium substitution in hydroxyapatite. Mater. Sci. Eng. C 2017, 79, 802–811. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, L.; Ban, Q.; Li, J.; Li, C.-H.; Guan, Y.-Q. Preparation and characterization of hydroxyapatite nanoparticles carrying insulin and gallic acid for insulin oral delivery. Nanomed. Nanotechnol. Biol. Med. 2018, 14, 353–364. [Google Scholar] [CrossRef]
- Ma, Y.; Guo, Y.; Liu, S.; Hu, Y.; Yang, C.; Cheng, G.; Xue, C.; Zuo, Y.Y.; Sun, B. pH-Mediated Mucus Penetration of Zwitterionic Polydopamine-Modified Silica Nanoparticles. Nano Lett. 2023, 23, 7552–7560. [Google Scholar] [CrossRef]
- Paone, P.; Cani, P.D. Mucus barrier, mucins and gut microbiota: The expected slimy partners? Gut 2020, 69, 2232–2243. [Google Scholar] [CrossRef]
- Witten, J.; Samad, T.; Ribbeck, K. Selective permeability of mucus barriers. Curr. Opin. Biotechnol. 2018, 52, 124–133. [Google Scholar] [CrossRef]
- Han, X.; Lu, Y.; Xie, J.; Zhang, E.; Zhu, H.; Du, H.; Wang, K.; Song, B.; Yang, C.; Shi, Y.; et al. Zwitterionic micelles efficiently deliver oral insulin without opening tight junctions. Nat. Nanotechnol. 2020, 15, 605–614. [Google Scholar] [CrossRef] [PubMed]
- Thwaites, D.T.; Anderson, C.M. The SLC36 family of proton-coupled amino acid transporters and their potential role in drug transport. Br. J. Pharmacol. 2011, 164, 1802–1816. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Chen, Y.; Yang, Z.; Jin, J. zwitterionic Pluronic analog-coated PLGA nanoparticles for oral insulin delivery. Int. J. Biol. Macromol. 2023, 236, 123870. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wu, X.; Meng, L.; Zhang, Y.; Ai, R.; Qi, N.; He, H.; Xu, H.; Tang, X. Thiolated Eudragit nanoparticles for oral insulin delivery: Preparation, characterization and in vivo evaluation. Int. J. Pharm. 2012, 436, 341–350. [Google Scholar] [CrossRef]
- Tian, H.; He, Z.; Sun, C.; Yang, C.; Zhao, P.; Liu, L.; Leong, K.W.; Mao, H.; Liu, Z.; Chen, Y. Uniform Core–Shell Nanoparticles with Thiolated Hyaluronic Acid Coating to Enhance Oral Delivery of Insulin. Adv. Healthc. Mater. 2018, 7, 1800285. [Google Scholar] [CrossRef]
- Anderson, J.M.; Van Itallie, C.M. Physiology and Function of the Tight Junction. Cold Spring Harb. Perspect. Biol. 2009, 1, a002584. [Google Scholar] [CrossRef]
- Yazdi, J.R.; Tafaghodi, M.; Sadri, K.; Mashreghi, M.; Nikpoor, A.R.; Nikoofal-Sahlabadi, S.; Chamani, J.; Vakili, R.; Moosavian, S.A.; Jaafari, M.R. Folate targeted PEGylated liposomes for the oral delivery of insulin: In vitro and in vivo studies. Colloids Surf. B Biointerfaces 2020, 194, 111203. [Google Scholar] [CrossRef]
- Lamson, N.G.; Berger, A.; Fein, K.C.; Whitehead, K.A. Anionic nanoparticles enable the oral delivery of proteins by enhancing intestinal permeability. Nat. Biomed. Eng. 2019, 4, 84–96. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, A.; Ibsen, K.; Brown, T.; Chen, R.; Agatemor, C.; Mitragotri, S. Ionic liquids for oral insulin delivery. Proc. Natl. Acad. Sci. USA 2018, 115, 7296–7301. [Google Scholar] [CrossRef] [PubMed]
- Ge, Y.; Zadeh, M.; Mohamadzadeh, M. Vitamin B12 Regulates the Transcriptional, Metabolic, and Epigenetic Programing in Human Ileal Epithelial Cells. Nutrients 2022, 14, 2825. [Google Scholar] [CrossRef]
- Collado-González, M.; González Espinosa, Y.; Goycoolea, F.M. Interaction Between Chitosan and Mucin: Fundamentals and Applications. Biomimetics 2019, 4, 32. [Google Scholar] [CrossRef]
- Wang, J.; Kong, M.; Zhou, Z.; Yan, D.; Yu, X.; Cheng, X.; Feng, C.; Liu, Y.; Chen, X. Mechanism of surface charge triggered intestinal epithelial tight junction opening upon chitosan nanoparticles for insulin oral delivery. Carbohydr. Polym. 2017, 157, 596–602. [Google Scholar] [CrossRef]
- Zhao, R.; Diop-Bove, N.; Visentin, M.; Goldman, I.D. Mechanisms of Membrane Transport of Folates into Cells and Across Epithelia. Annu. Rev. Nutr. 2011, 31, 177–201. [Google Scholar] [CrossRef]
- Nemati, M.; Fathi-Azarbayjani, A.; Al-Salami, H.; Roshani Asl, E.; Rasmi, Y. Bile acid-based advanced drug delivery systems, bilosomes and micelles as novel carriers for therapeutics. Cell Biochem. Funct. 2022, 40, 623–635. [Google Scholar] [CrossRef]
- Gao, Y.; He, Y.; Zhang, H.; Zhang, Y.; Gao, T.; Wang, J.-H.; Wang, S. Zwitterion-functionalized mesoporous silica nanoparticles for enhancing oral delivery of protein drugs by overcoming multiple gastrointestinal barriers. J. Colloid Interface Sci. 2021, 582, 364–375. [Google Scholar] [CrossRef]
- Meldolesi, J. Exosomes and Ectosomes in Intercellular Communication. Curr. Biol. 2018, 28, R435–R444. [Google Scholar] [CrossRef]
- Rodríguez-Morales, B.; Antunes-Ricardo, M.; González-Valdez, J. Exosome-Mediated Insulin Delivery for the Potential Treatment of Diabetes Mellitus. Pharmaceutics 2021, 13, 1870. [Google Scholar] [CrossRef] [PubMed]
- Center for Drug Evaluation and Research. USA FDA Guidance ‘Drug Products, Including Biological Products, that Contain Nanomaterials—Guidance for Industry’; FDA: Silver Spring, MD, USA, 2022.
- Bilardo, R.; Traldi, F.; Vdovchenko, A.; Resmini, M. Influence of surface chemistry and morphology of nanoparticles on protein corona formation. WIREs Nanomed. Nanobiotechnology 2022, 14, e1788. [Google Scholar] [CrossRef]
- Yang, Q.; Jacobs, T.M.; McCallen, J.D.; Moore, D.T.; Huckaby, J.T.; Edelstein, J.N.; Lai, S.K. Analysis of Pre-existing IgG and IgM Antibodies against Polyethylene Glycol (PEG) in the General Population. Anal. Chem. 2016, 88, 11804–11812. [Google Scholar] [CrossRef] [PubMed]
- Nagpal, S.; Palaniappan, T.; Wang, J.-W.; Wacker, M.G. Revisiting nanomedicine design strategies for follow-on products: A model-informed approach to optimize performance. J. Control. Release 2024, 376, 1251–1270. [Google Scholar] [CrossRef]
- Wang, Y.; Grainger, D.W. Regulatory Considerations Specific to Liposome Drug Development as Complex Drug Products. Front. Drug Deliv. 2022, 2, 901281. [Google Scholar] [CrossRef]
- Cobanoglu, E.; Varan, C.; Varan, G.; Bilensoy, E. Paclitaxel loaded human serum albumin nanoparticles, from batch to microfluidics: A smart manufacturing approach for nab-paclitaxel nanosimilar candidate and in vitro head-to-head comparison. J. Drug Deliv. Sci. Technol. 2026, 115, 107687. [Google Scholar] [CrossRef]
- Atuma, C.; Strugala, V.; Allen, A.; Holm, L. The adherent gastrointestinal mucus gel layer: Thickness and physical state in vivo. Am. J. Physiol.-Gastrointest. Liver Physiol. 2001, 280, G922–G929. [Google Scholar] [CrossRef]
- Swidsinski, A.; Loening-Baucke, V.; Theissig, F.; Engelhardt, H.; Bengmark, S.; Koch, S.; Lochs, H.; Dörffel, Y. Comparative study of the intestinal mucus barrier in normal and inflamed colon. Gut 2007, 56, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Fekete, E.; Buret, A.G. The role of mucin O -glycans in microbiota dysbiosis, intestinal homeostasis, and host-pathogen interactions. Am. J. Physiol.-Gastrointest. Liver Physiol. 2023, 324, G452–G465. [Google Scholar] [CrossRef]
- Grondin, J.A.; Kwon, Y.H.; Far, P.M.; Haq, S.; Khan, W.I. Mucins in Intestinal Mucosal Defense and Inflammation: Learning From Clinical and Experimental Studies. Front. Immunol. 2020, 11, 2054. [Google Scholar] [CrossRef]
- McConnell, E.L.; Basit, A.W.; Murdan, S. Measurements of rat and mouse gastrointestinal pH, fluid and lymphoid tissue, and implications for in-vivo experiments. J. Pharm. Pharmacol. 2008, 60, 63–70. [Google Scholar] [CrossRef]
- Zheng, D.; Ge, K.; Qu, C.; Sun, T.; Wang, J.; Jia, W.; Zhao, A. Comparative profiling of serum, urine, and feces bile acids in humans, rats, and mice. Commun. Biol. 2024, 7, 641. [Google Scholar] [CrossRef]
- Straniero, S.; Laskar, A.; Savva, C.; HÄrdfeldt, J.; Angelin, B.; Rudling, M. Of mice and men: Murine bile acids explain species differences in the regulation of bile acid and cholesterol metabolism. J. Lipid Res. 2020, 61, 480–491. [Google Scholar] [CrossRef]
- Souto, E.B.; Souto, S.B.; Campos, J.R.; Severino, P.; Pashirova, T.N.; Zakharova, L.Y.; Silva, A.M.; Durazzo, A.; Lucarini, M.; Izzo, A.A.; et al. Nanoparticle Delivery Systems in the Treatment of Diabetes Complications. Molecules 2019, 24, 4209. [Google Scholar] [CrossRef]
- Klonoff, D.; Bode, B.; Cohen, N.; Penn, M.; Geho, W.B.; Muchmore, D.B. Divergent Hypoglycemic Effects of Hepatic-Directed Prandial Insulin: A 6-Month Phase 2b Study in Type 1 Diabetes. Diabetes Care 2019, 42, 2154–2157. [Google Scholar] [CrossRef] [PubMed]
- Weinstock, R.S.; Bode, B.W.; Garg, S.K.; Klonoff, D.C.; El Sanadi, C.; Geho, W.B.; Muchmore, D.B.; Penn, M.S. Reduced hypoglycaemia using liver-targeted insulin in individuals with type 1 diabetes. Diabetes Obes. Metab. 2022, 24, 1762–1769. [Google Scholar] [CrossRef] [PubMed]
- Zijlstra, E.; Heinemann, L.; Plum-Mörschel, L. Oral Insulin Reloaded: A Structured Approach. J. Diabetes Sci. Technol. 2014, 8, 458–465. [Google Scholar] [CrossRef] [PubMed]
- Rachmiel, M.; Barash, G.; Leshem, A.; Sagi, R.; Doenyas-Barak, K.; Koren, S. OR14-1 Pharmacodynamics, Safety, Tolerability, and Efficacy of Oral Insulin Formulation (Oshadi Icp) among Young Adults with Type 1 Diabetes: A Summary of Clinical Studies Phases I, Ib, and II. J. Endocr. Soc. 2019, 3, OR14-1. [Google Scholar] [CrossRef]
- Peng, C.; Huang, Y.; Zheng, J. Renal clearable nanocarriers: Overcoming the physiological barriers for precise drug delivery and clearance. J. Control. Release 2020, 322, 64–80. [Google Scholar] [CrossRef]
- Tantipolphan, R.; Romeijn, S.; Engelsman, J.D.; Torosantucci, R.; Rasmussen, T.; Jiskoot, W. Elution behavior of insulin on high-performance size exclusion chromatography at neutral pH. J. Pharm. Biomed. Anal. 2010, 52, 195–202. [Google Scholar] [CrossRef]
- Li, D.; Qin, Q.; Benetti, A.A.; Kahouadji, L.; Wacker, M.G. BioJect: An in vitro platform to explore release dynamics of peptides in subcutaneous drug delivery. J. Control. Release 2025, 380, 1058–1079. [Google Scholar] [CrossRef]
- Das, A.; Shah, M.; Saraogi, I. Molecular Aspects of Insulin Aggregation and Various Therapeutic Interventions. ACS Bio Med. Chem. Au 2022, 2, 205–221. [Google Scholar] [CrossRef] [PubMed]
- Adams, G.G.; Meal, A.; Morgan, P.S.; Alzahrani, Q.E.; Zobel, H.; Lithgo, R.; Kok, M.S.; Besong, T.M.D.; Jiwani, S.I.; Ballance, S.; et al. Characterisation of insulin analogues therapeutically available to patients. PLoS ONE 2018, 13, e0195010. [Google Scholar] [CrossRef] [PubMed]




| Nanoparticle Type | Strategy | Mechanism of Action | Key PK Outcome (Drug Exposure) | Key PD Effect (Drug Effect) | Reference |
|---|---|---|---|---|---|
| Milk-derived exosomes (EXOs) | pH adaptation, stabilization, multi-targeting | Milk-derived exosomes enhance oral drug delivery by adapting to pH changes and facilitating intestinal uptake and transport | 10.6 fold increase in bioavailability relative to free insulin | Glucose level reduction of about 35% | [40] |
| VB12-Dextran | Targeting, protease protection | Exploits the highly specific VB12 uptake system in the intestinal epothelium for oral absorption | The pharmacological availability was 26.5% which was 2.6 fold higher than particles without VB12 | Reduction in plasma glucose of 70–75% observed after 5 h and sustained for 8–10 h | [41] |
| Deoxycholic acid-modified chitosan nanoparticles (DNPs) | Targeting, endolysosomal escape, protease protection | Exploits the bile acid pathway for transepithelial transport | Relative insulin bioavailability of 15.9% | Sustained blood glucose reduction reaching 60% in 12 h | [42] |
| PLGA-HP55 nanoparticles (PHNP) | Protease protection, sustained release | HP55 is a pH-sensitive enteric coating that protects insulin from the gastric environment | Relative bioavailability of 6.27% | Maximum reduction in blood glucose of 60% sustained for 24 h | [21] |
| PLGA/VB12-CS/IL-INS | Targeting, protease protection | VB12 targets receptors and IL stabilize insulin and enhance intestinal absorption | The pharmacological bioavailability was 31.8% | The maximum reduction in blood glucose was about 60% and it was achieved after 8 h | [43] |
| Ag2S-QDs-INS-CS/GS | Liver targeting, epithelial transport | QD facilitate rapid uptake and targeted delivery to the liver | Relative bioavailability of 4% | In non-diabetic baboons the maximum reduction in blood glucose was 13% | [44] |
| Nanoparticle Type | Nanoparticle Size (nm) | Insulin Encapsulation Efficacy | In Vivo Model | Dose | Pharmacological Bioavailability | Reference |
|---|---|---|---|---|---|---|
| Milk-derived exosomes (EXOs) | up to 83.2 | 15.90% | T1D Rats | 50 IU/kg | 4.33% | [40] |
| VB12-Dextran | up to 250 | up to 70.17% ± 3.78% | T1D Rats | 20 IU/kg | 26.5% | [41] |
| FA-targeted PEGylated liposomes | up to 254 | up to 66.5% ± 1.25% | T1D Rats | 50 IU/kg | 19.08% | [81] |
| FA-Layersomes | up to 266.2 | up to 92.9 ± 1.4% | T1D Rats | 50 IU/kg | 46.8% | [28] |
| Deoxycholic acid-modified chitosan nanoparticles (DNPs) | 226.1 ± 4.6 | 73.5 ± 1.5% | T1D Rats | 30 IU/kg | 15.9% | [42] |
| Carboxymethyl-β-cyclodextrin-grafted chitosan nanoparticles (CMCD-g-CS Nps) | 218 | 57.0 ± 1.38% | T1D Mice | 50 IU/kg | 14.54% | [50] |
| PEGylated PLGA via a hydrazone bond (pH sensitive) | Up to 140 | 48.03% ± 3.30% | T1D Rats | 100 IU/kg | 4.81% | [26] |
| INS-PLGA-lipid-PEG | 176 ± 5.8 | 92.3% ± 2.6% | T1D Rats | 40 IU/kg | 12.23% | [62] |
| Zwitterionic micelles (DSPE-PCB) | up to 28.52 | over 98% | T1D Rats | 20 IU/kg | 41.2% | [75] |
| PLGA/VB12-CS/IL-INS | 397 | 87.5% | T1D Mice | 50 IU/kg | 31.8% | [43] |
| Ag2S-QDs-INS-CS/GS | 20 | 80% | T1D Mice | 20 IU/kg | 4% | [44] |
| Company | Drug Name | Strategy | Comments | Trial Status |
|---|---|---|---|---|
| Diasome Pharmaceuticals Inc. Cleveland, OH, USA | Oral HDV-Insulin (HDV-I) | Lipid Nanoparticles: Hepatic-Directed Vesicle (HDV) technology, a liposomal nanocarrier (≤150 nm) targeting hepatocytes | Early dose-ranging trials in T2D showed a dose-dependent reduction in postprandial plasma glucose and a good safety profile | Phase II Completed/Dormant (NCT00814294 and NCT03096392) |
| Oshadi Drug Administration Ltd. Rehovot, Israel | Oshadi-Icp | Silica Nanoparticles: Enteric capsules containing insulin, proinsulin, and C-peptide non-covalently associated with a silica nanoparticle core and embedded in an oil phase | Showed promising early results with plasma glucose lowering and a good safety profile | Phase II Completed/Stalled (NCT01973920) |
| NOD Pharmaceuticals/Shanghai Biolaxy San Diego, CA, USA/Shanghai, China | Nodlin™ | Bio-Adhesive Nanoparticles: Capsules coated with cellulose acetate phthalate containing bioadhesive calcium phosphate nanoparticles | Phase I trials showed glucose-lowering effects similar to subcutaneous NPH insulin. However, the formulation exhibited high variability in AUC (Absorption/Efficacy) | Phase I Completed/Dormant (ChiCTR-TRC-12001872) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fontana, G.; Innamorati, G.; Giacomello, L. Nanoparticle-Based Oral Insulin Delivery: Challenges, Advances, and Future Directions. Pharmaceutics 2025, 17, 1563. https://doi.org/10.3390/pharmaceutics17121563
Fontana G, Innamorati G, Giacomello L. Nanoparticle-Based Oral Insulin Delivery: Challenges, Advances, and Future Directions. Pharmaceutics. 2025; 17(12):1563. https://doi.org/10.3390/pharmaceutics17121563
Chicago/Turabian StyleFontana, Gianluca, Giulio Innamorati, and Luca Giacomello. 2025. "Nanoparticle-Based Oral Insulin Delivery: Challenges, Advances, and Future Directions" Pharmaceutics 17, no. 12: 1563. https://doi.org/10.3390/pharmaceutics17121563
APA StyleFontana, G., Innamorati, G., & Giacomello, L. (2025). Nanoparticle-Based Oral Insulin Delivery: Challenges, Advances, and Future Directions. Pharmaceutics, 17(12), 1563. https://doi.org/10.3390/pharmaceutics17121563

