Interpretable Artificial Neural Network Models for Predicting Anti-Adalimumab Immune Complex and Serum Drug Level in Crohn’s Disease: A Proof-of-Concept Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Cohort
2.2. Artificial Neural Network Modeling
2.3. Software and Computational Environment
2.4. Data Preprocessing
2.5. Feature Selection
2.6. Model Development and Validation
2.7. Model Interpretability
2.8. Data Availability Statement
3. Results
3.1. Clinical and Demographic Data
3.2. Prediction of Anti-Adalimumab Immune Complex Formation
3.3. Prediction of Adalimumab’s Serum Level Measured by Lateral Flow Assay
3.4. Prediction of Adalimumab’s Serum Level Measured by ELISA
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| A1/A2/A3 | Age at Diagnosis Categories (Montreal Classification) |
| ADA | Anti-Drug Antibody |
| AI | Artificial Intelligence |
| ANN | Artificial Neural Network |
| AUC | Area Under the Curve |
| B | Behavior (Montreal Classification) |
| B1/B2/B3 | Behavior Categories (Montreal Classification) |
| CDAI | Crohn’s Disease Activity Index |
| CD | Crohn’s Disease |
| CDEIS | Crohn’s Disease Endoscopic Index of Severity |
| CRP | C-Reactive Protein |
| DII | Doença Inflamatória Intestinal (Inflammatory Bowel Disease) |
| ELISA | Enzyme-Linked Immunosorbent Assay |
| IBD | Inflammatory Bowel Disease |
| IC | Immune Complex |
| L | Location (Montreal Classification) |
| L1/L2/L3 | Location Categories (Montreal Classification) |
| LOR | Loss of Response |
| MAE | Mean Absolute Error |
| MLP | Multilayer Perceptron |
| MRE | Magnetic Resonance Enterography |
| Optuna | Optimization Framework for Hyperparameter Tuning |
| R2 | Coefficient of Determination |
| ROC | Receiver Operating Characteristic |
| STROBE | Strengthening the Reporting of Observational Studies in Epidemiology |
| TDM | Therapeutic Drug Monitoring |
| TNF-α | Tumor Necrosis Factor-alpha |
| UC | Ulcerative Colitis |
References
- Dolinger, M.; Torres, J.; Vermeire, S. Crohn’s disease. Lancet 2024, 403, 1177–1191. [Google Scholar] [CrossRef] [PubMed]
- Carroll, D.; Kavalukas, S. Management of Complications in Crohn’s Disease. Adv. Surg. 2024, 58, 19–34. [Google Scholar] [CrossRef] [PubMed]
- Hanauer, S.B.; Duk Ye, B.; Cross, R.K.; Danese, S.; D’Haens, G.; Jung, J. The position of anti-tumor necrosis factor agents for the treatment of adult patients with Crohn’s disease. Expert. Rev. Gastroenterol. Hepatol. 2025, 19, 725–743. [Google Scholar] [CrossRef] [PubMed]
- Barberio, B.; Gracie, D.J.; Black, C.J.; Ford, A.C. Efficacy of biological therapies and small molecules in induction and maintenance of remission in luminal Crohn’s disease: Systematic review and network meta-analysis. Gut 2023, 72, 264–274. [Google Scholar] [CrossRef]
- Plosker, G.L.; Lyseng-Williamson, K.A. Adalimumab: In Crohn’s disease. BioDrugs 2007, 21, 125–132; discussion 124–133. [Google Scholar] [CrossRef]
- Gomes, L.E.M.; da Silva, F.A.R.; Pascoal, L.B.; Ricci, R.L.; Nogueira, G.; Camargo, M.G.; Lourdes Setsuko Ayrizono, M.; Fagundes, J.J.; Leal, R.F. Serum Levels of Infliximab and Anti-Infliximab Antibodies in Brazilian Patients with Crohn’s Disease. Clinics 2019, 74, e824. [Google Scholar] [CrossRef]
- Qiu, Y.; Chen, B.L.; Mao, R.; Zhang, S.H.; He, Y.; Zeng, Z.R.; Ben-Horin, S.; Chen, M.H. Systematic review with meta-analysis: Loss of response and requirement of anti-TNFα dose intensification in Crohn’s disease. J. Gastroenterol. 2017, 52, 535–554. [Google Scholar] [CrossRef]
- Genaro, L.M.; Carron, J.; de Castro, M.M.; Franceschini, A.; Lourenço, G.J.; Cruz, C.; Reis, G.; Pascoal, L.B.; Mello, J.D.C.; Pereira, I.M.; et al. Therapeutic drug monitoring and immunogenetic factors associated with the use of adalimumab in Crohn’s disease patients. Int. J. Immunopathol. Pharmacol. 2025, 39, 3946320251319379. [Google Scholar] [CrossRef]
- Chirmule, N.; Jawa, V.; Meibohm, B. Immunogenicity to therapeutic proteins: Impact on PK/PD and efficacy. AAPS J. 2012, 14, 296–302. [Google Scholar] [CrossRef]
- Opolka-Hoffmann, E.; Jordan, G.; Otteneder, M.; Kieferle, R.; Lechmann, M.; Winter, G.; Staack, R.F. The impact of immunogenicity on therapeutic antibody pharmacokinetics: A preclinical evaluation of the effect of immune complex formation and antibody effector function on clearance. MAbs 2021, 13, 1995929. [Google Scholar] [CrossRef]
- Ponce, R.; Abad, L.; Amaravadi, L.; Gelzleichter, T.; Gore, E.; Green, J.; Gupta, S.; Herzyk, D.; Hurst, C.; Ivens, I.A.; et al. Immunogenicity of biologically-derived therapeutics: Assessment and interpretation of nonclinical safety studies. Regul. Toxicol. Pharmacol. 2009, 54, 164–182. [Google Scholar] [CrossRef]
- Manceñido Marcos, N.; Novella Arribas, B.; Mora Navarro, G.; Rodríguez Salvanés, F.; Loeches Belinchón, P.; Gisbert, J.P. Efficacy and safety of proactive drug monitoring in inflammatory bowel disease treated with anti-TNF agents: A systematic review and meta-analysis. Dig. Liver Dis. 2024, 56, 421–428. [Google Scholar] [CrossRef] [PubMed]
- Desai, D. Therapeutic drug monitoring in inflammatory bowel disease: A practical approach. Indian. J. Gastroenterol. 2024, 43, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Gomes, L.E.M.; Genaro, L.M.; Castro, M.M.d.; Ricci, R.L.; Pascoal, L.B.; Silva, F.B.C.; Bonfitto, P.H.L.; Camargo, M.G.; Corona, L.P.; Ayrizono, M.d.L.S.; et al. Infliximab monitoring in Crohn’s disease: A neural network approach for evaluating disease activity and immunogenicity. Ther. Adv. Gastroenterol. 2024, 17, 17562848241251949. [Google Scholar] [CrossRef] [PubMed]
- Kirchgesner, J.; Verstockt, B.; Adamina, M.; Allin, K.H.; Allocca, M.; Bourgonje, A.R.; Burisch, J.; Doherty, G.; Dulai, P.S.; El-Hussuna, A.; et al. ECCO Topical Review on Predictive Models on Inflammatory Bowel Disease Disease Course and Treatment Response. J. Crohns Colitis 2025, 19, jjaf073. [Google Scholar] [CrossRef]
- Ceccato, H.D.; Silva, T.; Genaro, L.M.; Silva, J.F.; de Souza, W.M.; Oliveira, P.S.P.; de Azevedo, A.T.; Ayrizono, M.L.S.; Leal, R.F. Artificial intelligence use for precision medicine in inflammatory bowel disease: A systematic review. Am. J. Transl. Res. 2025, 17, 28–46. [Google Scholar] [CrossRef]
- Thrall, J.H.; Li, X.; Li, Q.; Cruz, C.; Do, S.; Dreyer, K.; Brink, J. Artificial Intelligence and Machine Learning in Radiology: Opportunities, Challenges, Pitfalls, and Criteria for Success. J. Am. Coll. Radiol. 2018, 15, 504–508. [Google Scholar] [CrossRef]
- Komura, D.; Ishikawa, S. Machine Learning Methods for Histopathological Image Analysis. Comput. Struct. Biotechnol. J. 2018, 16, 34–42. [Google Scholar] [CrossRef]
- Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017, 542, 115–118. [Google Scholar] [CrossRef]
- Ting, D.S.W.; Pasquale, L.R.; Peng, L.; Campbell, J.P.; Lee, A.Y.; Raman, R.; Tan, G.S.W.; Schmetterer, L.; Keane, P.A.; Wong, T.Y. Artificial intelligence and deep learning in ophthalmology. Br. J. Ophthalmol. 2019, 103, 167–175. [Google Scholar] [CrossRef]
- Shah, P.; Kendall, F.; Khozin, S.; Goosen, R.; Hu, J.; Laramie, J.; Ringel, M.; Schork, N. Artificial intelligence and machine learning in clinical development: A translational perspective. NPJ Digit. Med. 2019, 2, 69. [Google Scholar] [CrossRef]
- Gubatan, J.; Levitte, S.; Patel, A.; Balabanis, T.; Wei, M.T.; Sinha, S.R. Artificial intelligence applications in inflammatory bowel disease: Emerging technologies and future directions. World J. Gastroenterol. 2021, 27, 1920–1935. [Google Scholar] [CrossRef]
- Chang, Y.; Wang, Z.; Sun, H.B.; Li, Y.Q.; Tang, T.Y. Artificial Intelligence in Inflammatory Bowel Disease Endoscopy: Advanced Development and New Horizons. Gastroenterol. Res. Pract. 2023, 2023, 3228832. [Google Scholar] [CrossRef]
- Ruan, G.; Qi, J.; Cheng, Y.; Liu, R.; Zhang, B.; Zhi, M.; Chen, J.; Xiao, F.; Shen, X.; Fan, L.; et al. Development and Validation of a Deep Neural Network for Accurate Identification of Endoscopic Images from Patients with Ulcerative Colitis and Crohn’s Disease. Front. Med. 2022, 9, 854677. [Google Scholar] [CrossRef] [PubMed]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gotzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. J. Clin. Epidemiol. 2008, 61, 344–349. [Google Scholar] [CrossRef]
- Akiba, T.; Sano, S.; Yanase, T.; Ohta, T.; Koyama, M. Optuna: A Next-generation Hyperparameter Optimization Framework. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD ‘19), Anchorage, AK, USA, 4–8 August 2019; pp. 2623–2631. [Google Scholar]
- Zhang, Z.; Beck, M.W.; Winkler, D.A.; Huang, B.; Sibanda, W.; Goyal, H.; written on behalf of AME Big-Data Clinical Trial Collaborative Group. Opening the black box of neural networks: Methods for interpreting neural network models in clinical applications. Ann. Transl. Med. 2018, 6, 216. [Google Scholar] [CrossRef]
- Garson, G. Interpreting neural-network connection weights. AI Expert. 1991, 6, 46–51. [Google Scholar]
- Kaur, M.; Panikkath, D.; Yan, X.; Liu, Z.; Berel, D.; Li, D.; Vasiliauskas, E.A.; Ippoliti, A.; Dubinsky, M.; Shih, D.Q.; et al. Perianal Crohn’s Disease is Associated with Distal Colonic Disease, Stricturing Disease Behavior, IBD-Associated Serologies and Genetic Variation in the JAK-STAT Pathway. Inflamm. Bowel Dis. 2016, 22, 862–869. [Google Scholar] [CrossRef] [PubMed]
- Rogler, G.; Singh, A.; Kavanaugh, A.; Rubin, D.T. Extraintestinal Manifestations of Inflammatory Bowel Disease: Current Concepts, Treatment, and Implications for Disease Management. Gastroenterology 2021, 161, 1118–1132. [Google Scholar] [CrossRef]
- Rizzo, G.; Rubbino, F.; Elangovan, S.; Sammarco, G.; Lovisa, S.; Restelli, S.; Pineda Chavez, S.E.; Massimino, L.; Lamparelli, L.; Paulis, M.; et al. Dysfunctional Extracellular Matrix Remodeling Supports Perianal Fistulizing Crohn’s Disease by a Mechanoregulated Activation of the Epithelial-to-Mesenchymal Transition. Cell Mol. Gastroenterol. Hepatol. 2023, 15, 741–764. [Google Scholar] [CrossRef]
- Linares, R.; Francés, R.; Gutiérrez, A.; Juanola, O. Bacterial Translocation as Inflammatory Driver in Crohn’s Disease. Front. Cell Dev. Biol. 2021, 9, 703310. [Google Scholar] [CrossRef]
- Dai, J.; Kim, M.Y.; Sutton, R.T.; Mitchell, J.R.; Goebel, R.; Baumgart, D.C. Comparative analysis of natural language processing methodologies for classifying computed tomography enterography reports in Crohn’s disease patients. NPJ Digit. Med. 2025, 8, 324. [Google Scholar] [CrossRef] [PubMed]
- Urquhart, S.A.; Christof, M.; Coelho-Prabhu, N. The impact of artificial intelligence on the endoscopic assessment of inflammatory bowel disease-related neoplasia. Ther. Adv. Gastroenterol. 2025, 18, 17562848251348574. [Google Scholar] [CrossRef]
- Crăciun, R.; Bumbu, A.L.; Ichim, V.A.; Tanțău, A.I.; Tefas, C. Artificial Intelligence in Endoscopic and Ultrasound Imaging for Inflammatory Bowel Disease. J. Clin. Med. 2025, 14, 4291. [Google Scholar] [CrossRef]
- Cai, C.; Shi, Q.; Liu, M.; Li, J.; Zhou, Y.; Xu, A.; Zhang, D.; Jiao, Y.; Liu, Y.; Cui, X.; et al. IBDAIM:Artificial intelligence for analyzing intestinal biopsies pathological images for assisted integrated diagnostic of inflammatory bowel disease. Int. J. Med. Inform. 2025, 203, 106024. [Google Scholar] [CrossRef]
- Gregorio, V.; Maeda, Y.; Kudo, S.E.; Kawabata, Y.; Kuroki, T.; Santacroce, G.; Puga-Tejada, M.; Takenaka, K.; Takabayashi, K.; Ohara, J.; et al. Evolving Role of Artificial Intelligence in Endoscopic Management of Inflammatory Bowel Disease: Diagnosis, Surveillance, and Assessment. Dig. Endosc. 2025, 37, 1148–1161. [Google Scholar] [CrossRef]
- Rueda García, J.L.; Suárez-Ferrer, C.; Amiama Roig, C.; García Ramírez, L.; García Rojas, C.; Martín-Arranz, E.; Poza Cordón, J.; Sánchez Azofra, M.; Noci, J.; Cubillo García, C.; et al. Association of early therapeutic drug monitoring of adalimumab with biologic remission and drug survival in Crohn’s Disease. Ther. Adv. Gastroenterol. 2025, 18, 17562848251324226. [Google Scholar] [CrossRef]
- Alghamdi, A.; Alahmari, M.; Aljohani, K.; Alanazi, A.; Al Ibrahim, B.; Alshowair, M.; Tawfik, M.; Alghamdi, W.; Alanazi, S.; Alzayed, F.; et al. Prevalence and clinical implications of anti-drug antibody formation and serum drug levels among patients with IBD receiving anti-TNF therapy: A cross-sectional study. Saudi J. Gastroenterol. 2025, 31, 82–92. [Google Scholar] [CrossRef] [PubMed]
- Moses, J.; Adler, J.; Saeed, S.A.; Firestine, A.M.; Galanko, J.A.; Ammoury, R.F.; Bass, D.M.; Bass, J.A.; Bastidas, M.; Benkov, K.J.; et al. Low Anti-Tumor Necrosis Factor Levels During Maintenance Phase Are Associated with Treatment Failure in Children with Crohn’s Disease. Inflamm. Bowel Dis. 2025, 31, 1841–1850. [Google Scholar] [CrossRef] [PubMed]
- Lorente, J.R.; Paredes, J.M.; Llopis, P.; Ripollés, T.; Voces, A.; Algarra, Á.; Asencio, C.; Latorre, P.; Moreno, N.; López-Serrano, A.; et al. Ultrasound transmural healing correlates with higher adalimumab drug concentration in Crohn’s disease only in the short-term. Rev. Esp. Enferm. Dig. 2024, 116, 606–612. [Google Scholar] [CrossRef]
- Grossberg, L.B.; Cheifetz, A.S.; Papamichael, K. Therapeutic Drug Monitoring of Biologics in Crohn’s Disease. Gastroenterol. Clin. North. Am. 2022, 51, 299–317. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Moranta, F.; Argüelles-Arias, F.; Hinojosa Del Val, J.; Iborra Colomino, M.; Martín-Arranz, M.D.; Menchén Viso, L.; Muñoz Núñez, F.; Ricart Gómez, E.; Sánchez-Hernández, J.G.; Valdés-Delgado, T.; et al. Therapeutic drug monitoring in inflammatory bowel diseases. Position statement of the Spanish Working Group on Crohn’s Disease and Ulcerative Colitis. Gastroenterol. Hepatol. 2024, 47, 522–552. [Google Scholar] [CrossRef]
- Moss, A.C. Therapeutic drug monitoring, mucosal healing, deep remission: The path to nirvana in Crohn’s disease? Clin. Gastroenterol. Hepatol. 2014, 12, 432–433. [Google Scholar] [CrossRef] [PubMed]
- Ozkahraman, A.; Kayar, Y.; Dertli, R.; Konur, S.; Kılıc, G.; Baran, B.; Ormeci, A.C.; Akyuz, F.; Demir, K.; Besisik, F.; et al. Extra intestinal manifestations may increase the risk of synchronous and metachronous development of other extraintestinal manifestations in patients with Crohn’s disease. Sci. Rep. 2025, 15, 20629. [Google Scholar] [CrossRef] [PubMed]
- Juillerat, P.; Manz, M.; Sauter, B.; Zeitz, J.; Vavricka, S.R. Therapies in Inflammatory Bowel Disease Patients with Extraintestinal Manifestations. Digestion 2020, 101 (Suppl. S1), 83–97. [Google Scholar] [CrossRef]
- Greuter, T.; Vavricka, S.R. Extraintestinal manifestations in inflammatory bowel disease–epidemiology, genetics, and pathogenesis. Expert. Rev. Gastroenterol. Hepatol. 2019, 13, 307–317. [Google Scholar] [CrossRef]
- Basiji, K.; Kazemifard, N.; Farmani, M.; Jahankhani, K.; Ghavami, S.B.; Fallahnia, A.; Eghlimi, H.; Mir, A. Fistula in Crohn’s disease: Classification, pathogenesis, and treatment options. Tissue Barriers 2025, 13, 2458784. [Google Scholar] [CrossRef]
- Devi, J.; Ballard, D.H.; Aswani-Omprakash, T.; Parian, A.M.; Deepak, P. Perianal fistulizing Crohn’s disease: Current perspectives on diagnosis, monitoring and management with a focus on emerging therapies. Indian. J. Gastroenterol. 2024, 43, 48–63. [Google Scholar] [CrossRef]
- Mowat, C.; Cole, A.; Windsor, A.; Ahmad, T.; Arnott, I.; Driscoll, R.; Mitton, S.; Orchard, T.; Rutter, M.; Younge, L.; et al. Guidelines for the management of inflammatory bowel disease in adults. Gut 2011, 60, 571–607. [Google Scholar] [CrossRef]
- Satsangi, J.; Silverberg, M.S.; Vermeire, S.; Colombel, J.F. The Montreal classification of inflammatory bowel disease: Controversies, consensus, and implications. Gut 2006, 55, 749–753. [Google Scholar] [CrossRef]
- Vermeire, S.; Van Assche, G.; Rutgeerts, P. Classification of inflammatory bowel disease: The old and the new. Curr. Opin. Gastroenterol. 2012, 28, 321–326. [Google Scholar] [CrossRef] [PubMed]



| CD Patients | |
|---|---|
| Number of patients | 58 |
| Gender (M/F) | 26/32 |
| Age (years) | 42 (8–79) |
| Disease duration (months) | 12 (1–37) |
| Active disease (yes/no) | 36/22 |
| Previous surgeries (yes/no) | 34/36 |
| Immunosuppressant use (yes/no) | 27/31 |
| Age at diagnosis (A1/A2/A3) | 7/38/13 |
| Location (L1/L2/L3) | 15/17/26 |
| Behavior (B1/B2/B3) | 30/14/14 |
| Perianal disease (yes/no) | 20/36 |
| Extraintestinal manifestations (yes/no) | 32/26 |
| Smoking (yes/no) | 2/56 |
| Duration of adalimumab therapy (months) | 60 (2–216) |
| Presentation of adverse reaction to adalimumab (yes/no) | 4/54 |
| Previous anti-TNFα therapy (yes/no) | 16/42 |
| Selected_Features | Accuracy | Precision Macro | Recall Macro | F1 Macro | ROC_AUC_OVR |
|---|---|---|---|---|---|
| [‘Age at Diagnosis’. ‘Montreal Classification B1/B2/B3’. ‘Extraintestinal Manifestations: Yes/No’. ‘CDAI: Up to 150—remission/150–219—mild/220—450 moderate/Above 451—severe’] | 77.47% | 61.15% | 69.75% | 63.14% | 82.63% |
| [‘Age at Diagnosis’. ‘Perineal Disease: Yes/No’. ‘Male/Female’. ‘Extraintestinal Manifestations: Yes/No’, ‘Montreal Classification B1/B2/B3’, ‘Sex’] | 77.29% | 60.73% | 61.82% | 60.85% | 81.82% |
| [‘Age at diagnosis’. ‘Perineal Disease: Yes/No’. ‘Extraintestinal manifestations: Yes/No’. ‘Montreal Classification B1/B2/B3’. ‘Sex’] | 77.29% | 60.73% | 61.82% | 60.85% | 80.20% |
| [Montreal Classification B’. ‘Age at diagnosis’. ‘CDAI: ‘Up to 150—remission/150–219—mild/220–450 moderate/Above 451—severe’. ‘Extraintestinal Manifestations: Yes/No’. ‘Perianal disease: Yes/No’, ‘Male/Female’] | 77.29% | 57.97% | 61.82% | 59.64% | 82.73% |
| Selected_Features | Accuracy | Precision Macro | Recall Macro | F1 Macro | ROC_AUC_OVR |
|---|---|---|---|---|---|
| ‘Montreal Classification L1/L2/L3’. ‘Use of concomitant immunosuppressant: Yes/No’; ‘CRP: Below or equal to median/Above median—with median being 4.035’. ‘Year of diagnosis’. ‘Perineal Disease: Yes/No’. ‘Montreal Classification A1/A2/A3’. ‘Disease progression: Below-equal to median/Above median—with median being 13’. ‘Extra-intestinal Manifestations: Yes/No’. ‘Montreal Classification A’. | 59.89% | 58.15% | 56.61% | 53.05 | 79.72% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Genaro, L.M.; Carron, J.; Lourenço, G.J.; Nagasako, C.K.; Reis, G.F.S.R.; Camargo, M.G.; Oliveira, P.d.S.P.; Lima, C.S.P.; Ayrizono, M.d.L.S.; Azevedo, A.T.d.; et al. Interpretable Artificial Neural Network Models for Predicting Anti-Adalimumab Immune Complex and Serum Drug Level in Crohn’s Disease: A Proof-of-Concept Study. Pharmaceutics 2025, 17, 1536. https://doi.org/10.3390/pharmaceutics17121536
Genaro LM, Carron J, Lourenço GJ, Nagasako CK, Reis GFSR, Camargo MG, Oliveira PdSP, Lima CSP, Ayrizono MdLS, Azevedo ATd, et al. Interpretable Artificial Neural Network Models for Predicting Anti-Adalimumab Immune Complex and Serum Drug Level in Crohn’s Disease: A Proof-of-Concept Study. Pharmaceutics. 2025; 17(12):1536. https://doi.org/10.3390/pharmaceutics17121536
Chicago/Turabian StyleGenaro, Livia Moreira, Juliana Carron, Gustavo Jacob Lourenço, Cristiane Kibune Nagasako, Glaucia Fernanda Soares Rupert Reis, Michel Gardere Camargo, Priscilla de Sene Portel Oliveira, Carmen Silvia Passos Lima, Maria de Lourdes Setsuko Ayrizono, Anibal Tavares de Azevedo, and et al. 2025. "Interpretable Artificial Neural Network Models for Predicting Anti-Adalimumab Immune Complex and Serum Drug Level in Crohn’s Disease: A Proof-of-Concept Study" Pharmaceutics 17, no. 12: 1536. https://doi.org/10.3390/pharmaceutics17121536
APA StyleGenaro, L. M., Carron, J., Lourenço, G. J., Nagasako, C. K., Reis, G. F. S. R., Camargo, M. G., Oliveira, P. d. S. P., Lima, C. S. P., Ayrizono, M. d. L. S., Azevedo, A. T. d., & Leal, R. F. (2025). Interpretable Artificial Neural Network Models for Predicting Anti-Adalimumab Immune Complex and Serum Drug Level in Crohn’s Disease: A Proof-of-Concept Study. Pharmaceutics, 17(12), 1536. https://doi.org/10.3390/pharmaceutics17121536

