Emerging Technologies Tackling Adeno-Associated Viruses (AAV) Immunogenicity in Gene Therapy Applications
Abstract
1. Introduction
2. Immunity to AAV-Based Drugs
2.1. AAV and Innate Immunity
2.2. AAV and Complement Activation
2.3. AAV and Adaptive Immunity
3. Overcome Pre-Existing Immunity to AAV
| INN | Product Name | Disease | Manufacturer | Route of Administration | Dose | Serotype | Promoter | Approving Countries | Reference |
|---|---|---|---|---|---|---|---|---|---|
| Alipogene tiparvovec | Glybera | Familial lipoprotein lipase deficiency | UniQure | Intramuscular | 1 × 1012 vg/kg | AAV2 | CMV | European Union (2012) | [56] |
| Voretigene neparvovec-rzyl | Luxturna | Retinal dystrophy | Spark Therapeutics | Subretinal | 1.5 × 1011 vg per eye | AAV2 | CAG | United States (2017), European Union (2018), Australia (2020), Canada (2020), Switzerland (2020) | [57] |
| Onasemnogene abeparvovec-xioi | Zolgensma | Spinal muscular atrophy (SMA) | Novartis Gene Therapies | Intravenous | 1.1 × 1014 vg/kg | AAV9 | CAG | United States (2019), Israel (2019), European Union (2020), Japan (2020), Brazil (2020), Canada (2020), Australia (2021), United Kingdom (2021), Russia (2021), Singapore (2023) | [58,59,60,61] |
| Etranacogene dezaparvovec-drlb | Hemgenix | Hemophilia B | CSL Behring LLC | Intravenous | 2 × 1013 vg/kg | AAV5 | LP1 | United States (2022), European Union (2023), United Kingdom (2023), Canada (2023), Switzerland (2023), Australia (2023) | [62] |
| Valoctocogene roxaparvovec-rvox | Roctavian | Hemophilia A | BioMarin Pharmaceutical Inc. | Intravenous | 6 × 1013 vg/kg | AAV5 | HLP | United States (2023) | [63,64] |
| Delandistrogene moxeparvovec-rokl | Elevidys | Duchenne muscular dystrophy (DMD) | Sarepta Therapeutics | Intravenous | 1.33 × 1014 vg/kg | AAVrh74 | MHCK7 | United States (2023), Middle East (2025), Brazil (2024), Israel (2025), Japan (2025) | [65] |
| Eladocagene exuparvovec | Upstaza (EU) and Kebilidi (USA) | Aromatic L-amino acid decarboxylase deficiency | PTC Therapeutics | Intraputaminal | 1.8 × 1011 vg total | AAV2 | CMV | United States (2024), European Union and United Kingdom (2022), Brazil (2024) | [66] |
| Fidanacogene elaparvovec-dzkt | Beqvez | Hemophilia B | Pfizer Inc. | Intravenous | 5 × 1011 vg/kg | AAVrh74 | Liver-specific modified promoter | United States (2025), Canada (2025) | [67] |
4. Necessity of Repeated Injections
4.1. Characteristics of Target Cells
4.2. Characteristics of Disease and Therapeutic Protein
5. Ways to Overcome Immune Response for Repeated Delivery
5.1. Minimization of Immune Response During First Injection
5.1.1. Optimization of Genetic Construct
5.1.2. Pharmacological Assistance
5.2. Manipulations Only with Second Injection
6. Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AAV | Adeno-associated virus |
| CTL | Cytotoxic T lymphocyte |
| DMD | Duchenne muscular dystrophy |
| IceMG | IgM-cleaving enzyme |
| IA | Immunoadsorption |
| ImmTOR | Tolerogenic rapamycin nanoparticles |
| IFNs | Interferons |
| MHC | Major histocompatibility complex |
| nAb | Neutralizing antibody |
| PAMP | Pathogen-associated molecular pattern |
| PRR | Pattern-recognizing receptor |
| SMA | Spinal muscular atrophy |
| TLR | Toll-like receptor |
References
- Balakrishnan, B.; Jayandharan, G.R. Basic Biology of Adeno-Associated Virus (AAV) Vectors Used in Gene Therapy. Curr. Gene Ther. 2014, 14, 86–100. [Google Scholar] [CrossRef]
- Geng, G.; Xu, Y.; Hu, Z.; Wang, H.; Chen, X.; Yuan, W.; Shu, Y. Viral and Non-Viral Vectors in Gene Therapy: Current State and Clinical Perspectives. eBioMedicine 2025, 118, 105834. [Google Scholar] [CrossRef]
- Vandamme, C.; Adjali, O.; Mingozzi, F. Unraveling the Complex Story of Immune Responses to AAV Vectors Trial After Trial. Hum. Gene Ther. 2017, 28, 1061–1074. [Google Scholar] [CrossRef]
- Mingozzi, F.; High, K.A. Immune Responses to AAV Vectors: Overcoming Barriers to Successful Gene Therapy. Blood 2013, 122, 23–36. [Google Scholar] [CrossRef]
- Ronzitti, G.; Gross, D.-A.; Mingozzi, F. Human Immune Responses to Adeno-Associated Virus (AAV) Vectors. Front. Immunol. 2020, 11, 670. [Google Scholar] [CrossRef]
- Mingozzi, F.; High, K.A. Therapeutic in Vivo Gene Transfer for Genetic Disease Using AAV: Progress and Challenges. Nat. Rev. Genet. 2011, 12, 341–355. [Google Scholar] [CrossRef] [PubMed]
- Mingozzi, F.; Maus, M.V.; Hui, D.J.; Sabatino, D.E.; Murphy, S.L.; Rasko, J.E.J.; Ragni, M.V.; Manno, C.S.; Sommer, J.; Jiang, H.; et al. CD8+ T-Cell Responses to Adeno-Associated Virus Capsid in Humans. Nat. Med. 2007, 13, 419–422. [Google Scholar] [CrossRef]
- Bucher, K.; Rodríguez-Bocanegra, E.; Dauletbekov, D.; Fischer, M.D. Immune Responses to Retinal Gene Therapy Using Adeno-Associated Viral Vectors—Implications for Treatment Success and Safety. Prog. Retin. Eye Res. 2021, 83, 100915. [Google Scholar] [CrossRef]
- Duan, D. Lethal Immunotoxicity in High-Dose Systemic AAV Therapy. Mol. Ther. 2023, 31, 3123–3126. [Google Scholar] [CrossRef] [PubMed]
- Jeong, E.; Lee, J.Y. Intrinsic and Extrinsic Regulation of Innate Immune Receptors. Yonsei Med. J. 2011, 52, 379–392. [Google Scholar] [CrossRef] [PubMed]
- Lester, S.N.; Li, K. Toll-Like Receptors in Antiviral Innate Immunity. J. Mol. Biol. 2014, 426, 1246–1264. [Google Scholar] [CrossRef] [PubMed]
- Arjomandnejad, M.; Dasgupta, I.; Flotte, T.R.; Keeler, A.M. Immunogenicity of Recombinant Adeno-Associated Virus (AAV) Vectors for Gene Transfer. BioDrugs 2023, 37, 311–329. [Google Scholar] [CrossRef]
- Ashley, S.N.; Somanathan, S.; Giles, A.R.; Wilson, J.M. TLR9 Signaling Mediates Adaptive Immunity Following Systemic AAV Gene Therapy. Cell. Immunol. 2019, 346, 103997. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Kumar, S.R.P.; Cao, D.; Munoz-Melero, M.; Arisa, S.; Brian, B.A.; Greenwood, C.M.; Yamada, K.; Duan, D.; Herzog, R.W. Redundancy in Innate Immune Pathways That Promote CD8+ T-Cell Responses in AAV1 Muscle Gene Transfer. Viruses 2024, 16, 1507. [Google Scholar] [CrossRef]
- Bertolini, T.B.; Shirley, J.L.; Zolotukhin, I.; Li, X.; Kaisho, T.; Xiao, W.; Kumar, S.R.P.; Herzog, R.W. Effect of CpG Depletion of Vector Genome on CD8+ T Cell Responses in AAV Gene Therapy. Front. Immunol. 2021, 12, 672449. [Google Scholar] [CrossRef]
- Artemyev, V.; Gubaeva, A.; Paremskaia, A.I.; Dzhioeva, A.A.; Deviatkin, A.; Feoktistova, S.G.; Mityaeva, O.; Volchkov, P.Y. Synthetic Promoters in Gene Therapy: Design Approaches, Features and Applications. Cells 2024, 13, 1963. [Google Scholar] [CrossRef]
- Pan, X.; Yue, Y.; Boftsi, M.; Wasala, L.P.; Tran, N.T.; Zhang, K.; Pintel, D.J.; Tai, P.W.L.; Duan, D. Rational Engineering of a Functional CpG-Free ITR for AAV Gene Therapy. Gene Ther. 2022, 29, 333–345. [Google Scholar] [CrossRef] [PubMed]
- Shao, W.; Earley, L.F.; Chai, Z.; Chen, X.; Sun, J.; He, T.; Deng, M.; Hirsch, M.L.; Ting, J.; Samulski, R.J.; et al. Double-Stranded RNA Innate Immune Response Activation from Long-Term Adeno-Associated Virus Vector Transduction. J. Clin. Investig. 2018, 13, e120474. [Google Scholar] [CrossRef]
- Nathwani, A.C.; Reiss, U.M.; Tuddenham, E.G.D.; Rosales, C.; Chowdary, P.; McIntosh, J.; Della Peruta, M.; Lheriteau, E.; Patel, N.; Raj, D.; et al. Long-Term Safety and Efficacy of Factor IX Gene Therapy in Hemophilia B. N. Engl. J. Med. 2014, 371, 1994–2004. [Google Scholar] [CrossRef]
- Drazkowska, K.; Cieslicka, J.; Kitowicz, M.; Pastucha, A.; Markiewicz, L.; Szymanek, W.; Goryca, K.; Kowalczyk, T.; Cysewski, D.; Bausch, A.R.; et al. Effective Recognition of Double-Stranded RNA Does Not Require Activation of Cellular Inflammation. Sci. Adv. 2025, 11, eads6498. [Google Scholar] [CrossRef]
- Rapti, K.; Grimm, D. Adeno-Associated Viruses (AAV) and Host Immunity—A Race Between the Hare and the Hedgehog. Front. Immunol. 2021, 12, 753467. [Google Scholar] [CrossRef]
- Prasad, S.; Dimmock, D.P.; Greenberg, B.; Walia, J.S.; Sadhu, C.; Tavakkoli, F.; Lipshutz, G.S. Immune Responses and Immunosuppressive Strategies for Adeno-Associated Virus-Based Gene Therapy for Treatment of Central Nervous System Disorders: Current Knowledge and Approaches. Hum. Gene Ther. 2022, 33, 1228–1245. [Google Scholar] [CrossRef]
- Merle, N.S.; Church, S.E.; Fremeaux-Bacchi, V.; Roumenina, L.T. Complement System Part I—Molecular Mechanisms of Activation and Regulation. Front. Immunol. 2015, 6, 262. [Google Scholar] [CrossRef] [PubMed]
- Cao, D.; Byrne, B.J.; de Jong, Y.P.; Terhorst, C.; Duan, D.; Herzog, R.W.; Kumar, S.R.P. Innate Immune Sensing of Adeno-Associated Virus Vectors. Hum. Gene Ther. 2024, 35, 451–463. [Google Scholar] [CrossRef] [PubMed]
- Zaiss, A.K.; Cotter, M.J.; White, L.R.; Clark, S.A.; Wong, N.C.W.; Holers, V.M.; Bartlett, J.S.; Muruve, D.A. Complement Is an Essential Component of the Immune Response to Adeno-Associated Virus Vectors. J. Virol. 2008, 82, 2727–2740. [Google Scholar] [CrossRef]
- Kropf, E.; Markusic, D.M.; Majowicz, A.; Mingozzi, F.; Kuranda, K. Complement System Response to Adeno-Associated Virus Vector Gene Therapy. Hum. Gene Ther. 2024, 35, 425–438. [Google Scholar] [CrossRef]
- Muhuri, M.; Maeda, Y.; Ma, H.; Ram, S.; Fitzgerald, K.A.; Tai, P.W.; Gao, G. Overcoming Innate Immune Barriers That Impede AAV Gene Therapy Vectors. J. Clin. Investig. 2021, 131, e143780. [Google Scholar] [CrossRef] [PubMed]
- Xicluna, R.; Schwalie, P.C.; Bell, E.; Tell, D.V.; Steiner, G.; Seeger, E.; Heeren, J.J.F.; Turksma, A.W.; Pouw, R.B.; Schwandt, T.; et al. Innate Immune Response to AAV-Based Gene Therapy Vectors: Mechanisms of Complement Activation and Cytokine Release. Mol. Ther. Methods Clin. Dev. 2025, 33, 101551. [Google Scholar] [CrossRef]
- Previous Annual Meetings|ASGCT Annual Meeting. Available online: https://annualmeeting.asgct.org/about/previous-annual-meetings (accessed on 1 November 2025).
- Santana, M.A.; Esquivel-Guadarrama, F. Cell Biology of T Cell Activation and Differentiation. Int. Rev. Cytol. 2006, 250, 217–274. [Google Scholar] [CrossRef]
- Manno, C.S.; Pierce, G.F.; Arruda, V.R.; Glader, B.; Ragni, M.; Rasko, J.J.; Ozelo, M.C.; Hoots, K.; Blatt, P.; Konkle, B.; et al. Successful Transduction of Liver in Hemophilia by AAV-Factor IX and Limitations Imposed by the Host Immune Response. Nat. Med. 2006, 12, 342–347. [Google Scholar] [CrossRef]
- Nathwani, A.C.; Tuddenham, E.G.D.; Rangarajan, S.; Rosales, C.; McIntosh, J.; Linch, D.C.; Chowdary, P.; Riddell, A.; Pie, A.J.; Harrington, C.; et al. Adenovirus-Associated Virus Vector-Mediated Gene Transfer in Hemophilia B. N. Engl. J. Med. 2011, 365, 2357–2365. [Google Scholar] [CrossRef]
- George, L.A.; Sullivan, S.K.; Giermasz, A.; Rasko, J.E.J.; Samelson-Jones, B.J.; Ducore, J.; Cuker, A.; Sullivan, L.M.; Majumdar, S.; Teitel, J.; et al. Hemophilia B Gene Therapy with a High-Specific-Activity Factor IX Variant. N. Engl. J. Med. 2017, 377, 2215–2227. [Google Scholar] [CrossRef]
- Hui, D.J.; Edmonson, S.C.; Podsakoff, G.M.; Pien, G.C.; Ivanciu, L.; Camire, R.M.; Ertl, H.; Mingozzi, F.; High, K.A.; Basner-Tschakarjan, E. AAV Capsid CD8+ T-Cell Epitopes Are Highly Conserved across AAV Serotypes. Mol. Ther. Methods Clin. Dev. 2015, 2, 15029. [Google Scholar] [CrossRef] [PubMed]
- Yeung, V.P.; Chang, J.; Miller, J.; Barnett, C.; Stickler, M.; Harding, F.A. Elimination of an Immunodominant CD4+ T Cell Epitope in Human IFN-Beta Does Not Result in an in Vivo Response Directed at the Subdominant Epitope. J. Immunol. 2004, 172, 6658–6665. [Google Scholar] [CrossRef]
- Jones, T.D.; Phillips, W.J.; Smith, B.J.; Bamford, C.A.; Nayee, P.D.; Baglin, T.P.; Gaston, J.S.H.; Baker, M.P. Identification and Removal of a Promiscuous CD4+ T Cell Epitope from the C1 Domain of Factor VIII. J. Thromb. Haemost. JTH 2005, 3, 991–1000. [Google Scholar] [CrossRef] [PubMed]
- Mendell, J.R.; Campbell, K.; Rodino-Klapac, L.; Sahenk, Z.; Shilling, C.; Lewis, S.; Bowles, D.; Gray, S.; Li, C.; Galloway, G.; et al. Dystrophin Immunity in Duchenne’s Muscular Dystrophy. N. Engl. J. Med. 2010, 363, 1429–1437. [Google Scholar] [CrossRef]
- Bönnemann, C.G.; Belluscio, B.A.; Braun, S.; Morris, C.; Singh, T.; Muntoni, F. Dystrophin Immunity after Gene Therapy for Duchenne’s Muscular Dystrophy. N. Engl. J. Med. 2023, 388, 2294–2296. [Google Scholar] [CrossRef] [PubMed]
- Pfizer. A Phase 3, Multicenter, Randomized, Double-Blind, Placebo Controlled Study to Evaluate the Safety and Efficacy of Pf 06939926 for the Treatment of Duchenne Muscular Dystrophy; Clinical Trial Registration NCT04281485; Clinicaltrials.Gov. 2025. Available online: https://clinicaltrials.gov/study/NCT04281485 (accessed on 7 August 2025).
- Sarepta Therapeutics, Inc. An Open-Label, Systemic Gene Delivery Study Using Commercial Process Material to Evaluate the Safety of and Expression from SRP-9001 in Subjects with Duchenne Muscular Dystrophy (ENDEAVOR); Clinical Trial Registration NCT04626674; Clinicaltrials.Gov. 2024. Available online: https://clinicaltrials.gov/study/NCT04626674 (accessed on 7 August 2025).
- Clinical Trials Register—Search for 2020-002093-27. Available online: https://www.clinicaltrialsregister.eu/ctr-search/search?query=2020-002093-27 (accessed on 7 August 2025).
- Deiva, K.; Ausseil, J.; de Bournonville, S.; Zérah, M.; Husson, B.; Gougeon, M.-L.; Poirier-Beaudouin, B.; Zafeiriou, D.; Parenti, G.; Heard, J.-M.; et al. Intracerebral Gene Therapy in Four Children with Sanfilippo B Syndrome: 5.5-Year Follow-Up Results. Hum. Gene Ther. 2021, 32, 1251–1259. [Google Scholar] [CrossRef]
- Mesnard-Rouiller, L.; Bismuth, J.; Wakkach, A.; Poëa-Guyon, S.; Berrih-Aknin, S. Thymic Myoid Cells Express High Levels of Muscle Genes. J. Neuroimmunol. 2004, 148, 97–105. [Google Scholar] [CrossRef]
- Song, Y.; Morales, L.; Malik, A.S.; Mead, A.F.; Greer, C.D.; Mitchell, M.A.; Petrov, M.T.; Su, L.T.; Choi, M.E.; Rosenblum, S.T.; et al. Non-Immunogenic Utrophin Gene Therapy for the Treatment of Muscular Dystrophy Animal Models. Nat. Med. 2019, 25, 1505–1511. [Google Scholar] [CrossRef]
- Starikova, A.V.; Skopenkova, V.V.; Polikarpova, A.V.; Reshetov, D.A.; Vassilieva, S.G.; Velyaev, O.A.; Shmidt, A.A.; Savchenko, I.M.; Soldatov, V.O.; Egorova, T.V.; et al. Therapeutic Potential of Highly Functional Codon-Optimized Microutrophin for Muscle-Specific Expression. Sci. Rep. 2022, 12, 848. [Google Scholar] [CrossRef]
- FDA. Approved Cellular and Gene Therapy Products. 2025. Available online: https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/approved-cellular-and-gene-therapy-products (accessed on 20 June 2025).
- Boutin, S.; Monteilhet, V.; Veron, P.; Leborgne, C.; Benveniste, O.; Montus, M.F.; Masurier, C. Prevalence of Serum IgG and Neutralizing Factors against Adeno-Associated Virus (AAV) Types 1, 2, 5, 6, 8, and 9 in the Healthy Population: Implications for Gene Therapy Using AAV Vectors. Hum. Gene Ther. 2010, 21, 704–712. [Google Scholar] [CrossRef]
- Parks, W.P.; Boucher, D.W.; Melnick, J.L.; Taber, L.H.; Yow, M.D. Seroepidemiological and Ecological Studies of the Adenovirus-Associated Satellite Viruses. Infect. Immun. 1970, 2, 716–722. [Google Scholar] [CrossRef]
- Schulz, M.; Levy, D.I.; Petropoulos, C.J.; Bashirians, G.; Winburn, I.; Mahn, M.; Somanathan, S.; Cheng, S.H.; Byrne, B.J. Binding and Neutralizing Anti-AAV Antibodies: Detection and Implications for rAAV-Mediated Gene Therapy. Mol. Ther. 2023, 31, 616–630. [Google Scholar] [CrossRef] [PubMed]
- FDA. List of Cleared or Approved Companion Diagnostic Devices (In Vitro and Imaging Tools). 2025. Available online: https://www.fda.gov/medical-devices/in-vitro-diagnostics/list-cleared-or-approved-companion-diagnostic-devices-in-vitro-and-imaging-tools (accessed on 28 June 2025).
- Anguela, X.M.; High, K.A. Hemophilia B and Gene Therapy: A New Chapter with Etranacogene Dezaparvovec. Blood Adv. 2024, 8, 1796–1803. [Google Scholar] [CrossRef] [PubMed]
- Stanford, S.; Pink, R.; Creagh, D.; Clark, A.; Lowe, G.; Curry, N.; Pasi, J.; Perry, D.; Fong, S.; Hayes, G.; et al. Adenovirus-associated Antibodies in UK Cohort of Hemophilia Patients: A Seroprevalence Study of the Presence of Adenovirus-associated Virus Vector–Serotypes AAV5 and AAV8 Neutralizing Activity and Antibodies in Patients with Hemophilia A. Res. Pract. Thromb. Haemost. 2019, 3, 261–267. [Google Scholar] [CrossRef]
- Mendell, J.R.; Connolly, A.M.; Lehman, K.J.; Griffin, D.A.; Khan, S.Z.; Dharia, S.D.; Quintana-Gallardo, L.; Rodino-Klapac, L.R. Testing Preexisting Antibodies Prior to AAV Gene Transfer Therapy: Rationale, Lessons and Future Considerations. Mol. Ther. Methods Clin. Dev. 2022, 25, 74–83. [Google Scholar] [CrossRef]
- Gorovits, B.; Azadeh, M.; Buchlis, G.; Fiscella, M.; Harrison, T.; Havert, M.; Janetzki, S.; Jawa, V.; Long, B.; Mahnke, Y.D.; et al. Evaluation of Cellular Immune Response to Adeno-Associated Virus-Based Gene Therapy. AAPS J. 2023, 25, 47. [Google Scholar] [CrossRef]
- Xicluna, R.; Avenel, A.; Vandamme, C.; Devaux, M.; Jaulin, N.; Couzinié, C.; Le Duff, J.; Charrier, A.; Guilbaud, M.; Adjali, O.; et al. Prevalence Study of Cellular Capsid-Specific Immune Responses to AAV2, 4, 5, 8, 9, and Rh10 in Healthy Donors. Hum. Gene Ther. 2024, 35, 355–364. [Google Scholar] [CrossRef]
- Gaudet, D.; Méthot, J.; Déry, S.; Brisson, D.; Essiembre, C.; Tremblay, G.; Tremblay, K.; de Wal, J.; Twisk, J.; van den Bulk, N.; et al. Efficacy and Long-Term Safety of Alipogene Tiparvovec (AAV1-LPLS447X) Gene Therapy for Lipoprotein Lipase Deficiency: An Open-Label Trial. Gene Ther. 2013, 20, 361–369. [Google Scholar] [CrossRef]
- Maguire, A.M.; Russell, S.; Wellman, J.A.; Chung, D.C.; Yu, Z.-F.; Tillman, A.; Wittes, J.; Pappas, J.; Elci, O.; Marshall, K.A.; et al. Efficacy, Safety, and Durability of Voretigene Neparvovec-Rzyl in RPE65 Mutation-Associated Inherited Retinal Dystrophy: Results of Phase 1 and 3 Trials. Ophthalmology 2019, 126, 1273–1285. [Google Scholar] [CrossRef]
- Gowda, V.; Atherton, M.; Murugan, A.; Servais, L.; Sheehan, J.; Standing, E.; Manzur, A.; Scoto, M.; Baranello, G.; Munot, P.; et al. Efficacy and Safety of Onasemnogene Abeparvovec in Children with Spinal Muscular Atrophy Type 1: Real-World Evidence from 6 Infusion Centres in the United Kingdom. Lancet Reg. Health Eur. 2024, 37, 100817. [Google Scholar] [CrossRef]
- Fernandes, B.D.; Krug, B.C.; Rodrigues, F.D.; Cirilo, H.N.C.; Borges, S.S.; Schwartz, I.V.D.; Probst, L.F.; Zimmermann, I. Efficacy and Safety of Onasemnogene Abeparvovec for the Treatment of Patients with Spinal Muscular Atrophy Type 1: A Systematic Review with Meta-Analysis. PLoS ONE 2024, 19, e0302860. [Google Scholar] [CrossRef] [PubMed]
- McMillan, H.J.; Baranello, G.; Farrar, M.A.; Zaidman, C.M.; Moreno, T.; De Waele, L.; Jong, Y.-J.; Laugel, V.; Quijano-Roy, S.; Mercuri, E.; et al. Safety and Efficacy of IV Onasemnogene Abeparvovec for Pediatric Patients with Spinal Muscular Atrophy: The Phase 3b SMART Study. Neurology 2025, 104, e210268. [Google Scholar] [CrossRef] [PubMed]
- Chand, D.; Mohr, F.; McMillan, H.; Tukov, F.F.; Montgomery, K.; Kleyn, A.; Sun, R.; Tauscher-Wisniewski, S.; Kaufmann, P.; Kullak-Ublick, G. Hepatotoxicity Following Administration of Onasemnogene Abeparvovec (AVXS-101) for the Treatment of Spinal Muscular Atrophy. J. Hepatol. 2021, 74, 560–566. [Google Scholar] [CrossRef]
- Coppens, M.; Pipe, S.W.; Miesbach, W.; Astermark, J.; Recht, M.; van der Valk, P.; Ewenstein, B.; Pinachyan, K.; Galante, N.; Le Quellec, S.; et al. Etranacogene Dezaparvovec Gene Therapy for Haemophilia B (HOPE-B): 24-Month Post-Hoc Efficacy and Safety Data from a Single-Arm, Multicentre, Phase 3 Trial. Lancet Haematol. 2024, 11, e265–e275. [Google Scholar] [CrossRef]
- Leavitt, A.D.; Mahlangu, J.; Raheja, P.; Symington, E.; Quon, D.V.; Giermasz, A.; López Fernández, M.F.; Kenet, G.; Lowe, G.; Key, N.S.; et al. Efficacy, Safety, and Quality of Life 4 Years after Valoctocogene Roxaparvovec Gene Transfer for Severe Hemophilia A in the Phase 3 GENEr8-1 Trial. Res. Pract. Thromb. Haemost. 2024, 8, 102615. [Google Scholar] [CrossRef] [PubMed]
- Long, B.R.; Robinson, T.M.; Day, J.R.S.; Yu, H.; Lau, K.; Imtiaz, U.; Patton, K.S.; de Hart, G.; Henshaw, J.; Agarwal, S.; et al. Clinical Immunogenicity Outcomes from GENEr8-1, a Phase 3 Study of Valoctocogene Roxaparvovec, an AAV5-Vectored Gene Therapy for Hemophilia A. Mol. Ther. J. Am. Soc. Gene Ther. 2024, 32, 2052–2063. [Google Scholar] [CrossRef]
- Mendell, J.R.; Muntoni, F.; McDonald, C.M.; Mercuri, E.M.; Ciafaloni, E.; Komaki, H.; Leon-Astudillo, C.; Nascimento, A.; Proud, C.; Schara-Schmidt, U.; et al. AAV Gene Therapy for Duchenne Muscular Dystrophy: The EMBARK Phase 3 Randomized Trial. Nat. Med. 2025, 31, 332–341. [Google Scholar] [CrossRef]
- Tai, C.-H.; Lee, N.-C.; Chien, Y.-H.; Byrne, B.J.; Muramatsu, S.-I.; Tseng, S.-H.; Hwu, W.-L. Long-Term Efficacy and Safety of Eladocagene Exuparvovec in Patients with AADC Deficiency. Mol. Ther. J. Am. Soc. Gene Ther. 2022, 30, 509–518. [Google Scholar] [CrossRef]
- Rasko, J.E.J.; Samelson-Jones, B.J.; George, L.A.; Giermasz, A.; Ducore, J.M.; Teitel, J.M.; McGuinn, C.E.; High, K.A.; de Jong, Y.P.; Chhabra, A.; et al. Fidanacogene Elaparvovec for Hemophilia B—A Multiyear Follow-up Study. N. Engl. J. Med. 2025, 392, 1508–1517. [Google Scholar] [CrossRef]
- Gross, D.-A.; Tedesco, N.; Leborgne, C.; Ronzitti, G. Overcoming the Challenges Imposed by Humoral Immunity to AAV Vectors to Achieve Safe and Efficient Gene Transfer in Seropositive Patients. Front. Immunol. 2022, 13, 857276. [Google Scholar] [CrossRef] [PubMed]
- Mingozzi, F.; Anguela, X.M.; Pavani, G.; Chen, Y.; Davidson, R.J.; Hui, D.J.; Yazicioglu, M.; Elkouby, L.; Hinderer, C.J.; Faella, A.; et al. Overcoming Preexisting Humoral Immunity to AAV Using Capsid Decoys. Sci. Transl. Med. 2013, 5, 194ra92. [Google Scholar] [CrossRef] [PubMed]
- Goedeker, N.L.; Dharia, S.D.; Griffin, D.A.; Coy, J.; Truesdale, T.; Parikh, R.; Whitehouse, K.; Santra, S.; Asher, D.R.; Zaidman, C.M. Evaluation of rAAVrh74 Gene Therapy Vector Seroprevalence by Measurement of Total Binding Antibodies in Patients with Duchenne Muscular Dystrophy. Ther. Adv. Neurol. Disord. 2023, 16, 17562864221149781. [Google Scholar] [CrossRef] [PubMed]
- Barnes, C.; Scheideler, O.; Schaffer, D. Engineering the AAV Capsid to Evade Immune Responses. Curr. Opin. Biotechnol. 2019, 60, 99–103. [Google Scholar] [CrossRef]
- Selot, R.; Arumugam, S.; Mary, B.; Cheemadan, S.; Jayandharan, G.R. Optimized AAV Rh.10 Vectors That Partially Evade Neutralizing Antibodies during Hepatic Gene Transfer. Front. Pharmacol. 2017, 8, 441. [Google Scholar] [CrossRef]
- Martino, A.T.; Basner-Tschakarjan, E.; Markusic, D.M.; Finn, J.D.; Hinderer, C.; Zhou, S.; Ostrov, D.A.; Srivastava, A.; Ertl, H.C.J.; Terhorst, C.; et al. Engineered AAV Vector Minimizes in Vivo Targeting of Transduced Hepatocytes by Capsid-Specific CD8+ T Cells. Blood 2013, 121, 2224. [Google Scholar] [CrossRef]
- Mietzsch, M.; Hsi, J.; Nelson, A.R.; Khandekar, N.; Huang, A.-M.; Smith, N.J.; Zachary, J.; Potts, L.; Farrar, M.A.; Chipman, P.; et al. Structural Characterization of Antibody-Responses Following Zolgensma Treatment for AAV Capsid Engineering to Expand Patient Cohorts. Nat. Commun. 2025, 16, 3731. [Google Scholar] [CrossRef]
- Wang, H.; Hao, X.; He, Y.; Fan, L. AbImmPred: An Immunogenicity Prediction Method for Therapeutic Antibodies Using AntiBERTy-Based Sequence Features. PLoS ONE 2024, 19, e0296737. [Google Scholar] [CrossRef]
- Choi, Y.; Verma, D.; Griswold, K.E.; Bailey-Kellogg, C. EpiSweep: Computationally-Driven Reengineering of Therapeutic Proteins to Reduce Immunogenicity While Maintaining Function. Methods Mol. Biol. Clifton NJ 2017, 1529, 375–398. [Google Scholar] [CrossRef]
- Kanaan, N.M.; Sellnow, R.C.; Boye, S.L.; Coberly, B.; Bennett, A.; Agbandje-McKenna, M.; Sortwell, C.E.; Hauswirth, W.W.; Boye, S.E.; Manfredsson, F.P. Rationally Engineered AAV Capsids Improve Transduction and Volumetric Spread in the CNS. Mol. Ther. Nucleic Acids 2017, 8, 184–197. [Google Scholar] [CrossRef]
- Wang, M.; Sun, J.; Crosby, A.; Woodard, K.; Hirsch, M.L.; Samulski, R.J.; Li, C. Direct Interaction of Human Serum Proteins with AAV Virions to Enhance AAV Transduction: Immediate Impact on Clinical Applications. Gene Ther. 2017, 24, 49–59. [Google Scholar] [CrossRef]
- Jin, Q.; Qiao, C.; Li, J.; Li, J.; Xiao, X. An Engineered Serum Albumin-Binding AAV9 Capsid Achieves Improved Liver Transduction after Intravenous Delivery in Mice. Gene Ther. 2020, 27, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Wright, J.F. Re-Administration of AAV Vectors by Masking with Host Albumin: A Goldilocks Hypothesis. Mol. Ther. J. Am. Soc. Gene Ther. 2023, 31, 1870–1873. [Google Scholar] [CrossRef] [PubMed]
- Ronzitti, G.; Bortolussi, G.; van Dijk, R.; Collaud, F.; Charles, S.; Leborgne, C.; Vidal, P.; Martin, S.; Gjata, B.; Sola, M.S.; et al. A Translationally Optimized AAV-UGT1A1 Vector Drives Safe and Long-Lasting Correction of Crigler-Najjar Syndrome. Mol. Ther.—Methods Clin. Dev. 2016, 3, 16049. [Google Scholar] [CrossRef] [PubMed]
- Liao, Z.; Yu, J.; Liang, F.; Liu, Y.; Zhao, Z.; Wang, Y.; Shi, X.; Wang, Y.; Liu, H. Nanovaccine Enables Complement System Inhibition and High-Dose AAV Re-Administration. Chem. Eng. J. 2025, 507, 160810. [Google Scholar] [CrossRef]
- Doshi, B.S.; Samelson-Jones, B.J.; Nichols, T.C.; Merricks, E.P.; Siner, J.I.; French, R.A.; Lee, B.J.; Arruda, V.R.; Callan, M.B. AAV Gene Therapy in Companion Dogs with Severe Hemophilia: Real-World Long-Term Data on Immunogenicity, Efficacy, and Quality of Life. Mol. Ther. Methods Clin. Dev. 2024, 32, 101205. [Google Scholar] [CrossRef]
- Nguyen, G.N.; Everett, J.K.; Kafle, S.; Roche, A.M.; Raymond, H.E.; Leiby, J.; Wood, C.; Assenmacher, C.-A.; Merricks, E.P.; Long, C.T.; et al. A Long-Term Study of AAV Gene Therapy in Dogs with Hemophilia A Identifies Clonal Expansions of Transduced Liver Cells. Nat. Biotechnol. 2021, 39, 47–55. [Google Scholar] [CrossRef]
- Muhuri, M.; Levy, D.I.; Schulz, M.; McCarty, D.; Gao, G. Durability of Transgene Expression after rAAV Gene Therapy. Mol. Ther. 2022, 30, 1364–1380. [Google Scholar] [CrossRef]
- Herzog, R.W.; Kaczmarek, R.; High, K.A. Gene Therapy for Hemophilia—From Basic Science to First Approvals of “One-and-Done” Therapies. Mol. Ther. 2025, 33, 2015–2034. [Google Scholar] [CrossRef]
- Novartis Shares Zolgensma Long-Term Data Demonstrating Sustained Durability Up to 7.5 Years Post-Dosing; 100% Achievement of All Assessed Milestones in Children Treated Prior to SMA Symptom Onset|Novartis. Available online: https://www.novartis.com/news/media-releases/novartis-shares-zolgensma-long-term-data-demonstrating-sustained-durability-75-years-post-dosing-100-achievement-all-assessed-milestones-children-treated-prior-sma-symptom-onset (accessed on 4 August 2025).
- Waldrop, M.A. Long-Term Follow-Up of Onasemnogene Abeparvovec Gene Therapy for Patients with Spinal Muscular Atrophy Type 1 from the START Trial. In Proceedings of the Muscular Dystrophy Association (MDA) Clinical & Scientific Conference, Dallas, TX, USA, 16–19 March 2025. [Google Scholar]
- Chamberlain, J.S.; Robb, M.; Braun, S.; Brown, K.J.; Danos, O.; Ganot, A.; Gonzalez-Alegre, P.; Hunter, N.; McDonald, C.; Morris, C.; et al. Microdystrophin Expression as a Surrogate Endpoint for Duchenne Muscular Dystrophy Clinical Trials. Hum. Gene Ther. 2023, 34, 404–415. [Google Scholar] [CrossRef]
- Mendell, J.; Sahenk, Z.; Lowes, L.; Reash, N.; Iammarino, M.; Alfano, L.; Signorovitch, J.; Jin, J.; Gao, P.; Mason, S.; et al. 425P Five-Year Outcomes with Delandistrogene Moxeparvovec in Patients with Duchenne Muscular Dystrophy (DMD): A Phase 1/2a Study. Neuromuscul. Disord. 2024, 43, 104441. [Google Scholar] [CrossRef]
- Byrne, B.J.; Flanigan, K.M.; Matesanz, S.E.; Finkel, R.S.; Waldrop, M.A.; D’Ambrosio, E.S.; Johnson, N.E.; Smith, B.K.; Bönnemann, C.; Carrig, S.; et al. Current Clinical Applications of AAV-Mediated Gene Therapy. Mol. Ther. 2025, 33, 2479–2516. [Google Scholar] [CrossRef] [PubMed]
- Van der Ploeg, A.T.; Kroos, M.A.; Willemsen, R.; Brons, N.H.; Reuser, A.J. Intravenous Administration of Phosphorylated Acid Alpha-Glucosidase Leads to Uptake of Enzyme in Heart and Skeletal Muscle of Mice. J. Clin. Investig. 1991, 87, 513–518. [Google Scholar] [CrossRef]
- Fraites, T.J.; Schleissing, M.R.; Shanely, R.A.; Walter, G.A.; Cloutier, D.A.; Zolotukhin, I.; Pauly, D.F.; Raben, N.; Plotz, P.H.; Powers, S.K.; et al. Correction of the Enzymatic and Functional Deficits in a Model of Pompe Disease Using Adeno-Associated Virus Vectors. Mol. Ther. 2002, 5, 571–578. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.C.; Hopkins, S.; Case, L.E.; Xu, M.; Walters, C.; Dearmey, S.; Han, S.-O.; Spears, T.G.; Chichester, J.A.; Bossen, E.H.; et al. Phase I Study of Liver Depot Gene Therapy in Late-Onset Pompe Disease. Mol. Ther. J. Am. Soc. Gene Ther. 2023, 31, 1994–2004. [Google Scholar] [CrossRef] [PubMed]
- Verhaart, I.E.C.; van Vliet-van den Dool, L.; Sipkens, J.A.; de Kimpe, S.J.; Kolfschoten, I.G.M.; van Deutekom, J.C.T.; Liefaard, L.; Ridings, J.E.; Hood, S.R.; Aartsma-Rus, A. The Dynamics of Compound, Transcript, and Protein Effects After Treatment with 2OMePS Antisense Oligonucleotides in Mdx Mice. Mol. Ther. Nucleic Acids 2014, 3, e148. [Google Scholar] [CrossRef]
- Li, D.; Yue, Y.; Duan, D. Preservation of Muscle Force in Mdx3cv Mice Correlates with Low-Level Expression of a near Full-Length Dystrophin Protein. Am. J. Pathol. 2008, 172, 1332–1341. [Google Scholar] [CrossRef]
- Greer-Short, A.; Greenwood, A.; Leon, E.C.; Qureshi, T.N.; von Kraut, K.; Wong, J.; Tsui, J.H.; Reid, C.A.; Cheng, Z.; Easter, E.; et al. AAV9-Mediated MYBPC3 Gene Therapy with Optimized Expression Cassette Enhances Cardiac Function and Survival in MYBPC3 Cardiomyopathy Models. Nat. Commun. 2025, 16, 2196. [Google Scholar] [CrossRef]
- Mehta, N.; Gilbert, R.; Chahal, P.S.; Moreno, M.J.; Nassoury, N.; Coulombe, N.; Gingras, R.; Mullick, A.; Drouin, S.; Sasseville, M.; et al. Optimization of Adeno-Associated Viral (AAV) Gene Therapies Vectors for Balancing Efficacy, Longevity and Safety for Clinical Application. Gene Ther. 2025, 32, 197–210. [Google Scholar] [CrossRef]
- Wright, J.F. Quantification of CpG Motifs in rAAV Genomes: Avoiding the Toll. Mol. Ther. 2020, 28, 1756–1758. [Google Scholar] [CrossRef]
- Skopenkova, V.V.; Egorova, T.V.; Bardina, M.V. Muscle-Specific Promoters for Gene Therapy. Acta Naturae 2021, 13, 47–58. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Wang, X.; Feng, L.; Zhou, R.; Chen, W.; Jiang, X.; Lv, F.; Xu, W.; Xu, X.; Xie, X.; et al. Combination of miRNA148a-3p Binding Sites and C5–12 Promoter in rAAV Vector Synergistically Reduces Antigen Presentation and Transgene Immunity. Life Sci. 2025, 376, 123742. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-H.; Gessler, D.J.; Zhan, W.; Gallagher, T.L.; Gao, G. Adeno-Associated Virus as a Delivery Vector for Gene Therapy of Human Diseases. Signal Transduct. Target. Ther. 2024, 9, 78. [Google Scholar] [CrossRef]
- Baroja-Mazo, A.; Revilla-Nuin, B.; Ramírez, P.; Pons, J.A. Immunosuppressive Potency of Mechanistic Target of Rapamycin Inhibitors in Solid-Organ Transplantation. World J. Transplant. 2016, 6, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Braun, M.; Lembke, W.; McBlane, F.; Kamerud, J.; DeWall, S.; Tarcsa, E.; Fang, X.; Hofer, L.; Kavita, U.; et al. Immunogenicity Assessment of AAV-Based Gene Therapies: An IQ Consortium Industry White Paper. Mol. Ther. Methods Clin. Dev. 2022, 26, 471–494. [Google Scholar] [CrossRef]
- Shi, X.; Aronson, S.J.; ten Bloemendaal, L.; Duijst, S.; Bakker, R.S.; de Waart, D.R.; Bortolussi, G.; Collaud, F.; Oude Elferink, R.P.; Muro, A.F.; et al. Efficacy of AAV8-hUGT1A1 with Rapamycin in Neonatal, Suckling, and Juvenile Rats to Model Treatment in Pediatric CNs Patients. Mol. Ther.—Methods Clin. Dev. 2021, 20, 287–297. [Google Scholar] [CrossRef]
- Xiang, Z.; Kuranda, K.; Quinn, W.; Chekaoui, A.; Ambrose, R.; Hasanpourghai, M.; Novikov, M.; Newman, D.; Cole, C.; Zhou, X.; et al. The Effect of Rapamycin and Ibrutinib on Antibody Responses to Adeno-Associated Virus Vector-Mediated Gene Transfer. Hum. Gene Ther. 2022, 33, 614–624. [Google Scholar] [CrossRef]
- Kistner, A.; Chichester, J.A.; Wang, L.; Calcedo, R.; Greig, J.A.; Cardwell, L.N.; Wright, M.C.; Couthouis, J.; Sethi, S.; McIntosh, B.E.; et al. Prednisolone and Rapamycin Reduce the Plasma Cell Gene Signature and May Improve AAV Gene Therapy in Cynomolgus Macaques. Gene Ther. 2024, 31, 128–143. [Google Scholar] [CrossRef]
- University of Florida. Evaluation of Re-Administration of Recombinant Adeno-Associated Virus Acid Alpha-Glucosidase (rAAV9-DES-hGAA) in Patients with Late-Onset Pompe Disease (LOPD); Clinical Trial Registration NCT02240407; Clinicaltrials.Gov. 2022. Available online: https://clinicaltrials.gov/study/NCT02240407 (accessed on 7 August 2025).
- Kishimoto, T.K.; Ferrari, J.D.; LaMothe, R.A.; Kolte, P.N.; Griset, A.P.; O’Neil, C.; Chan, V.; Browning, E.; Chalishazar, A.; Kuhlman, W.; et al. Improving the Efficacy and Safety of Biologic Drugs with Tolerogenic Nanoparticles. Nat. Nanotechnol. 2016, 11, 890–899. [Google Scholar] [CrossRef]
- Zhang, A.-H.; Rossi, R.J.; Yoon, J.; Wang, H.; Scott, D.W. Tolerogenic Nanoparticles to Induce Immunologic Tolerance: Prevention and Reversal of FVIII Inhibitor Formation. Cell. Immunol. 2016, 301, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Meliani, A.; Boisgerault, F.; Hardet, R.; Marmier, S.; Collaud, F.; Ronzitti, G.; Leborgne, C.; Costa Verdera, H.; Simon Sola, M.; Charles, S.; et al. Antigen-Selective Modulation of AAV Immunogenicity with Tolerogenic Rapamycin Nanoparticles Enables Successful Vector Re-Administration. Nat. Commun. 2018, 9, 4098. [Google Scholar] [CrossRef] [PubMed]
- Ilyinskii, P.O.; Michaud, A.M.; Roy, C.J.; Rizzo, G.L.; Elkins, S.L.; Capela, T.; Chowdhury, A.C.; Leung, S.S.; Kishimoto, T.K. Enhancement of Liver-Directed Transgene Expression at Initial and Repeat Doses of AAV Vectors Admixed with ImmTOR Nanoparticles. Sci. Adv. 2021, 7, eabd0321. [Google Scholar] [CrossRef]
- Ilyinskii, P.O.; Roy, C.; Michaud, A.; Rizzo, G.; Capela, T.; Leung, S.S.; Kishimoto, T.K. Readministration of High-Dose Adeno-Associated Virus Gene Therapy Vectors Enabled by ImmTOR Nanoparticles Combined with B Cell-Targeted Agents. PNAS Nexus 2023, 2, pgad394. [Google Scholar] [CrossRef]
- Choi, S.J.; Yi, J.S.; Lim, J.-A.; Tedder, T.F.; Koeberl, D.D.; Jeck, W.; Desai, A.K.; Rosenberg, A.; Sun, B.; Kishnani, P.S. Successful AAV8 Readministration: Suppression of Capsid-Specific Neutralizing Antibodies by a Combination Treatment of Bortezomib and CD20 mAb in a Mouse Model of Pompe Disease. J. Gene Med. 2023, 25, e3509. [Google Scholar] [CrossRef] [PubMed]
- Rana, J.; Herzog, R.W.; Muñoz-Melero, M.; Yamada, K.; Kumar, S.R.P.; Lam, A.K.; Markusic, D.M.; Duan, D.; Terhorst, C.; Byrne, B.J.; et al. B Cell Focused Transient Immune Suppression Protocol for Efficient AAV Readministration to the Liver. Mol. Ther. Methods Clin. Dev. 2024, 32, 101216. [Google Scholar] [CrossRef]
- Mingozzi, F.; Chen, Y.; Murphy, S.L.; Edmonson, S.C.; Tai, A.; Price, S.D.; Metzger, M.E.; Zhou, S.; Wright, J.F.; Donahue, R.E.; et al. Pharmacological Modulation of Humoral Immunity in a Nonhuman Primate Model of AAV Gene Transfer for Hemophilia B. Mol. Ther. J. Am. Soc. Gene Ther. 2012, 20, 1410–1416. [Google Scholar] [CrossRef]
- Bevans, M.F.; Shalabi, R.A. Management of Patients Receiving Antithymocyte Globulin for Aplastic Anemia and Myelodysplastic Syndrome. Clin. J. Oncol. Nurs. 2004, 8, 377–382. [Google Scholar] [CrossRef]
- Vrellaku, B.; Sethw Hassan, I.; Howitt, R.; Webster, C.P.; Harriss, E.; McBlane, F.; Betts, C.; Schettini, J.; Lion, M.; Mindur, J.E.; et al. A Systematic Review of Immunosuppressive Protocols Used in AAV Gene Therapy for Monogenic Disorders. Mol. Ther. 2024, 32, 3220–3259. [Google Scholar] [CrossRef]
- Unzu, C.; Hervás-Stubbs, S.; Sampedro, A.; Mauleón, I.; Mancheño, U.; Alfaro, C.; de Salamanca, R.E.; Benito, A.; Beattie, S.G.; Petry, H.; et al. Transient and Intensive Pharmacological Immunosuppression Fails to Improve AAV-Based Liver Gene Transfer in Non-Human Primates. J. Transl. Med. 2012, 10, 122. [Google Scholar] [CrossRef]
- Orlowski, A.; Katz, M.G.; Gubara, S.M.; Fargnoli, A.S.; Fish, K.M.; Weber, T. Successful Transduction with AAV Vectors after Selective Depletion of Anti-AAV Antibodies by Immunoadsorption. Mol. Ther.—Methods Clin. Dev. 2020, 16, 192–203. [Google Scholar] [CrossRef]
- Chicoine, L.; Montgomery, C.; Bremer, W.; Shontz, K.; Griffin, D.; Heller, K.; Lewis, S.; Malik, V.; Grose, W.; Shilling, C.; et al. Plasmapheresis Eliminates the Negative Impact of AAV Antibodies on Microdystrophin Gene Expression Following Vascular Delivery. Mol. Ther. 2014, 22, 338–347. [Google Scholar] [CrossRef]
- Monteilhet, V.; Saheb, S.; Boutin, S.; Leborgne, C.; Veron, P.; Montus, M.-F.; Moullier, P.; Benveniste, O.; Masurier, C. A 10 Patient Case Report on the Impact of Plasmapheresis Upon Neutralizing Factors Against Adeno-Associated Virus (AAV) Types 1, 2, 6, and 8. Mol. Ther. 2011, 19, 2084–2091. [Google Scholar] [CrossRef]
- Salas, D.; Kwikkers, K.L.; Zabaleta, N.; Bazo, A.; Petry, H.; van Deventer, S.J.; Aseguinolaza, G.G.; Ferreira, V. Immunoadsorption Enables Successful rAAV5-Mediated Repeated Hepatic Gene Delivery in Nonhuman Primates. Blood Adv. 2019, 3, 2632–2641. [Google Scholar] [CrossRef]
- Leborgne, C.; Barbon, E.; Alexander, J.M.; Hanby, H.; Delignat, S.; Cohen, D.M.; Collaud, F.; Muraleetharan, S.; Lupo, D.; Silverberg, J.; et al. IgG-Cleaving Endopeptidase Enables in Vivo Gene Therapy in the Presence of Anti-AAV Neutralizing Antibodies. Nat. Med. 2020, 26, 1096–1101. [Google Scholar] [CrossRef] [PubMed]
- Alexander, J.M.; Hanby, H.; Lupo, D.; Muraleetharan, S.; Rizzo, C.; Cohen, D.M.; Silverberg, J.; Beck, H.; Anguela, X.; Armour, S.M.; et al. IdeS: An Enabling Technology to Overcome the Limitation of Neutralizing Antibodies to AAV Gene Therapy. Mol. Genet. Metab. 2021, 132, S14. [Google Scholar] [CrossRef]
- Elmore, Z.C.; Oh, D.K.; Simon, K.E.; Fanous, M.M.; Asokan, A. Rescuing AAV Gene Transfer from Neutralizing Antibodies with an IgG-Degrading Enzyme. J. Clin. Investig. 2020, 5, e139881. [Google Scholar] [CrossRef] [PubMed]
- Smith, T.J.; Elmore, Z.C.; Fusco, R.M.; Hull, J.A.; Rosales, A.; Martinez, M.; Tarantal, A.F.; Asokan, A. Engineered IgM and IgG Cleaving Enzymes for Mitigating Antibody Neutralization and Complement Activation in AAV Gene Transfer. Mol. Ther. 2024, 32, 2080–2093. [Google Scholar] [CrossRef]
- Zolgensma® Global Managed Access Program (gMAP)|Novartis. Available online: https://www.novartis.com/healthcare-professionals/managed-access-programs/zolgensma-global-managed-access-program-gmap (accessed on 1 October 2025).
- Deshpande, S.R.; Joseph, K.; Tong, J.; Chen, Y.; Pishko, A.; Cuker, A. Adeno-Associated Virus-Based Gene Therapy for Hemophilia A and B: A Systematic Review and Meta-Analysis. Blood Adv. 2024, 8, 5957–5974. [Google Scholar] [CrossRef] [PubMed]
- Matagne, V.; Borloz, E.; Ehinger, Y.; Saidi, L.; Villard, L.; Roux, J.-C. Severe Offtarget Effects Following Intravenous Delivery of AAV9-MECP2 in a Female Mouse Model of Rett Syndrome. Neurobiol. Dis. 2021, 149, 105235. [Google Scholar] [CrossRef] [PubMed]
- Emami, M.R.; Espinoza, A.; Young, C.S.; Ma, F.; Farahat, P.K.; Felgner, P.L.; Chamberlain, J.S.; Xu, X.; Pyle, A.D.; Pellegrini, M.; et al. Innate and Adaptive AAV-Mediated Immune Responses in a Mouse Model of Duchenne Muscular Dystrophy. Mol. Ther.—Methods Clin. Dev. 2023, 30, 90–102. [Google Scholar] [CrossRef]
- Rivière, C.; Danos, O.; Douar, A.M. Long-Term Expression and Repeated Administration of AAV Type 1, 2 and 5 Vectors in Skeletal Muscle of Immunocompetent Adult Mice. Gene Ther. 2006, 13, 1300–1308. [Google Scholar] [CrossRef] [PubMed]
- Majowicz, A.; Salas, D.; Zabaleta, N.; Rodríguez-Garcia, E.; González-Aseguinolaza, G.; Petry, H.; Ferreira, V. Successful Repeated Hepatic Gene Delivery in Mice and Non-Human Primates Achieved by Sequential Administration of AAV5ch and AAV1. Mol. Ther. 2017, 25, 1831–1842. [Google Scholar] [CrossRef]
- Mingozzi, F.; High, K.A. Overcoming the Host Immune Response to Adeno-Associated Virus Gene Delivery Vectors: The Race Between Clearance, Tolerance, Neutralization, and Escape. Annu. Rev. Virol. 2017, 4, 511–534. [Google Scholar] [CrossRef]
- Weber, T. Anti-AAV Antibodies in AAV Gene Therapy: Current Challenges and Possible Solutions. Front. Immunol. 2021, 12, 658399. [Google Scholar] [CrossRef]
- Ishibashi, Y.; Sung, C.Y.W.; Grati, M.; Chien, W. Immune Responses in the Mammalian Inner Ear and Their Implications for AAV-Mediated Inner Ear Gene Therapy. Hear. Res. 2023, 432, 108735. [Google Scholar] [CrossRef]
- Corti, M.; Cleaver, B.; Clément, N.; Conlon, T.J.; Faris, K.J.; Wang, G.; Benson, J.; Tarantal, A.F.; Fuller, D.; Herzog, R.W.; et al. Evaluation of Readministration of a Recombinant Adeno-Associated Virus Vector Expressing Acid Alpha-Glucosidase in Pompe Disease: Preclinical to Clinical Planning. Hum. Gene Ther. Clin. Dev. 2015, 26, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Kim, B.; Jarvis, M.I.; Fleury, S.; Deng, S.; Nouraein, S.; Butler, S.; Lee, S.; Chambers, C.; Hodges, H.C.; et al. Immune Profiling of Adeno-Associated Virus Response Identifies B Cell-Specific Targets That Enable Vector Re-Administration in Mice. Gene Ther. 2023, 30, 429–442. [Google Scholar] [CrossRef]
- Tan, F.; Dong, Y.; Qi, J.; Yu, W.; Chai, R. Artificial Intelligence-Based Approaches for AAV Vector Engineering. Adv. Sci. Weinh. Baden-Wurtt. Ger. 2025, 12, e2411062. [Google Scholar] [CrossRef]
- Shiraishi, Y.; Adachi, T.; Cacicedo, J.M.; Ido, Y. Development of a High-Yield, High-Quality Purification Process for Adeno-Associated Virus Vectors That Can Be Used in Vivo without Ultracentrifugation: Application to a Lung Endothelial Cell-Targeted Adeno-Associated Virus. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2022, 36, e22653. [Google Scholar] [CrossRef] [PubMed]
- Quality, Non-Clinical and Clinical Issues Relating Specifically to Recombinant Adeno-Associated Viral Vectors—Scientific Guideline|European Medicines Agency (EMA). Available online: https://www.ema.europa.eu/en/quality-non-clinical-clinical-issues-relating-specifically-recombinant-adeno-associated-viral-vectors-scientific-guideline (accessed on 1 November 2025).
- FDA. Immunogenicity of Gene Therapy Products. 2024. Available online: https://www.fda.gov/vaccines-blood-biologics/science-research-biologics/immunogenicity-gene-therapy-products (accessed on 2 July 2025).



| Proposed Strategy | Advantageous Aspects | Limitations | References |
|---|---|---|---|
| For Naive Patients During First AAV Treatment | |||
| Reduction of CpG content by codon optimization of coding sequence | Reduces TLR9 activation | Can affect expression rate | [15,98,99] |
| Optimization of expression control (tissue-specific promoters and enhancers, miRNA-binding sites, introns, post-transcriptional promoter elements) | Reduces overall dose and increases expression in target tissues while limiting off-target expression | Can affect AAV packaging and genome integrity | [100,101,102] |
| Pharmacological inhibition of immune memory formation (B-cell depletion, proteasome inhibition, T-cell suppression) | Inhibits immune memory formation and allows next rAAV injections if necessary Using drugs already available in clinical practice | Causes immunodeficiencies and may worsen the condition of patients with certain genetic diseases | [29,82,114,115,116,119] |
| Nanoparticle-assisted strategies | Inducing immune tolerance to a particular vector and transgene which are co-injected without affecting defense against pathogens | Absence of approved drugs | [112] |
| For patients with pre-existing immunity or for repeated rAAV injections | |||
| Empty capsids decoys | Reduces capturing of full capsids by pre-existing circulating antibodies | May provoke Ig-mediated immune reactions May reduce target tissue’s transduction due to competition for the AAV receptor Lack of methods for efficient empty capsid purification | [69] |
| Capsid engineering | Reduces capturing of capsids by pre-existing circulating antibodies | Capsid modification may affect rAAV production efficiency and biodistribution | [71,72,73,74] |
| Capsid masking by HSA, chemical linking, exosome packaging | Reduces capturing of capsids by pre-existing circulating antibodies | May affect biodistribution Additional step of manufacturing may affect rAAV yield | [78,79,80] |
| AAV-specific circulating antibody depletion | Reduces Ig-mediated AAV-clearance and Ig-mediated immune reactions | Does not influence cellular immune memory | [120] |
| Plasmapheresis and protein-G-based immunoadsorption | Reduces Ig-mediated AAV-clearance and Ig-mediated immune reactions | Causes immunodeficiencies and may worsen the condition of patients with certain genetic diseases Does not influence cellular immune memory | [121,122,123] |
| IgG- and IgM-degrading enzyme | Reduces Ig-mediated AAV-clearance and Ig-mediated immune reactions | Does not influence cellular immune memory | [124,125,126,127] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Egorova, T.; Starikova, A.; Polikarpova, A. Emerging Technologies Tackling Adeno-Associated Viruses (AAV) Immunogenicity in Gene Therapy Applications. Pharmaceutics 2025, 17, 1492. https://doi.org/10.3390/pharmaceutics17111492
Egorova T, Starikova A, Polikarpova A. Emerging Technologies Tackling Adeno-Associated Viruses (AAV) Immunogenicity in Gene Therapy Applications. Pharmaceutics. 2025; 17(11):1492. https://doi.org/10.3390/pharmaceutics17111492
Chicago/Turabian StyleEgorova, Tatiana, Anna Starikova, and Anna Polikarpova. 2025. "Emerging Technologies Tackling Adeno-Associated Viruses (AAV) Immunogenicity in Gene Therapy Applications" Pharmaceutics 17, no. 11: 1492. https://doi.org/10.3390/pharmaceutics17111492
APA StyleEgorova, T., Starikova, A., & Polikarpova, A. (2025). Emerging Technologies Tackling Adeno-Associated Viruses (AAV) Immunogenicity in Gene Therapy Applications. Pharmaceutics, 17(11), 1492. https://doi.org/10.3390/pharmaceutics17111492

