Therapeutic Effect of Alpha Linolenic Acid on Cutaneous Wound Healing in Hyperglycemic Mice: Involvement of Neurotrophins
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Culture MTT
2.2. Experimental Animals
2.3. Osmotic Pump
2.4. Wound
2.5. Eosin and Hematoxylin Staining
2.6. Picrosirius Red
2.7. Healing Process Evaluation
2.8. RT-PCR
2.9. Western Blot
2.10. Mass Spectrometry
2.11. Protein–Protein Interactions
2.12. Statistical Analysis
3. Results
3.1. 5 µM of α-Linolenic Acid (ALA) Leads to Increased Keratinocyte Viability
3.2. α-Linolenic Acid (ALA) Leads to Increased Protein Expression of BDNF and Gene Expression of This Receptor in Keratinocytes
3.3. α-Linolenic Acid (ALA) Leads to an Increase in the Gene Expression of Cytokines and Growth Factors in Keratinocytes
3.4. α-Linolenic Acid (ALA) Accelerates Skin Wound Healing in Hyperglycemic Mice
3.5. α-Linolenic Acid (ALA) Is Responsible for Modulating the Gene Expressions Involved in Wound Healing
3.6. α-Linolenic Acid (ALA) Increases Gene Expression Involved in the Survival and Growth of Neurons in Wounds of Hyperglycemic and Non-Hyperglycemic Mice
3.7. Genes Modulated in the Wounds of Hyperglycemic Mice After Treatment with α-Linolenic Acid Regulate Essential Functions in Nerve Regeneration
3.8. α-Linolenic Acid (ALA) Improves Dermal Organization and Vascularization in Hyperglycemic Wounds at Day 7 Post-Injury
3.9. α-Linolenic Acid (ALA) Enhances Type I Collagen Deposition in Hyperglycemic Wounds During Critical Phases of Wound Healing
4. Discussion
5. Conclusions
6. Study Limitations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ALA | Alpha-linolenic acid |
| BDNF | Brain-Derived Neurotrophic Factor |
| PECAM-1 | Platelet endothelial cell adhesion molecule 1 |
| MMP-9 | Metalloproteinase |
| CNTF | Ciliary Neurotrophic Factor |
| CNTFR | Ciliary Neurotrophic Factor Receptor |
| IGF-1 | Insulin-like Growth Factor |
| ITGA-5 | Integrin Subunit Alpha 5 |
| MUFA | Monounsaturated fatty acid |
| Ngfr | Nerve Growth Factor |
| NRK2 | Neurotrophic Receptor Tyrosine Kinase 2 |
| PUFA | Polyunsaturated Fatty Acid |
| SOX-10 | SRY-Box Transcription Factor 10 |
| STAT-3 | Signal Transducer and Activator of Transcription 3 |
| TGF-β1 | Transforming Growth Factor Beta 1 |
| VEGF | Vascular Endothelial Growth factor |
| FGF-1 | Fibroblast Growth Factor |
References
- Gould, L.; Abadir, P.; Brem, H.; Carter, M.; Conner-Kerr, T.; Davidson, J.; DiPietro, L.; Falanga, V.; Fife, C.; Gardner, S.; et al. Chronic Wound Repair and Healing in Older Adults: Current Status and Future Research. J Am. Geriatr. Soc. 2015, 63, 427–438. [Google Scholar] [CrossRef] [PubMed]
- Eming, S.A.; Martin, P.; Tomic-Canic, M. Wound Repair and Regeneration: Mechanisms, Signaling, and Translation. Sci. Transl. Med. 2014, 6, 265sr6. [Google Scholar] [CrossRef] [PubMed]
- Seth, I.; Lim, B.; Cevik, J.; Gracias, D.; Chua, M.; Kenney, P.S.; Rozen, W.M.; Cuomo, R. Impact of Nutrition on Skin Wound Healing and Aesthetic Outcomes: A Comprehensive Narrative Review. JPRAS Open 2024, 39, 291–302. [Google Scholar] [CrossRef] [PubMed]
- Lima, A.L.; Illing, T.; Schliemann, S.; Elsner, P. Cutaneous Manifestations of Diabetes Mellitus: A Review. Am. J. Clin. Dermatol. 2017, 18, 541–553. [Google Scholar] [CrossRef]
- Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract. 2019, 157, 107843. [Google Scholar] [CrossRef]
- Qi, X.; Li, Y.; Xiang, Y.; Chen, Y.; Shi, Y.; Ge, X.; Zeng, B.; Shen, J. Hyperthermia-enhanced immunoregulation hydrogel for oxygenation and ROS neutralization in diabetic foot ulcers. Cell Biomater. 2025, 1, 100020. [Google Scholar] [CrossRef]
- Qi, X.; Xiang, Y.; Li, Y.; Wang, J.; Chen, Y.; Lan, Y.; Liu, J.; Shen, J. An ATP-Activated Spatiotemporally Controlled Hydrogel Prodrug System for Treating Multidrug-Resistant Bacteria-Infected Pressure Ulcers. Bioact. Mater. 2025, 45, 301–321. [Google Scholar] [CrossRef]
- Zivkovic, A.M.; Telis, N.; German, J.B.; Hammock, B.D. Dietary omega-3 fatty acids aid in the modulation of inflammation and metabolic health. Calif. Agric. 2011, 65, 106–111. [Google Scholar] [CrossRef]
- Shen, J.; Zhang, L.; Wang, Y.; Chen, Z.; Ma, J.; Fang, X.; Das, U.N.; Yao, K. Beneficial Actions of Essential Fatty Acids in Streptozotocin-Induced Type 1 Diabetes Mellitus. Front. Nutr. 2022, 9, 890277. [Google Scholar] [CrossRef]
- Zhang, L.H.; Zhang, W.; Wei, G.-H.; Yang, P.; Liu, J.; Niu, X.L. Effects of alpha-linolenic acid on inflammation and oxidative stress in the diabetic rats. Zhongguo Ying Yong Sheng Li Xue Za Zhi 2012, 28, 64–67. [Google Scholar]
- Li, Y.; Li, F.; Qin, D.; Chen, H.; Wang, J.; Wang, J.; Song, S.; Wang, C.; Wang, Y.; Liu, S.; et al. The role of brain derived neurotrophic factor in central nervous system. Front. Aging Neurosci. 2022, 14, 986443. [Google Scholar] [CrossRef]
- O’bRien, J.; Niehaus, P.; Chang, K.; Remark, J.; Barrett, J.; Dasgupta, A.; Adenegan, M.; Salimian, M.; Kevas, Y.; Chandrasekaran, K.; et al. Skin keratinocyte-derived SIRT1 and BDNF modulate mechanical allodynia in mouse models of diabetic neuropathy. bioRxiv 2023. [Google Scholar] [CrossRef]
- Kussainova, A.; Kassym, L.; Akhmetova, A.; Dvoryankova, E.; Glushkova, N.; Khismetova, Z.; Adilgozhina, S.; Tuleutayeva, R.; Kaskabayeva, A.; Massabayeva, M.; et al. Associations between serum levels of brain-derived neurotrophic factor, corticotropin releasing hormone and mental distress in vitiligo patients. Sci. Rep. 2022, 12, 7260. [Google Scholar] [CrossRef]
- Zhou, L.J.; Ren, W.J.; Zhong, Y.; Yang, T.; Wei, X.H.; Xin, W.J.; Liu, C.C.; Zhou, L.H.; Li, Y.Y.; Liu, X.G. Limited BDNF contributes to the failure of injury to skin afferents to produce a neuropathic pain condition. Pain 2010, 148, 148–157. [Google Scholar] [CrossRef]
- Hoffman, R. Histoculture and the immunodeficient mouse come to the cancer clinic—Rational approaches to individualizing cancer-therapy and new drug-evaluation (review). Int. J. Oncol. 1992, 1, 467–474. [Google Scholar] [CrossRef]
- Simard, M.; Tremblay, A.; Morin, S.; Martin, C.; Julien, P.; Fradette, J.; Flamand, N.; Pouliot, R. α-Linolenic acid and linoleic acid modulate the lipidome and the skin barrier of a tissue-engineered skin model. Acta Biomater. 2022, 140, 261–274. [Google Scholar] [CrossRef]
- Wang, X.; Ge, J.; Tredget, E.E.; Wu, Y. The mouse excisional wound splinting model, including applications for stem cell transplantation. Nat. Protoc. 2013, 8, 302–309. [Google Scholar] [CrossRef]
- Cuttle, L.; Nataatmadja, M.; Fraser, J.F.; Kempf, M.; Kimble, R.M.; Hayes, M.T. Collagen in the scarless fetal skin wound: Detection with Picrosirius-polarization. Wound Repair Regen. 2005, 13, 198–204. [Google Scholar] [CrossRef] [PubMed]
- Domon, B.; Aebersold, R. Mass Spectrometry and Protein Analysis. Science 2006, 312, 212–217. [Google Scholar] [CrossRef] [PubMed]
- Peters, E.; Raap, U.; Welker, P.; Tanaka, A.; Matsuda, H.; Pavlovic-Masnicosa, S.; Hendrix, S.; Pincelli, C. Neurotrophins Act as Neuroendocrine Regulators of Skin Homeostasis in Health and Disease. Horm. Metab. Res. 2007, 39, 110–124. [Google Scholar] [CrossRef]
- Hadjighassem, M.; Kamalidehghan, B.; Shekarriz, N.; Baseerat, A.; Molavi, N.; Mehrpour, M.; Joghataei, M.T.; Tondar, M.; Ahmadipour, F.; Meng, G.Y. Oral Consumption of α-Linolenic Acid Increases Serum BDNF Levels in Healthy Adult Humans. Nutr. J. 2015, 14, 20. [Google Scholar] [CrossRef]
- Ridiandries, A.; Tan, J.T.M.; Bursill, C.A. The Role of Chemokines in Wound Healing. Int. J. Mol. Sci. 2018, 19, 3217. [Google Scholar] [CrossRef]
- Shen, S.; Miskolci, V.; Dewey, C.N.; Sauer, J.D. Infection induced inflammation impairs wound healing through IL-1β signaling. iScience 2024, 27, 109532. [Google Scholar] [CrossRef]
- King, A.; Balaji, S.; Le, L.D.; Crombleholme, T.M.; Keswani, S.G. Regenerative Wound Healing: The Role of Interleukin-10. Adv. Wound Care 2014, 3, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, H.; Patel, S.B.; Pastar, I. The Role of TGFβ Signaling in Wound Epithelialization. Adv. Wound Care 2014, 3, 482–491. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro Barros Cardoso, C.; Aparecida Souza, M.; Amália Vieira Ferro, E.; Favoreto, S.; Deolina Oliveira Pena, J. Influence of topical administration of n-3 and n-6 essential and n-9 nonessential fatty acids on the healing of cutaneous wounds. Wound Repair Regen. 2004, 12, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Pereira, L.M.; Hatanaka, E.; Martins, E.F.; Oliveira, F.; Liberti, E.A.; Farsky, S.H.; Curi, R.; Pithon-Curi, T.C. Effect of oleic and linoleic acids on the inflammatory phase of wound healing in rats. Cell Biochem. Funct. 2008, 26, 197–204. [Google Scholar] [CrossRef]
- Rodrigues, H.G.; Vinolo, M.A.R.; Sato, F.T.; Magdalon, J.; Kuhl, C.M.C.; Yamagata, A.S.; Pessoa, A.F.M.; Malheiros, G.; dos Santos, M.F.; Lima, C.; et al. Oral Administration of Linoleic Acid Induces New Vessel Formation and Improves Skin Wound Healing in Diabetic Rats. Ljubimov AV, organizador. PLoS ONE 2016, 11, e0165115. [Google Scholar] [CrossRef]
- Soleimani, Z.; Hashemdokht, F.; Bahmani, F.; Taghizadeh, M.; Memarzadeh, M.R.; Asemi, Z. Clinical and metabolic response to flaxseed oil omega-3 fatty acids supplementation in patients with diabetic foot ulcer: A randomized, double-blind, placebo-controlled trial. J. Diabetes Its Complicat. 2017, 31, 1394–1400. [Google Scholar] [CrossRef]
- Raju, R.; Palapetta, S.M.; Sandhya, V.K.; Sahu, A.; Alipoor, A.; Balakrishnan, L.; Advani, J.; George, B.; Kini, K.R.; Geetha, N.P.; et al. A Network Map of FGF-1/FGFR Signaling System. J. Signal Transduct. 2014, 2014, 962962. [Google Scholar] [CrossRef]
- Prudovsky, I. Cellular Mechanisms of FGF-Stimulated Tissue Repair. Cells 2021, 10, 1830. [Google Scholar] [CrossRef] [PubMed]
- Kiritsi, D.; Nyström, A. The role of TGFβ in wound healing pathologies. Mech. Ageing Dev. 2018, 172, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Blakytny, R.; Jude, E. The Molecular Biology of Chronic Wounds and Delayed Healing in Diabetes. Diabet. Med. 2006, 23, 594–608. [Google Scholar] [CrossRef] [PubMed]
- Pankoke, K.; Nielsen, S.S.; Jørgensen, B.M.; Jensen, H.E.; Barington, K. Immunohistochemical Study of CD31 and α-SMA Expression for Age Estimation of Porcine Skin Wounds. J. Comp. Pathol. 2023, 206, 22–31. [Google Scholar] [CrossRef]
- Coelho-Rato, L.S.; Parvanian, S.; Modi, M.K.; Eriksson, J.E. Vimentin at the core of wound healing. Trends Cell Biol. 2024, 34, 239–254. [Google Scholar] [CrossRef]
- Hariono, M.; Yuliani, S.H.; Istyastono, E.P.; Riswanto, F.D.; Adhipandito, C.F. Matrix metalloproteinase 9 (MMP9) in wound healing of diabetic foot ulcer: Molecular target and structure-based drug design. Wound Med. 2018, 22, 1–13. [Google Scholar] [CrossRef]
- Bremer, M.; Fröb, F.; Kichko, T.; Reeh, P.; Tamm, E.R.; Suter, U.; Wegner, M. Sox10 is required for Schwann-cell homeostasis and myelin maintenance in the adult peripheral nerve. Glia 2011, 59, 1022–1032. [Google Scholar] [CrossRef]
- Kuhlbrodt, K.; Herbarth, B.; Sock, E.; Hermans-Borgmeyer, I.; Wegner, M. Sox10, a Novel Transcriptional Modulator in Glial Cells. J. Neurosci. 1998, 18, 237–250. [Google Scholar] [CrossRef]
- Jagadeeshaprasad, M.G.; Govindappa, P.K.; Nelson, A.M.; Noble, M.D.; Elfar, J.C. 4-Aminopyridine Induces Nerve Growth Factor to Improve Skin Wound Healing and Tissue Regeneration. Biomedicines 2022, 10, 1649. [Google Scholar] [CrossRef]
- Rabinovsky, E.D.; Smith, G.M.; Browder, D.P.; Shine, H.D.; McManaman, J.L. Peripheral nerve injury down-regulates CNTF expression in adult rat sciatic nerves. J. Neurosci. Res. 1992, 31, 188–192. [Google Scholar] [CrossRef]
- Ma, F.; Wang, H.; Yang, X.; Wu, Y.; Liao, C.; Xie, B.; Li, Y.; Zhang, W. Controlled release of ciliary neurotrophic factor from bioactive nerve grafts promotes nerve regeneration in rats with facial nerve injuries. J. Biomed. Mater. Res. Part A 2022, 110, 788–796. [Google Scholar] [CrossRef]
- Ip, N.Y.; McClain, J.; Barrezueta, N.X.; Aldrich, T.H.; Pan, L.; Li, Y.; Wiegand, S.J.; Friedman, B.; Davis, S.; Yancopoulos, G.D. The α component of the CNTF receptor is required for signaling and defines potential CNTF targets in the adult and during development. Neuron 1993, 10, 89–102. [Google Scholar] [CrossRef] [PubMed]
- Benito, C.; Davis, C.M.; Gomez-Sanchez, J.A.; Turmaine, M.; Meijer, D.; Poli, V.; Mirsky, R.; Jessen, K.R. STAT3 Controls the Long-Term Survival and Phenotype of Repair Schwann Cells during Nerve Regeneration. J. Neurosci. 2017, 37, 4255–4269. [Google Scholar] [CrossRef] [PubMed]
- Nocera, G.; Jacob, C. Mechanisms of Schwann cell plasticity involved in peripheral nerve repair after injury. Cell. Mol. Life Sci. 2020, 77, 3977–3989. [Google Scholar] [CrossRef] [PubMed]
- Cialdai, F.; Risaliti, C.; Monici, M. Role of fibroblasts in wound healing and tissue remodeling on Earth and in space. Front. Bioeng. Biotechnol. 2022, 10, 958381. [Google Scholar] [CrossRef]
- Silva, J.R.; Burger, B.; Kühl, C.M.C.; Candreva, T.; Dos Anjos, M.B.P.; Rodrigues, H.G. Wound Healing and Omega-6 Fatty Acids: From Inflammation to Repair. Mediat. Inflamm. 2018, 2018, 2503950. [Google Scholar] [CrossRef]
- Mathew-Steiner, S.S.; Roy, S.; Sen, C.K. Collagen in Wound Healing. Bioengineering 2021, 8, 63. [Google Scholar] [CrossRef]









Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prado, T.P.d.; Zanchetta, F.C.; Rosa Maria, A.C.; Rios, T.d.S.; Assis-Mendonça, G.R.d.; Lima, M.H.M.; Cintra, D.E.C.; Morari, J.; Velloso, L.A.; Araújo, E.P. Therapeutic Effect of Alpha Linolenic Acid on Cutaneous Wound Healing in Hyperglycemic Mice: Involvement of Neurotrophins. Pharmaceutics 2025, 17, 1427. https://doi.org/10.3390/pharmaceutics17111427
Prado TPd, Zanchetta FC, Rosa Maria AC, Rios TdS, Assis-Mendonça GRd, Lima MHM, Cintra DEC, Morari J, Velloso LA, Araújo EP. Therapeutic Effect of Alpha Linolenic Acid on Cutaneous Wound Healing in Hyperglycemic Mice: Involvement of Neurotrophins. Pharmaceutics. 2025; 17(11):1427. https://doi.org/10.3390/pharmaceutics17111427
Chicago/Turabian StylePrado, Thais Paulino do, Flávia Cristina Zanchetta, Aline Cristina Rosa Maria, Thaiane da Silva Rios, Guilherme Rossi de Assis-Mendonça, Maria Helena Melo Lima, Dennys Esper Correa Cintra, Joseane Morari, Lício A. Velloso, and Eliana P. Araújo. 2025. "Therapeutic Effect of Alpha Linolenic Acid on Cutaneous Wound Healing in Hyperglycemic Mice: Involvement of Neurotrophins" Pharmaceutics 17, no. 11: 1427. https://doi.org/10.3390/pharmaceutics17111427
APA StylePrado, T. P. d., Zanchetta, F. C., Rosa Maria, A. C., Rios, T. d. S., Assis-Mendonça, G. R. d., Lima, M. H. M., Cintra, D. E. C., Morari, J., Velloso, L. A., & Araújo, E. P. (2025). Therapeutic Effect of Alpha Linolenic Acid on Cutaneous Wound Healing in Hyperglycemic Mice: Involvement of Neurotrophins. Pharmaceutics, 17(11), 1427. https://doi.org/10.3390/pharmaceutics17111427

