The Development of Risperidone-Loaded Microfibers via Centrifugal Spinning to Enhance the Palatability of a Potential Drug for Autistic Children
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Centrifugal-Spun Microfibers
2.3. Scanning Electron Microscope (SEM)
2.4. Disintegration Test of the Blank and Drug-Loaded Microfibers
2.5. Microfiber Physicochemical Characterization Using X-Ray Diffraction (XRD) and Fourier Transform Infrared (FTIR)
2.6. Determination and Quantification of Risperidone Using High-Performance Liquid Chromatography (HPLC)
2.7. Determination of Drug Loading (DL) and Encapsulation Efficiency (EE%) of Risperidone Microfibers
2.8. Drug Release Determination of Drug-Loaded Fibers
2.9. In Vitro Cytotoxicity Evaluation Using MTS Assay
2.10. In Vivo Assessment
2.10.1. Animals and Housing
2.10.2. Experimental Design: Two-Bottle Preferences Test
2.10.3. Behavioral Observations and Data Analysis
2.11. Statistical Analysis
3. Results and Discussion
3.1. Morphological Characterization of the Fabricated Microfibers by Scanning Electron Microscopy (SEM)
3.2. Disintegration Test of the Drug-Loaded Microfibers
3.3. X-Ray Diffraction (XRD) and Fourier Transform Infrared (FTIR)
3.4. Determination and Quantification of Risperidone
3.5. Drug Loading (DL) and Entrapment Efficiency (EE%) of Risperidone-Loaded Microfibers
3.6. Drug Release Determination of Risperidone-Loaded Microfibers
3.7. In Vitro Cytotoxicity Assessment of Risperidone
3.8. In Vivo Palatability Assessment: Two-Bottle Preferences Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Autism. Available online: https://www.who.int/news-room/fact-sheets/detail/autism-spectrum-disorders?gclid=CjwKCAiA4smsBhAEEiwAO6DEjT2PDrHl0pfrV-WmCunqVJ2vhfAGEnnB0PSmRAheUutAyM0LlzKA2RoCViYQAvD_BwE (accessed on 1 January 2024).
- Speer, I.; Steiner, D.; Thabet, Y.; Breitkreutz, J.; Kwade, A. Comparative study on disintegration methods for oral film preparations. Eur. J. Pharm. Biopharm. 2018, 132, 50–61. [Google Scholar] [CrossRef]
- Schiele, J.T.; Quinzler, R.; Klimm, H.D.; Pruszydlo, M.G.; Haefeli, W.E. Difficulties swallowing solid oral dosage forms in a general practice population: Prevalence, causes, and relationship to dosage forms. Eur. J. Clin. Pharmacol. 2013, 69, 937–948. [Google Scholar] [CrossRef]
- Volkert, V.M.; Vaz, P.C. Recent studies on feeding problems in children with autism. J. Appl. Behav. Anal. 2010, 43, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Kanner, L. Autistic disturbances of affective contact. Acta Paedopsychiatr. 1968, 35, 100–136. [Google Scholar] [PubMed]
- Rendle-Short, J. Childhood autism. Br. Med. J. 1970, 1, 627–628. [Google Scholar] [CrossRef]
- van Dijk, M.W.G.; Buruma, M.E.; Blijd-Hoogewys, E.M.A. Detecting Feeding Problems in Young Children with Autism Spectrum Disorder. J. Autism Dev. Disord. 2021, 51, 4115–4127. [Google Scholar] [CrossRef] [PubMed]
- Leila, C.; Jaweher, B.; Khaoula, K.; Salma, M.; Héla, A.; Yousr, M. Feeding Problems in Children with Autism Spectrum Disorders. J. Fam. Med. 2018, 1, 30–39. [Google Scholar] [CrossRef]
- Syofyan, S.; Dachriyanus, D.; Masrul, M.; Rasyid, R. Children’s Perception and Belief about Medicines: Effectiveness and Its Autonomy. Open Access Maced. J. Med. Sci. 2019, 7, 2556–2562. [Google Scholar] [CrossRef]
- Twachtman-Reilly, J.; Amaral, S.C.; Zebrowski, P.P. Addressing Feeding Disorders in Children on the Autism Spectrum in School-Based Settings: Physiological and Behavioral Issues. Lang. Speech Hear. Serv. Sch. 2008, 39, 261–272. [Google Scholar] [CrossRef]
- Ghuman, J.K.; Cataldo, M.D.; Beck, M.H.; Slifer, K.J. Behavioral Training For Pill-Swallowing Difficulties In Young Children with Autistic Disorder. J. Child Adolesc. Psychopharmacol. 2004, 14, 601–611. [Google Scholar] [CrossRef]
- Hodis, B.; Mughal, S.; Saadabadi, A.; Doerr, C. Autism Spectrum Disorder (Nursing). In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Mukherjee, S.B. Autism Spectrum Disorders—Diagnosis and Management. Indian J. Pediatr. 2017, 84, 307–314. [Google Scholar] [CrossRef]
- Turanlı, Y.; Birer, M.; Turgut Birer, Y.; Uyar, R.; Yurdakök Dikmen, B.; Acartürk, F. Oral fast-dissolving risperidone loaded electrospun nanofiber drug delivery systems for antipsychotic therapy. J. Drug Deliv. Sci. Technol. 2024, 92, 105262. [Google Scholar] [CrossRef]
- Mano-Sousa, B.J.; Pedrosa, A.M.; Alves, B.C.; Galduróz, J.C.F.; Belo, V.S.; Chaves, V.E.; Duarte-Almeida, J.M. Effects of Risperidone in Autistic Children and Young Adults: A Systematic Review and Meta-Analysis. Curr. Neuropharmacol. 2021, 19, 538–552. [Google Scholar] [CrossRef] [PubMed]
- LeClerc, S.; Easley, D. Pharmacological therapies for autism spectrum disorder: A review. Pharm. Ther. 2015, 40, 389–397. [Google Scholar]
- McNeil, S.E.; Gibbons, J.R.; Cogburn, M. Risperidone. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Blum, K.; Chen, A.L.; Braverman, E.R.; Comings, D.E.; Chen, T.J.; Arcuri, V.; Blum, S.H.; Downs, B.W.; Waite, R.L.; Notaro, A.; et al. Attention-deficit-hyperactivity disorder and reward deficiency syndrome. Neuropsychiatr. Dis. Treat. 2008, 4, 893–918. [Google Scholar] [CrossRef]
- Grant, S.; Fitton, A. Risperidone. A review of its pharmacology and therapeutic potential in the treatment of schizophrenia. Drugs 1994, 48, 253–273. [Google Scholar] [CrossRef]
- Stojkovic, M.; Radmanovic, B.; Jovanovic, M.; Janjic, V.; Muric, N.; Ristic, D.I. Risperidone Induced Hyperprolactinemia: From Basic to Clinical Studies. Front. Psychiatry 2022, 13, 874705. [Google Scholar] [CrossRef]
- Nunn, T.; Williams, J. Formulation of medicines for children. Br. J. Clin. Pharmacol. 2005, 59, 674–676. [Google Scholar] [CrossRef] [PubMed]
- Viviers, M.; Jongh, M.; Dickonson, L.; Malan, R.; Pike, T. Parent-reported feeding and swallowing difficulties of children with Autism Spectrum Disorders (aged 3 to 5 years) compared to typically developing peers: A South African study. Afr. Health Sci. 2020, 20, 524–532. [Google Scholar] [CrossRef]
- Arvedson, J.C. Assessment of pediatric dysphagia and feeding disorders: Clinical and instrumental approaches. Dev. Disabil. Res. Rev. 2008, 14, 118–127. [Google Scholar] [CrossRef]
- Daghmash, R.M.; Khanfar, M.S.; Darweesh, R.S. Risperidone Pellets, Pycnogenol®, and Glucomannan Gummy Formulation for Managing Weight Gain and ADHD in Autistic Children. Pharmaceutics 2024, 16, 1062. [Google Scholar] [CrossRef]
- Alfassam, H.A.; Booq, R.Y.; Almousained, M.M.; Alajmi, A.M.; Elfaky, M.A.; Shaik, R.A.; Alsaleh, N.S.; Aodah, A.H.; Alsulimani, H.H.; Halwani, A.A.; et al. Fabrication and evaluation of centrifugal spun Miconazole-loaded sugar-based fibers. J. Drug Deliv. Sci. Technol. 2024, 98, 105872. [Google Scholar] [CrossRef]
- Alsulami, K.A.; Bakr, A.A.; Alshehri, A.A.; Aodah, A.H.; Almughem, F.A.; Alamer, A.A.; Alharbi, L.A.; Alsuwayeh, D.S.; Halwani, A.A.; Alamoudi, A.A.; et al. Fabrication and evaluation of ribavirin-loaded electrospun nanofibers as an antimicrobial wound dressing. Saudi Pharm. J. 2024, 32, 102058. [Google Scholar] [CrossRef]
- Alkahtani, M.E.; Aodah, A.H.; Abu Asab, O.A.; Basit, A.W.; Orlu, M.; Tawfik, E.A. Fabrication and Characterization of Fast-Dissolving Films Containing Escitalopram/Quetiapine for the Treatment of Major Depressive Disorder. Pharmaceutics 2021, 13, 891. [Google Scholar] [CrossRef]
- Marano, S.; Barker, S.A.; Raimi-Abraham, B.T.; Missaghi, S.; Rajabi-Siahboomi, A.; Craig, D.Q.M. Development of micro-fibrous solid dispersions of poorly water-soluble drugs in sucrose using temperature-controlled centrifugal spinning. Eur. J. Pharm. Biopharm. 2016, 103, 84–94. [Google Scholar] [CrossRef] [PubMed]
- Alshaya, H.A.; Alfahad, A.J.; Alsulaihem, F.M.; Aodah, A.H.; Alshehri, A.A.; Almughem, F.A.; Alfassam, H.A.; Aldossary, A.M.; Halwani, A.A.; Bukhary, H.A.; et al. Fast-Dissolving Nifedipine and Atorvastatin Calcium Electrospun Nanofibers as a Potential Buccal Delivery System. Pharmaceutics 2022, 14, 358. [Google Scholar] [CrossRef]
- Alamer, A.A.; Alsaleh, N.B.; Aodah, A.H.; Alshehri, A.A.; Almughem, F.A.; Alqahtani, S.H.; Alfassam, H.A.; Tawfik, E.A. Development of Imeglimin Electrospun Nanofibers as a Potential Buccal Antidiabetic Therapeutic Approach. Pharmaceutics 2023, 15, 1208. [Google Scholar] [CrossRef]
- Aburayan, W.S.; Alajmi, A.M.; Alfahad, A.J.; Alsharif, W.K.; Alshehri, A.A.; Booq, R.Y.; Alsudir, S.A.; Alsulaihem, F.M.; Bukhary, H.A.; Badr, M.Y.; et al. Melittin from Bee Venom Encapsulating Electrospun Fibers as a Potential Antimicrobial Wound Dressing Patches for Skin Infections. Pharmaceutics 2022, 14, 725. [Google Scholar] [CrossRef]
- Boughter, J.D., Jr.; St John, S.J.; Noel, D.T.; Ndubuizu, O.; Smith, D.V. A brief-access test for bitter taste in mice. Chem. Senses 2002, 27, 133–142. [Google Scholar] [CrossRef]
- Gaillard, D.; Stratford, J.M. Measurement of Behavioral Taste Responses in Mice: Two-Bottle Preference, Lickometer, and Conditioned Taste-Aversion Tests. Curr. Protoc. Mouse Biol. 2016, 6, 380–407. [Google Scholar] [CrossRef] [PubMed]
- Natu, M.V.; de Sousa, H.C.; Gil, M.H. Electrospun Drug-Eluting Fibers for Biomedical Applications. In Active Implants and Scaffolds for Tissue Regeneration; Zilberman, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 57–85. [Google Scholar]
- Markl, D.; Zeitler, J.A. A Review of Disintegration Mechanisms and Measurement Techniques. Pharm. Res. 2017, 34, 890–917. [Google Scholar] [CrossRef] [PubMed]
- FDA. FDA Guidance for Industry: Orally Disintegrating Tablets; FDA: Silver Spring, MD, USA, 2008. [Google Scholar]
- Karatgi, P.; Pillai, R. Orally disintegrating tablets: The path to improved patient compliance and enhanced life cycle management. Pharm. Technol. Eur. 2009, 21, 25. [Google Scholar]
- Gupta, A.K.; Mittal, A.; Jha, K. Fast dissolving tablet-A review. Pharma Innov. 2012, 1, 1–8. [Google Scholar]
- Hannan, P.A.; Khan, J.A.; Khan, A.; Safiullah, S. Oral Dispersible System: A New Approach in Drug Delivery System. Indian J. Pharm. Sci. 2016, 78, 2–7. [Google Scholar] [CrossRef]
- Geng, Y.; Zhou, F.; Williams, G.R. Developing and scaling up fast-dissolving electrospun formulations based on poly (vinylpyrrolidone) and ketoprofen. J. Drug Deliv. Sci. Technol. 2021, 61, 102138. [Google Scholar] [CrossRef]
- Browne, C.A. Moisture Absorptive Power of Different Sugars and Carbohydrates under Varying Conditions of Atmospheric Humidity. J. Ind. Eng. Chem. 1922, 14, 712–713. [Google Scholar] [CrossRef]
- Shamblin, S.L.; Zografi, G. The Effects of Absorbed Water on the Properties of Amorphous Mixtures Containing Sucrose. Pharm. Res. 1999, 16, 1119–1124. [Google Scholar] [CrossRef]
- Patil, N.V.; Netravali, A.N. Multifunctional sucrose acid as a ‘green’ crosslinker for wrinkle-free cotton fabrics. Cellulose 2020, 27, 5407–5420. [Google Scholar] [CrossRef]
- Queiroz, M.B.; Sousa, F.R.; Silva, L.B.d.; Alves, R.M.V.; Alvim, I.D. Co-crystallized sucrose-soluble fiber matrix: Physicochemical and structural characterization. LWT 2022, 154, 112685. [Google Scholar] [CrossRef]
- Massijaya, S.Y.; Lubis, M.A.; Nissa, R.C.; Nurhamiyah, Y.; Kusumaningrum, W.B.; Marlina, R.; Ningrum, R.S.; Sutiawan, J.; Hidayat, I.; Kusumah, S.S.; et al. Thermal Properties’ Enhancement of PLA-Starch-Based Polymer Composite Using Sucrose. Polymers 2024, 16, 1028. [Google Scholar] [CrossRef]
- Utomo, E.; Li, L.; Gao, J.; Anjani, Q.K.; Picco, C.J.; Moreno-Castellanos, N.; Donnelly, R.F.; Domínguez-Robles, J.; Larrañeta, E. Reservoir-type intranasal implants for sustained release of risperidone: A potential alternative for long-term treatment of schizophrenia. J. Drug Deliv. Sci. Technol. 2024, 99, 105973. [Google Scholar] [CrossRef]
- Son, Y.J.; Yun, T.H.; Lee, J.G.; Bang, K.H.; Kim, K.S. Development and Characterization of Long-Acting Injectable Risperidone Microspheres Using Biodegradable Polymers: Formulation Optimization and Release Kinetics. Processes 2024, 12, 2858. [Google Scholar] [CrossRef]
- Ghanma, R.; Naser, Y.A.; Kurnia Anjani, Q.; Hidayat Bin Sabri, A.; Hutton, A.R.J.; Vora, L.K.; Himawan, A.; Moreno-Castellanos, N.; Greer, B.; McCarthy, H.O.; et al. Dissolving microarray patches for transdermal delivery of risperidone for schizophrenia management. Int. J. Pharm. 2024, 660, 124342. [Google Scholar] [CrossRef]
- Sbârcea, L.; Tănase, I.-M.; Ledeți, A.; Cîrcioban, D.; Vlase, G.; Barvinschi, P.; Miclău, M.; Văruţ, R.-M.; Suciu, O.; Ledeți, I. Risperidone/Randomly Methylated β-Cyclodextrin Inclusion Complex—Compatibility Study with Pharmaceutical Excipients. Molecules 2021, 26, 1690. [Google Scholar] [CrossRef]
- Bessarabov, V.; Kostiuk, V.; Lyzhniuk, V.; Lisovyi, V.; Smishko, R.; Kuzmina, G.; Gureyeva, S.; Goy, A. “Green” technology of centrifugal fiber formation of solid dispersed systems of nimesulide: Evaluation of solubility increases and physicochemical characteristics. Sustain. Chem. Pharm. 2025, 43, 101913. [Google Scholar] [CrossRef]
- Ammar, H.O.; Ghorab, M.M.; Mahmoud, A.A.; Noshi, S.H. Formulation of risperidone in floating microparticles to alleviate its extrapyramidal side effects. Future J. Pharm. Sci. 2016, 2, 43–59. [Google Scholar] [CrossRef]
- Patel, G.; Minko, T. Miscibility, phase behavior, and mechanical properties of copovidone/HPMC ASLF and copovidone/Eudragit EPO polymer blends for hot-melt extrusion and 3D printing applications. Int. J. Pharm. 2025, 670, 125124. [Google Scholar] [CrossRef]
- Kaur, P.; Elsayed, A.; Subramanian, J.; Singh, A. Encapsulation of carotenoids with sucrose by co-crystallization: Physicochemical properties, characterization and thermal stability of pigments. LWT 2021, 140, 110810. [Google Scholar] [CrossRef]
- Weng, J.; Tong, H.H.Y.; Chow, S.F. In Vitro Release Study of the Polymeric Drug Nanoparticles: Development and Validation of a Novel Method. Pharmaceutics 2020, 12, 732. [Google Scholar] [CrossRef] [PubMed]
- Peng, T.; Shi, Y.; Zhu, C.; Feng, D.; Ma, X.; Yang, P.; Bai, X.; Pan, X.; Wu, C.-y.; Tan, W.; et al. Data on the drug release profiles and powder characteristics of the ethyl cellulose based microparticles prepared by the ultra-fine particle processing system. Data Brief 2020, 29, 105269. [Google Scholar] [CrossRef]
- Ammar, H.O.; Salama, H.A.; Ghorab, M.; Mahmoud, A.A. Formulation and biological evaluation of glimepiride-cyclodextrin-polymer systems. Int. J. Pharm. 2006, 309, 129–138. [Google Scholar] [CrossRef]
- Chou, S.-F.; Carson, D.; Woodrow, K.A. Current strategies for sustaining drug release from electrospun nanofibers. J. Control. Release 2015, 220, 584–591. [Google Scholar] [CrossRef] [PubMed]
- Lavin, D.M.; Stefani, R.M.; Zhang, L.; Furtado, S.; Hopkins, R.A.; Mathiowitz, E. Multifunctional polymeric microfibers with prolonged drug delivery and structural support capabilities. Acta Biomater. 2012, 8, 1891–1900. [Google Scholar] [CrossRef] [PubMed]
- Saibi, Y.; Sato, H.; Tachiki, H. Developing in vitro-in vivo correlation of risperidone immediate release tablet. AAPS PharmSciTech 2012, 13, 890–895. [Google Scholar] [CrossRef]
- Kazi, M.; Al-Qarni, H.; Alanazi, F.K. Development of oral solid self-emulsifying lipid formulations of risperidone with improved in vitro dissolution and digestion. Eur. J. Pharm. Biopharm. 2017, 114, 239–249. [Google Scholar] [CrossRef]
- Khames, A. Investigation of the effect of solubility increase at the main absorption site on bioavailability of BCS class II drug (risperidone) using liquisolid technique. Drug Deliv. 2017, 24, 328–338. [Google Scholar] [CrossRef]
- Dwyer, D.S.; Lu, X.-H.; Bradley, R.J. Cytotoxicity of conventional and atypical antipsychotic drugs in relation to glucose metabolism. Brain Res. 2003, 971, 31–39. [Google Scholar] [CrossRef]
- Frie, J.A.; Khokhar, J.Y. An open source automated two-bottle choice test apparatus for rats. HardwareX 2019, 5, e00061. [Google Scholar] [CrossRef]
- Austen, J.M.; Strickland, J.A.; Sanderson, D.J. Memory-dependent effects on palatability in mice. Physiol. Behav. 2016, 167, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Sclafani, A. Starch and sugar tastes in rodents: An update. Brain Res. Bull. 1991, 27, 383–386. [Google Scholar] [CrossRef]
- Primo, M.J.; Fonseca-Rodrigues, D.; Almeida, A.; Teixeira, P.M.; Pinto-Ribeiro, F. Sucrose preference test: A systematic review of protocols for the assessment of anhedonia in rodents. Eur. Neuropsychopharmacol. 2023, 77, 80–92. [Google Scholar] [CrossRef]
- Abdelhakim, H.E.; Coupe, A.; Tuleu, C.; Edirisinghe, M.; Craig, D.Q.M. Utilising Co-Axial Electrospinning as a Taste-Masking Technology for Paediatric Drug Delivery. Pharmaceutics 2021, 13, 1665. [Google Scholar] [CrossRef]
- Sohi, H.; Sultana, Y.; Khar, R.K. Taste masking technologies in oral pharmaceuticals: Recent developments and approaches. Drug Dev. Ind. Pharm. 2004, 30, 429–448. [Google Scholar] [CrossRef]
- Nasir, S.; Hussain, A.; Abbas, N.; Bukhari, N.I.; Hussain, F.; Arshad, M.S. Improved bioavailability of oxcarbazepine, a BCS class II drug by centrifugal melt spinning: In-vitro and in-vivo implications. Int. J. Pharm. 2021, 604, 120775. [Google Scholar] [CrossRef] [PubMed]
- Bebawy, G.; Sokar, M.; Abdallaha, O.Y. Novel risperidone orally disintegrating minitablets for pediatric use: Patient acceptance and dose adjustment. Drug Dev. Ind. Pharm. 2021, 47, 542–551. [Google Scholar] [CrossRef] [PubMed]
- Coppola, D.M.; Slotnick, B. Odor-Cued Bitter Taste Avoidance. Chem. Senses 2018, 43, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Lossow, K.; Hübner, S.; Roudnitzky, N.; Slack, J.P.; Pollastro, F.; Behrens, M.; Meyerhof, W. Comprehensive Analysis of Mouse Bitter Taste Receptors Reveals Different Molecular Receptive Ranges for Orthologous Receptors in Mice and Humans. J. Biol. Chem. 2016, 291, 15358–15377. [Google Scholar] [CrossRef]








| Sample | XRD 2θ° | XRD Crystalline Structure | FTIR Wavenumber cm−1 | FTIR Functional Groups | Refs. | 
|---|---|---|---|---|---|
| Sucrose | 12.49°, 13.51°, 17.49°, 19.05°, 20.44°, 23.01°, 25.48°, 26°, 28.27°, 31.4°, 32.76°, 36.39°, 36.98°, 39.19°, 40.75°, 48.97°. | Crystalline | 3500 to 3000 2942–2890 1114 1000 to 700 | O-H stretching C-H stretching C-O stretching Carbohydrates C-C | [43,44,45] | 
| Risperidone | 7.13°, 10.69°, 11.51°, 14.32°, 14.92°, 15.56°, 16.48°, 18.64°, 19.01°, 19.9°, 21.31°, 22.42°, 23.34°, 23.64°, 27.62°, 28.66°, 29.07°, | Crystalline | 3061 2939–2803 1645 1533 1351 1507 994–610 1192 1130 | Aromatic C-H stretching C-H stretching Lactam C=O stretching N-H bending Oxazole C-N stretching Aromatic C-C stretching Aromatic C-H bending Tertiary amine C-N stretching Aryl fluoride | [46,47,48] | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alqahtani, S.H.; Aodah, A.H.; Alshawakir, Y.A.; Alshehri, B.Y.; Alamer, A.A.; Alfassam, H.A.; Almughem, F.A.; Alshehri, A.A.; Tawfik, E.A. The Development of Risperidone-Loaded Microfibers via Centrifugal Spinning to Enhance the Palatability of a Potential Drug for Autistic Children. Pharmaceutics 2025, 17, 1403. https://doi.org/10.3390/pharmaceutics17111403
Alqahtani SH, Aodah AH, Alshawakir YA, Alshehri BY, Alamer AA, Alfassam HA, Almughem FA, Alshehri AA, Tawfik EA. The Development of Risperidone-Loaded Microfibers via Centrifugal Spinning to Enhance the Palatability of a Potential Drug for Autistic Children. Pharmaceutics. 2025; 17(11):1403. https://doi.org/10.3390/pharmaceutics17111403
Chicago/Turabian StyleAlqahtani, Sarah H., Alhassan H. Aodah, Yasser A. Alshawakir, Bayan Y. Alshehri, Ali A. Alamer, Haya A. Alfassam, Fahad A. Almughem, Abdullah A. Alshehri, and Essam A. Tawfik. 2025. "The Development of Risperidone-Loaded Microfibers via Centrifugal Spinning to Enhance the Palatability of a Potential Drug for Autistic Children" Pharmaceutics 17, no. 11: 1403. https://doi.org/10.3390/pharmaceutics17111403
APA StyleAlqahtani, S. H., Aodah, A. H., Alshawakir, Y. A., Alshehri, B. Y., Alamer, A. A., Alfassam, H. A., Almughem, F. A., Alshehri, A. A., & Tawfik, E. A. (2025). The Development of Risperidone-Loaded Microfibers via Centrifugal Spinning to Enhance the Palatability of a Potential Drug for Autistic Children. Pharmaceutics, 17(11), 1403. https://doi.org/10.3390/pharmaceutics17111403
 
        


 
       