Nanoparticulate Sodium Trimetaphosphate and Fluoride in Gels Affect Enamel Surface Free Energy After Erosive Challenge In Vitro
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design, Ethical Aspects, and Sample Size Calculation
2.2. Preparation of Enamel Discs
2.3. Gel Formulation
2.4. Stimulated Saliva Collection
2.5. Surface Free Energy Analysis
2.6. Surface Treatment
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| TMPnano2.5 | TMP nanoparticulate at 2.5% + 4500 ppm F |
| 4500F | 4500 ppm F |
| TMPmicro5 | TMP microparticulate at 5% + 4500 ppm F |
| TMPnano5 | TMP nanoparticulate at 5% + 4500 ppm F |
| 9000F | 9000 ppm F |
| APF | Acidulated phosphate fluoride |
| baseline | Aferição ou análise nos espécimes previamente ao início do protocolo experimental |
| ETW | Erosive tooth wear |
| F | Fluoride |
| NaF | Sodium fluoride |
| PLA | Placebo |
| SFE/γS | Surface free energy |
| TMP | Sodium trimetaphosphate |
| γ− | Donor component (base) |
| γ+ | Receptor component (acid) |
| γAB | Acid base interaction, polar component |
| γLW | Surface tension Lifshiz van der Waals, nonpolar component |
| ΔGsws | Free energy of interaction between the surface (s) and the water (w) |
| ΔGswsAB | Free energy of interaction between the surface (s) and the water (w) for polar component. |
| ΔGswsLW | Free energy of interaction between the surface (s) and the water (w) for nonpolar component |
References
- Agouropoulos, A.; Twetman, S.; Pandis, N.; Kavvadia, K.; Papagiannoulis, L. Caries-preventive effectiveness of fluoride varnish as adjunct to oral health promotion and supervised tooth brushing in preschool children: A double-blind randomized controlled trial. J. Dent. 2014, 42, 1277–1283. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.; Sachdev, V.; Malik, M.; Chopra, R. Effect of three different compositions of topical fluoride varnishes with and without prior oral prophylaxis on Streptococcus mutans count in biofilm samples of children aged 2-8 years: A randomized controlled trial. J. Indian Soc. Pedod. Prev. Dent. 2019, 37, 286–291. [Google Scholar] [CrossRef]
- Turska-Szybka, A.; Gozdowski, D.; Twetman, S.; Olczak-Kowalczyk, D. Clinical effect of two fluoride varnishes in caries-active preschool children: A randomized controlled trial. Caries Res. 2021, 55, 137–143. [Google Scholar] [CrossRef]
- Zanatta, R.F.; Caneppele, T.M.F.; Scaramucci, T.; El Dib, R.; Maia, L.C.; Ferreira, D.M.T.P.; Borges, A.B. Protective effect of fluorides on erosion and erosion/abrasion in enamel: A systematic review and meta-analysis of randomized in situ trials. Arch. Oral Biol. 2020, 120, 104945. [Google Scholar] [CrossRef]
- Lussi, A.; Carvalho, T.S. The future of fluorides and other protective agents in erosion prevention. Caries Res. 2015, 49 (Suppl. S1), 18–29. [Google Scholar] [CrossRef]
- Manarelli, M.M.; Vieira, A.E.; Matheus, A.A.; Sassaki, K.T.; Delbem, A.C. Effect of mouth rinses with fluoride and trimetaphosphate on enamel erosion: An in vitro study. Caries Res. 2011, 45, 506–509. [Google Scholar] [CrossRef]
- Pancote, L.P.; Manarelli, M.M.; Danelon, M.; Delbem, A.C. Effect of fluoride gels supplemented with sodium trimetaphosphate on enamel erosion and abrasion: In vitro study. Arch. Oral Biol. 2014, 59, 336–340. [Google Scholar] [CrossRef]
- Amaral, J.G.; Pessan, J.P.; Souza, J.A.S.; Moraes, J.C.S.; Delbem, A.C.B. Cyclotriphosphate associated to fluoride increases hydroxyapatite resistance to acid attack. J. Biomed. Mater. Res. B Appl. Biomater. 2018, 106, 2553–2564. [Google Scholar] [CrossRef] [PubMed]
- Danelon, M.; Pessan, J.P.; Santos, V.R.D.; Chiba, E.K.; Garcia, L.S.G.; Camargo, E.R.; Delbem, A.C.B. Fluoride toothpastes containing micrometric or nano-sized sodium trimetaphosphate reduce enamel erosion in vitro. Acta Odontol. Scand. 2018, 76, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Capalbo, L.C.; Delbem, A.C.B.; Nagata, M.E.; Baez-Quintero, L.C.; Danelon, M.; Cunha, R.F.; Pessan, J.P. Fluoride gel containing nanosized sodium trimetaphosphate reduces enamel erosive wear. J. Dent. Res. 2020, 9, 676. [Google Scholar]
- Paiva, M.F.; Delbem, A.C.B.; Veri, I.V.; Sampaio, C.; Wiegand, A.; Pessan, J.P. Fluoride varnishes supplemented with nano-sized sodium trimetaphosphate reduce enamel erosive wear in vitro. J. Dent. 2023, 138, 104726. [Google Scholar] [CrossRef]
- Jandt, K.D.; Watts, D.C. Nanotechnology in dentistry: Present and future perspectives on dental nanomaterials. Dent. Mater. 2020, 36, 1365–1378. [Google Scholar] [CrossRef]
- Cavazana, T.P.; Pessan, J.P.; Hosida, T.Y.; Sampaio, C.; Amarante, V.O.Z.; Monteiro, D.R.; Delbem, A.C.B. Effects of sodium trimetaphosphate, associated or not with fluoride, on the composition and pH of mixed biofilms, before and after exposure to sucrose. Caries Res. 2020, 54, 358–368. [Google Scholar] [CrossRef] [PubMed]
- Neves, J.G.; Danelon, M.; Pessan, J.P.; Figueiredo, L.R.; Camargo, E.R.; Delbem, A.C.B. Surface free energy of enamel treated with sodium hexametaphosphate, calcium and phosphate. Arch. Oral Biol. 2018, 90, 108–112. [Google Scholar] [CrossRef] [PubMed]
- Nalin, E.K.P.; Danelon, M.; Silva, E.S.; Hosida, T.Y.; Pessan, J.P.; Delbem, A.C.B. Surface free energy, interaction, and adsorption of calcium and phosphate to enamel treated with trimetaphosphate and glycerophosphate. Caries Res. 2021, 55, 496–504. [Google Scholar] [CrossRef]
- Oliveira, L.Q.C.; Delbem, A.C.B.; Morais, L.A.; Gonçalves, S.C.; Souza, J.A.S.; Pedrini, D. In vitro evaluation of surface free energy of dentin after treatment with sodium trimetaphosphate associated or not with fluoride, exposed or not to calcium. Caries Res. 2022, 56, 81–90. [Google Scholar] [CrossRef]
- Gironda, C.C.; Pelá, V.T.; Henrique-Silva, F.; Delbem, A.C.B.; Pessan, J.P.; Buzalaf, M.A.R. New insights into the anti-erosive property of a sugarcane-derived cystatin: Different vehicle of application and potential mechanism of action. J. Appl. Oral Sci. 2022, 30, e20210698. [Google Scholar] [CrossRef] [PubMed]
- Delbem, A.C.; Cury, J.A. Effect of application time of APF and NaF gels on microhardness and fluoride uptake of in vitro enamel caries. Am. J. Dent. 2002, 15, 169–172. [Google Scholar]
- Vieira, A.E.; Delbem, A.C.; Sassaki, K.T.; Rodrigues, E.; Cury, J.A.; Cunha, R.F. Fluoride dose response in pH-cycling models using bovine enamel. Caries Res. 2005, 39, 514–520. [Google Scholar] [CrossRef]
- Díaz-Fabregat, B.; Delbem, A.C.B.; Ramírez-Carmona, W.; Capalbo, L.C.; Báez-Quintero, L.C.; Wiegand, A.; Monteiro, D.R.; Pessan, J.P. Low-fluoride gels supplemented with nano-sized sodium trimetaphosphate reduce dentin erosive wear in vitro. Arch. Oral Biol. 2024, 163, 105973. [Google Scholar] [CrossRef] [PubMed]
- Emerenciano, N.G.; Delbem, A.C.; Pessan, J.P.; Nunes, G.P.; Souza Neto, F.N.; Camargo, E.R.; Danelon, M. In situ effect of fluoride toothpaste supplemented with nano-sized sodium trimetaphosphate on enamel demineralization prevention and biofilm composition. Arch. Oral Biol. 2018, 96, 223–229. [Google Scholar] [CrossRef]
- Delbem, A.C.; Sassaki, K.T.; Castro, A.M.; Pinto, L.M.; Bergamaschi, M. Evaluation of fluoride content mouthwashes and gels and risk of acute. Rev. ABO Nac. 2003, 11, 188–193. [Google Scholar]
- Nagata, M.E.; Delbem, A.C.B.; Báez-Quintero, L.C.; Danelon, M.; Sampaio, C.; Monteiro, D.R.; Wiegand, A.; Pessan, J.P. Effect of fluoride gels with nano-sized sodium trimetaphosphate on the in vitro remineralization of caries lesions. J. Appl. Oral Sci. 2023, 31, e20230155. [Google Scholar] [CrossRef] [PubMed]
- Baumann, T.; Kozik, J.; Lussi, A.; Carvalho, T.S. Erosion protection conferred by whole human saliva, dialysed saliva, and artificial saliva. Sci. Rep. 2016, 6, 34760. [Google Scholar] [CrossRef]
- Schipper, R.; Loof, A.; Groot, J.; Harthoorn, L.; Dransfield, E.; van Heerde, W. SELDI-TOF-MS of saliva: Methodology and pre-treatment effects. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2007, 847, 45–53. [Google Scholar] [CrossRef] [PubMed]
- van der Mei, H.C.; White, D.J.; Kamminga-Rasker, H.J.; Knight, J.; Baig, A.A.; Smit, J.; Busscher, H.J. Influence of dentifrices and dietary components in saliva on wettability of pellicle-coated enamel in vitro and in vivo. Eur. J. Oral Sci. 2002, 110, 434–438. [Google Scholar] [CrossRef]
- Harnett, E.M.; Alderman, J.; Wood, T. The surface energy of various biomaterials coated with adhesion molecules used in cell culture. Colloids Surf. B Biointerfaces 2007, 55, 90–97. [Google Scholar] [CrossRef]
- Van Oss, C.J. Hydrophobicity of biosurfaces-origin, quantitative determination and interaction energies. Colloids Surf. B Biointerfaces 1995, 5, 91–110. [Google Scholar] [CrossRef]
- Chaudhury, M.K. Interfacial interaction between low-energy surfaces. Mater. Sci. Eng. R. Rep. 1996, 16, 97–159. [Google Scholar] [CrossRef]
- Kato, M.T.; Leite, A.L.; Hannas, A.R.; Buzalaf, M.A. Gels containing MMP inhibitors prevent dental erosion in situ. J. Dent. Res. 2010, 89, 468–472. [Google Scholar] [CrossRef] [PubMed]
- Taira, E.A.; Ventura, T.M.S.; Cassiano, L.P.S.; Silva, C.M.S.; Martini, T.; Leite, A.L.; Rios, D.; Magalhães, A.C.; Buzalaf, M.A.R. Changes in the proteomic profile of acquired enamel pellicles as a function of their time of formation and hydrochloric acid exposure. Caries Res. 2018, 52, 367–377. [Google Scholar] [CrossRef] [PubMed]
- Baumann, T.; Bereiter, R.; Lussi, A.; Carvalho, T.S. The effect of different salivary calcium concentrations on the erosion protection conferred by the salivary pellicle. Sci. Rep. 2017, 7, 12999. [Google Scholar] [CrossRef]
- Gatt, G.; Attard, N. Erosive wear of the primary dentition: Who is aware of it? Eur. Arch. Paediatr. Dent. 2019, 20, 285–294. [Google Scholar] [CrossRef]
- Buzalaf, M.A.; Hannas, A.R.; Kato, M.T. Saliva and dental erosion. J. Appl. Oral Sci. 2012, 20, 493–502. [Google Scholar] [CrossRef]
- Magalhães, A.C.; Wiegand, A.; Rios, D.; Hannas, A.; Attin, T.; Buzalaf, M.A. Chlorhexidine and green tea extract reduce dentin erosion and abrasion in situ. J. Dent. 2009, 37, 994–998. [Google Scholar] [CrossRef] [PubMed]
- Joudeh, N.; Linke, D. Nanoparticle classification, physicochemical properties, characterization, and applications: A comprehensive review for biologists. J. Nanobiotechnol. 2022, 20, 262. [Google Scholar] [CrossRef] [PubMed]



Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Díaz-Fabregat, B.; Delbem, A.C.B.; Ramírez-Carmona, W.; Capalbo, L.C.; Báez-Quintero, L.C.; Sampaio, C.; Hosida, T.Y.; Monteiro, D.R.; Pessan, J.P. Nanoparticulate Sodium Trimetaphosphate and Fluoride in Gels Affect Enamel Surface Free Energy After Erosive Challenge In Vitro. Pharmaceutics 2025, 17, 1356. https://doi.org/10.3390/pharmaceutics17101356
Díaz-Fabregat B, Delbem ACB, Ramírez-Carmona W, Capalbo LC, Báez-Quintero LC, Sampaio C, Hosida TY, Monteiro DR, Pessan JP. Nanoparticulate Sodium Trimetaphosphate and Fluoride in Gels Affect Enamel Surface Free Energy After Erosive Challenge In Vitro. Pharmaceutics. 2025; 17(10):1356. https://doi.org/10.3390/pharmaceutics17101356
Chicago/Turabian StyleDíaz-Fabregat, Beatriz, Alberto Carlos Botazzo Delbem, Wilmer Ramírez-Carmona, Letícia Cabrera Capalbo, Liliana Carolina Báez-Quintero, Caio Sampaio, Thayse Yumi Hosida, Douglas Roberto Monteiro, and Juliano Pelim Pessan. 2025. "Nanoparticulate Sodium Trimetaphosphate and Fluoride in Gels Affect Enamel Surface Free Energy After Erosive Challenge In Vitro" Pharmaceutics 17, no. 10: 1356. https://doi.org/10.3390/pharmaceutics17101356
APA StyleDíaz-Fabregat, B., Delbem, A. C. B., Ramírez-Carmona, W., Capalbo, L. C., Báez-Quintero, L. C., Sampaio, C., Hosida, T. Y., Monteiro, D. R., & Pessan, J. P. (2025). Nanoparticulate Sodium Trimetaphosphate and Fluoride in Gels Affect Enamel Surface Free Energy After Erosive Challenge In Vitro. Pharmaceutics, 17(10), 1356. https://doi.org/10.3390/pharmaceutics17101356

