Coated Zein Polymeric Nanoparticles Loaded with Amlodipine as a Repurposed Antibacterial Ocular Cure for MRSA-Induced Infection: Optimization, In Vitro, Ex Vivo, and In Vivo Assessments
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Zein Polymeric Nanoparticles
2.2.1. Formulation of Amlodipine-Loaded Zein Nanoparticles
2.2.2. Experimental Design of AML-Loaded Zein Nanoparticles
2.2.3. Assessment of Amlodipine-Loaded Zein
Dynamic Light Scattering Analysis
Evaluation of Entrapment Efficiency
2.2.4. Specification of Optimized AML-ZN Formula
Morphological Micrography
Differential Scanning Calorimetry
Fourier Transform Infrared Spectroscopy
2.3. Incorporation of Nanoparticles in Eyedrops
2.3.1. Viscosity
Dynamic Light Scattering
Entrapment Efficiency
Vesicle Morphology
2.3.2. pH
2.3.3. Preservatives
2.4. Comparative Studies of AML-ZNs and AML-ZNs-Alg Eyedrops
2.4.1. Dynamic Light Scattering Analysis and Entrapment Efficiency
2.4.2. In Vitro Release Study
2.4.3. Ex Vivo Permeation and Deposition Studies
Corneal Permeation
Corneal Deposition
HPLC Assay
2.4.4. Ex Vivo Visualization Study
Preparation of FDA-Loaded Formulations and Experiment Setup
Confocal Laser Scanning Microscopy Study
2.5. Influence of Storage on AML-ZNs-Alg Eyedrops
2.6. In Vitro Antimicrobial Assessments
2.6.1. Microbial Test Cultures
2.6.2. Agar Well Diffusion Method
2.6.3. Micro-Dilution Assay for MIC Estimation
2.7. In Vivo Assessments
2.7.1. Evaluation of Ocular Irritation
2.7.2. In Vivo Antimicrobial Evaluation
2.7.3. Histopathological Dissection
2.8. Statistical Analysis of Data
3. Results and Discussion
3.1. Experimental Analysis of AML-ZN Formulation
3.1.1. Impact of the Variables on Evaluated Responses
Particle Size
Polydispersity Index
Zeta Potential
Entrapment Efficiency
3.1.2. Optimization of AML-ZNs Using Box–Behnken Design
3.2. Specification of Optimized AML-ZN Formula
3.2.1. Morphological Micrography
3.2.2. Differential Scanning Calorimetry
3.2.3. Fourier Transform Infrared Spectroscopy
3.3. Eyedrop Characterization
3.3.1. Viscosity
Adjust Eyedrop Viscosity
Re-Evaluation of Critical AML-ZN Parameters
- Dynamic light scattering
- Entrapment efficiency
- Vesicle morphology
3.3.2. pH
3.3.3. Preservatives
3.4. AML-ZNs and AML-ZNs-Alg Eyedrop Comparative Studies
3.4.1. Dynamic Light Scattering Analysis and Entrapment Efficiency
3.4.2. In Vitro Release Study
3.4.3. Ex Vivo Permeation and Deposition Studies
3.4.4. Ex Vivo Visualization Study
3.5. Storage Influence on AML-ZNs-Alg Eyedrops
3.6. In Vitro Antimicrobial Assessments
3.6.1. Agar Well Diffusion Method
3.6.2. Micro-Dilution Assay for MIC Determination
3.7. In Vivo Assessments
3.7.1. Evaluation of Ocular Irritation
3.7.2. In Vivo Antimicrobial Evaluation
3.7.3. Histopathological Dissection
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Teweldemedhin, M.; Gebreyesus, H.; Atsbaha, A.H.; Asgedom, S.W.; Saravanan, M. Bacterial profile of ocular infections: A systematic review. BMC Ophthalmol. 2017, 17, 212. [Google Scholar] [CrossRef]
- Chuang, C.-C.; Hsiao, C.-H.; Tan, H.-Y.; Ma, D.H.-K.; Lin, K.-K.; Chang, C.-J.; Huang, Y.-C. Staphylococcus aureus Ocular Infection: Methicillin-Resistance, Clinical Features, and Antibiotic Susceptibilities. PLoS ONE 2012, 8, e42437. [Google Scholar] [CrossRef]
- Ritterband, D. Methicillin-Resistant Staphylococcus aureus and the Eye: Current Concepts and Management Strategies. Curr. Ophthalmol. Rep. 2013, 1, 151–160. [Google Scholar] [CrossRef]
- Al-Akwa, A.A.Y.; Zabara, A.Q.M.Q.; Al-Shamahy, H.A.; A Al-Labani, M.; Al-Ghaffari, K.M.; Al-Mortada, A.M.; Al-Haddad, A.M.; Al-Sharani, A.A. Prevalence of Staphylococcus aureus in Dental Infections and the Occurrence of Mrsa in Isolates. Univers. J. Pharm. Res. 2020, 1, 49–52. [Google Scholar] [CrossRef]
- McDonald, M.; Blondeau, J.M. Emerging antibiotic resistance in ocular infections and the role of fluoroquinolones. J. Cataract. Refract. Surg. 2010, 36, 1588–1598. [Google Scholar] [CrossRef] [PubMed]
- Annunziato, G. Strategies to Overcome Antimicrobial Resistance (AMR) Making Use of Non-Essential Target Inhibitors: A Review. Int. J. Mol. Sci. 2019, 20, 5844. [Google Scholar] [CrossRef]
- Jampilek, J. Drug repurposing to overcome microbial resistance. Drug Discov. Today 2022, 27, 2028–2041. [Google Scholar] [CrossRef]
- Boyd, N.K.; Teng, C.; Frei, C.R. Brief Overview of Approaches and Challenges in New Antibiotic Development: A Focus On Drug Repurposing. Front. Cell. Infect. Microbiol. 2021, 11, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Farha, M.A.; Brown, E.D. Drug repurposing for antimicrobial discovery. Nat. Microbiol. 2019, 4, 565–577. [Google Scholar] [CrossRef]
- Aggarwal, M.; Patra, A.; Awasthi, I.; George, A.; Gagneja, S.; Gupta, V.; Capalash, N.; Sharma, P. Drug repurposing against antibiotic resistant bacterial pathogens. Eur. J. Med. Chem. 2024, 279, 116833. [Google Scholar] [CrossRef] [PubMed]
- Hua, Y.; Dai, X.; Xu, Y.; Xing, G.; Liu, H.; Lu, T.; Chen, Y.; Zhang, Y. Drug repositioning: Progress and challenges in drug discovery for various diseases. Eur. J. Med. Chem. 2022, 234, 114239. [Google Scholar] [CrossRef] [PubMed]
- Sheraz, M.A.; Ahsan, S.F.; Khan, M.F.; Ahmed, S.; Ahmad, I. Formulations of Amlodipine: A Review. J. Pharm. 2016, 2016, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.A.; Ganguly, K.; Mazumdar, K.; Dutta, N.K.; Dastidar, S.G.; Chakrabarty, A.N. Amlodipine: A cardiovascular drug with powerful antimicrobial property. Acta Microbiol. Pol. 2003, 52, 285–292. [Google Scholar] [PubMed]
- Glajzner, P.; Bernat, A.; Jasińska-Stroschein, M. Improving the treatment of bacterial infections caused by multidrug-resistant bacteria through drug repositioning. Front. Pharmacol. 2024, 15, 1397602. [Google Scholar] [CrossRef] [PubMed]
- Dubald, M.; Bourgeois, S.; Andrieu, V.; Fessi, H. Ophthalmic Drug Delivery Systems for Antibiotherapy—A Review. Pharmaceutics 2018, 10, 10. [Google Scholar] [CrossRef]
- Li, S.; Chen, L.; Fu, Y. Nanotechnology-based ocular drug delivery systems: Recent advances and future prospects. J. Nanobiotechnol. 2023, 21, 232. [Google Scholar] [CrossRef]
- Guidi, L.; Cascone, M.G.; Rosellini, E. Light-responsive polymeric nanoparticles for retinal drug delivery: Design cues, challenges and future perspectives. Heliyon 2024, 10, e26616. [Google Scholar] [CrossRef] [PubMed]
- Boateng-Marfo, Y.; Dong, Y.; Ng, W.K.; Lin, H.-S. Artemether-Loaded Zein Nanoparticles: An Innovative Intravenous Dosage Form for the Management of Severe Malaria. Int. J. Mol. Sci. 2021, 22, 1141. [Google Scholar] [CrossRef]
- Tortorella, S.; Maturi, M.; Buratti, V.V.; Vozzolo, G.; Locatelli, E.; Sambri, L.; Franchini, M.C. Zein as a versatile biopolymer: Different shapes for different biomedical applications. RSC Adv. 2021, 11, 39004–39026. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Jing, Y.; Han, C.; Zhang, H.; Tian, Y. Encapsulation of curcumin in zein/caseinate/sodium alginate nanoparticles with improved physicochemical and controlled release properties. Food Hydrocoll. 2019, 93, 432–442. [Google Scholar] [CrossRef]
- Fabrikov, D.; Varga, Á.T.; García, M.C.V.; Bélteky, P.; Kozma, G.; Kónya, Z.; Martínez, J.L.L.; Barroso, F.; Sánchez-Muros, M.J. Antimicrobial and antioxidant activity of encapsulated tea polyphenols in chitosan/alginate-coated zein nanoparticles: A possible supplement against fish pathogens in aquaculture. Environ. Sci. Pollut. Res. 2024, 31, 13673–13687. [Google Scholar] [CrossRef]
- Khan, M.A.; Yue, C.; Fang, Z.; Hu, S.; Cheng, H.; Bakry, A.M.; Liang, L. Alginate/chitosan-coated zein nanoparticles for the delivery of resveratrol. J. Food Eng. 2019, 258, 45–53. [Google Scholar] [CrossRef]
- Elgendy, H.A.; Makky, A.M.A.; Elakkad, Y.E.; Awad, H.H.; El Hassab, M.A.; Younes, N.F. Atorvastatin loaded lecithin-coated zein nanoparticles based thermogel for the intra-articular management of osteoarthritis: In-silico, in-vitro, and in-vivo studies. J. Pharm. Investig. 2024, 54, 497–518. [Google Scholar] [CrossRef]
- Figueroa-Enriquez, C.E.; Rodríguez-Félix, F.; Ruiz-Cruz, S.; Castro-Enriquez, D.D.; Gonzalez-Rios, H.; Perez-Alvarez, J.Á.; Madera-Santana, T.J.; Burruel-Ibarra, S.E.; Tapia-Hernández, J.A.; Estrella-Osuna, D.E. Edible Coating of Sodium Alginate with Gelatin Nanoparticles and Pitaya Extract (Stenocereus thurberi): Physicochemical and Antioxidant Properties. J. Food Qual. 2025, 2025, 5756522. [Google Scholar] [CrossRef]
- Salama, H.E.; Abdel Aziz, M.S. Development of active edible coating of alginate and aloe vera enriched with frankincense oil for retarding the senescence of green capsicums. LWT 2021, 145, 111341. [Google Scholar] [CrossRef]
- Ger, T.-Y.; Yang, C.-J.; Bui, H.L.; Lue, S.J.; Yao, C.-H.; Lai, J.-Y. Alginate-functionalized nanoceria as ion-responsive eye drop formulation to treat corneal abrasion. Carbohydr. Polym. 2025, 352, 123164. [Google Scholar] [CrossRef] [PubMed]
- Wroblewska, K.; Kucinska, M.; Murias, M.; Lulek, J. Characterization of new eye drops with choline salicylate and assessment of their irritancy by in vitro short time exposure tests. Saudi Pharm. J. 2015, 23, 407–412. [Google Scholar] [CrossRef]
- Liu, G.; An, D.; Li, J.; Deng, S. Zein-based nanoparticles: Preparation, characterization, and pharmaceutical application. Front. Pharmacol. 2023, 14, 1120251. [Google Scholar] [CrossRef]
- Beg, S. Response Surface Designs and Their Applications in Pharmaceutical Development. In Design of Experiments for Pharmaceutical Product Development: Volume I: Basics and Fundamental Principles; Springer: Singapore, 2021; pp. 27–41. [Google Scholar]
- Qiu, C.; Zhang, Z.; Li, X.; Sang, S.; McClements, D.J.; Chen, L.; Long, J.; Jiao, A.; Xu, X.; Jin, Z. Co-encapsulation of curcumin and quercetin with zein/HP-β-CD conjugates to enhance environmental resistance and antioxidant activity. NPJ Sci. Food. 2023, 7, 29. [Google Scholar] [CrossRef] [PubMed]
- Abdellatif, M.M.; Shohdy, J.N.; El-Setouhy, D.A.; Hamed, M.I.; Rofaeil, B.F.; Naguib, M.J.; El-Nabarawi, M.A. Chitosan decorated nanostructurated lipid carriers for augmented oral bioavailability of velpatasvir; D-optimal optimization, in silico, in vitro, ex vivo and in vivo studies. J. Drug Deliv. Sci. Technol. 2025, 106, 106703. [Google Scholar] [CrossRef]
- Eita, A.S.; Makky, A.M.A.; Anter, A.; Khalil, I.A. Repurposing of atorvastatin emulsomes as a topical antifungal agent. Drug Deliv. 2022, 29, 3414–3431. [Google Scholar] [CrossRef]
- Elgendy, H.A.; Makky, A.M.A.; Elakkad, Y.E.; Ismail, R.M.; Younes, N.F. Syringeable atorvastatin loaded eugenol enriched PEGylated cubosomes in-situ gel for the intra-pocket treatment of periodontitis: Statistical optimization and clinical assessment. Drug Deliv. 2023, 30, 2162159. [Google Scholar] [CrossRef]
- Lanier, O.L.; Manfre, M.G.; Bailey, C.; Liu, Z.; Sparks, Z.; Kulkarni, S.; Chauhan, A. Review of Approaches for Increasing Ophthalmic Bioavailability for Eye Drop Formulations. AAPS PharmSciTech. 2021, 22, 107. [Google Scholar] [CrossRef]
- Kim, N.J.; Harris, A.; Elghouche, A.; Gama, W.; Siesky, B. Ocular Permeation Enhancers. In Nano-Biomaterials for Ophthalmic Drug Delivery; Pathak, Y., Sutariya, V., Hirani, A.A., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 177–209. [Google Scholar] [CrossRef]
- Zhu, H.; Chauhan, A. Effect of Viscosity on Tear Drainage and Ocular Residence Time. Optom. Vis. Sci. 2008, 85, E715–E725. [Google Scholar] [CrossRef]
- Eita, A.S.; Makky, A.M.A.; Anter, A.; Khalil, I.A. Atorvastatin-loaded emulsomes foam as a topical antifungal formulation. Int. J. Pharm. X 2022, 4, 100140. [Google Scholar] [CrossRef]
- Senturk Parreidt, T.; Müller, K.; Schmid, M. Alginate-Based Edible Films and Coatings for Food Packaging Applications. Foods 2018, 7, 170. [Google Scholar] [CrossRef] [PubMed]
- Brunaugh, A.D.; Moraga-Espinoza, D.; Bahamondez-Canas, T.; Smyth, H.D.C.; Williams, R.O. Ophthalmic and Otic Drug Delivery BT—Essential Pharmaceutics; Brunaugh, A.D., Moraga-Espinoza, D., Bahamondez-Canas, T.F., Smyth, H.D.C., Williams, R.O., Eds.; Springer International Publishing: Cham, Switzerland, 2024; pp. 141–149. [Google Scholar]
- Al-Rubaye, I.M.M. A review of the literature on antimicrobial preservatives: Definition, properties, classification, safety, side effects and antimicrobial effectiveness testing. Atena J. Public Health 2022, 4, 1–17. [Google Scholar]
- Boukarim, C.; Jaoude, S.A.; Bahnam, R.; Barada, R.; Kyriacos, S. Preservatives in liquid pharmaceutical preparations. Drug Test. Anal. 2009, 1, 146–148. [Google Scholar] [CrossRef] [PubMed]
- El-Shahed, S.A.; Hassan, D.H.; El-Nabarawi, M.A.; El-Setouhy, D.A.; Abdellatif, M.M. Polymeric Mixed Micelle-Loaded Hydrogel for the Ocular Delivery of Fexofenadine for Treating Allergic Conjunctivitis. Polymers 2024, 16, 2240. [Google Scholar] [CrossRef]
- Mudgil, M.; Pawar, P.K. Preparation and in Vitro/Ex Vivo evaluation of moxifloxacin-loaded PLGA nanosuspensions for ophthalmic application. Sci. Pharm. 2013, 81, 591–606. [Google Scholar] [CrossRef]
- Kapoor, H.; Aqil, M.; Imam, S.S.; Sultana, Y.; Ali, A. Formulation of amlodipine nano lipid carrier: Formulation design, physicochemical and transdermal absorption investigation. J. Drug Deliv. Sci. Technol. 2019, 49, 209–218. [Google Scholar] [CrossRef]
- Costa, P.; Sousa Lobo, J.M. Modeling and comparison of dissolution profiles. Eur. J. Pharm. Sci. 2001, 13, 123–133. [Google Scholar] [CrossRef]
- Zhang, Y.; Huo, M.; Zhou, J.; Zou, A.; Li, W.; Yao, C.; Xie, S. DDSolver: An Add-In Program for Modeling and Comparison of Drug Dissolution Profiles. AAPS J. 2010, 12, 263–271. [Google Scholar] [CrossRef]
- Aziz, D.; Mohamed, S.; Tayel, S.; Makhlouf, A. Implementing polymeric pseudorotaxanes for boosting corneal permeability and antiaspergillus activity of tolnaftate: Formulation development, statistical optimization, ex vivo permeation and in vivo assessment. Drug Deliv. 2022, 29, 2162–2176. [Google Scholar] [CrossRef]
- Abdellatif, M.M.; Josef, M.; El-Nabarawi, M.A.; Teaima, M. Sertaconazole-Nitrate-Loaded Leciplex for Treating Keratomycosis: Optimization Using D-Optimal Design and In Vitro, Ex Vivo, and In Vivo Studies. Pharmaceutics 2022, 14, 2215. [Google Scholar] [CrossRef]
- Sankar, G.; Rao, A.; Seshagirirao, J.; Rajeswari, K. RP-HPLC method for the simultaneous determination of Atorvastatin and Amlodipine in tablet dosage form. Indian J. Pharm. Sci. 2006, 68, 275. [Google Scholar] [CrossRef]
- Abd-Elmonem, E.M.; Makky, A.M.A.; Antar, A.; Abd-Elsalam, W.H.; Khalil, I.A. Corneal targeted Amorolfine HCl-mixed micelles for the management of ocular candidiasis: Preparation, in vitro characterization, ex vivo and in vivo assessments. J. Drug Deliv. Sci. Technol. 2023, 85, 104614. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; CLSI Supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020. [Google Scholar]
- Bauer, A.W.; Kirby, W.M.M.; Sherris, J.C.; Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 1966, 45, 493–496. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing, 33rd ed.; CLSI Supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2023; ISBN 978-1-68440-170-3. [Google Scholar]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ma, H. Drug repurposing: Insights into the antimicrobial effects of AKBA against MRSA. AMB Express 2024, 14, 5. [Google Scholar] [CrossRef]
- Song, K.; Yan, M.; Li, M.; Geng, Y.; Wu, X. Preparation and in vitro–in vivo evaluation of novel ocular nanomicelle formulation of thymol based on glycyrrhizin. Colloids Surf. B Biointerfaces 2020, 194, 111157. [Google Scholar] [CrossRef]
- Bancroft, J.D.; Layton, C. 10—The hematoxylins and eosin. In Bancroft’s Theory and Practice of Histological Techniques, 8th ed.; Suvarna, S.K., Layton, C., Bancroft, J.D., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 126–138. [Google Scholar]
- Li, F.; Chen, Y.; Liu, S.; Qi, J.; Wang, W.; Wang, C.; Zhong, R.; Chen, Z.; Li, X.; Guan, Y.; et al. Size-controlled fabrication of zein nano/microparticles by modified anti-solvent precipitation with/without sodium caseinate. Int. J. Nanomed. 2017, 12, 8197–8209. [Google Scholar] [CrossRef]
- Takma, D.K.; Bozkurt, S.; Koç, M.; Korel, F.; Nadeem, H.Ş. Characterization and encapsulation efficiency of zein nanoparticles loaded with chestnut fruit shell, cedar and sweetgum bark extracts. Food Hydrocoll. Health 2023, 4, 100151. [Google Scholar] [CrossRef]
- Podaralla, S.; Perumal, O. Influence of Formulation Factors on the Preparation of Zein Nanoparticles. AAPS PharmSciTech. 2012, 13, 919–927. [Google Scholar] [CrossRef]
- Lei, Y.; Lee, Y. Nanoencapsulation and delivery of bioactive ingredients using zein nanocarriers: Approaches, characterization, applications, and perspectives. Food Sci. Biotechnol. 2024, 33, 1037–1057. [Google Scholar] [CrossRef] [PubMed]
- Urimi, D.; Widenbring, R.; García, R.O.P.; Gedda, L.; Edwards, K.; Loftsson, T.; Schipper, N. Formulation development and upscaling of lipid nanocapsules as a drug delivery system for a novel cyclic GMP analogue intended for retinal drug delivery. Int. J. Pharm. 2021, 602, 120640. [Google Scholar] [CrossRef] [PubMed]
- Basso, J.; Mendes, M.; Cova, T.; Sousa, J.; Pais, A.; Fortuna, A.; Vitorino, R.; Vitorino, C. A Stepwise Framework for the Systematic Development of Lipid Nanoparticles. Biomolecules 2022, 12, 223. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.-S.; Thapa, R.K.; Kim, J.-H.; Kim, S.-Y.; Kim, J.O.; Kim, J.-K.; Choi, H.-G.; Lim, S.-J. Role of zein incorporation on hydrophobic drug-loading capacity and colloidal stability of phospholipid nanoparticles. Colloids Surf. B Biointerfaces 2018, 171, 514–521. [Google Scholar] [CrossRef]
- Jaquilin, P.J.R.; Oluwafemi, O.S.; Thomas, S.; Oyedeji, A.O. Recent advances in drug delivery nanocarriers incorporated in temperature-sensitive Pluronic F-127–A critical review. J. Drug Deliv. Sci. Technol. 2022, 72, 103390. [Google Scholar] [CrossRef]
- Elmowafy, M.; Shalaby, K.; Al-Sanea, M.M.; Hendawy, O.M.; Salama, A.; Ibrahim, M.F.; Ghoneim, M.M. Influence of Stabilizer on the Development of Luteolin Nanosuspension for Cutaneous Delivery: An In Vitro and In Vivo Evaluation. Pharmaceutics 2021, 13, 1812. [Google Scholar] [CrossRef]
- Adel, S.; Fahmy, R.H.; Elsayed, I.; Mohamed, M.I.; Ibrahim, R.R. Fabrication and optimization of itraconazole-loaded zein-based nanoparticles in coated capsules as a promising colon-targeting approach pursuing opportunistic fungal infections. Drug Deliv. Transl. Res. 2023, 13, 2982–3002. [Google Scholar] [CrossRef]
- Molaahmadi, M.R.; Varshosaz, J.; Taymouri, S.; Akbari, V. Lipid nanocapsules for imatinib delivery: Design, optimization and evaluation of anticancer activity against melanoma cell line. Iran J. Pharm. Res. 2019, 18, 1676–1693. [Google Scholar]
- Elkhayat, D.; Abdelmalak, N.S.; Amer, R.; Awad, H.H. Ezetimibe-Loaded Nanostructured Lipid Carrier for Oral Delivery: Response Surface Methodology; In Vitro Characterization and Assessing the Antihyperlipidemic Effect in Rats. ACS Omega 2024, 9, 8103–8116. [Google Scholar] [CrossRef] [PubMed]
- Subramaniam, B.; Siddik, Z.H.; Nagoor, N.H. Optimization of nanostructured lipid carriers: Understanding the types, designs, and parameters in the process of formulations. J. Nanoparticle Res. 2020, 22, 141. [Google Scholar] [CrossRef]
- Clayton, K.N.; Salameh, J.W.; Wereley, S.T.; Kinzer-Ursem, T.L. Physical characterization of nanoparticle size and surface modification using particle scattering diffusometry. Biomicrofluidics 2016, 10, 054107. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Yin, L.; Padua, G.W. Effect of Hydrophilic and Lipophilic Compounds on Zein Microstructures. Food Biophys. 2008, 3, 174–181. [Google Scholar] [CrossRef]
- Chen, Z.; Ma, Z.; He, J.; Song, J.; Zhao, J.; Zhao, Y. Formulation and Characterization of Natural Surfactant-Stabilized Zein Nanoparticles for Encapsulation of Ergocalciferol. Food Biophys. 2024, 19, 182–190. [Google Scholar] [CrossRef]
- Chuacharoen, T.; Sabliov, C.M. Stability and controlled release of lutein loaded in zein nanoparticles with and without lecithin and pluronic F127 surfactants. Colloids Surf. A Physicochem. Eng. Asp. 2016, 503, 11–18. [Google Scholar] [CrossRef]
- Honary, S.; Zahir, F. Effect of Zeta Potential on the Properties of Nano-Drug Delivery Systems—A Review (Part 2). Trop. J. Pharm. Res. 2013, 12, 265–273. [Google Scholar]
- Wang, L.; Wang, P.; Li, Y.; Liu, S.; Wu, L.; Zhang, W.; Chen, C. A Novel Strategy to Enhance the pH Stability of Zein Particles through Octenyl Succinic Anhydride-Modified Starch: The Role of Preparation pH. Foods 2024, 13, 303. [Google Scholar] [CrossRef]
- Ahmed, S.; Amin, M.M.; Sayed, S. Ocular Drug Delivery: A Comprehensive Review. AAPS PharmSciTech. 2023, 24, 66. [Google Scholar] [CrossRef]
- Nakatuka, Y.; Yoshida, H.; Fukui, K.; Matuzawa, M. The effect of particle size distribution on effective zeta-potential by use of the sedimentation method. Adv. Powder Technol. 2015, 26, 650–656. [Google Scholar] [CrossRef]
- Li, M.; Jin, T.; Wüthrich, S.; Zhou, J.; Sun, Q.; Li, T.; Dong, Z.; Bru, E.M.Z.; Mezzenga, R. Protease-Mediated Synthesis of Zein Nanofibrils: From Structural Elucidation to Functional Application. Adv. Sci. 2025, 12, e2414606. [Google Scholar] [CrossRef]
- El-Helaly, S.N.; Amr, K.A.; Fadel, M.; Fahmy, R.H. Fluticasone propionate zein nanoparticles—Loaded in situ gelling system: In vitro/ex vivo studies and associated in vivo nasal MMP9 suppressed effect. J. Drug Deliv. Sci. Technol. 2024, 96, 105674. [Google Scholar] [CrossRef]
- de Araújo, J.T.C.; Lima, L.A.; Vale, E.P.; Martin-Pastor, M.; Lima, R.A.; Silva, P.G.d.B.; de Sousa, F.F.O. Toxicological and genotoxic evaluation of anacardic acid loaded-zein nanoparticles in mice. Toxicol. Rep. 2020, 7, 1207–1215. [Google Scholar] [CrossRef] [PubMed]
- Bukhary, H.; Williams, G.R.; Orlu, M. Electrospun fixed dose formulations of amlodipine besylate and valsartan. Int. J. Pharm. 2018, 549, 446–455. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, Z.A.G.; Hussein-Al-Ali, S.H.; Ibrahim, I.A.A.; Haddad, M.K.; Ali, D.K.; Hussein, A.M.; Abu Sharar, A.A. Development and Evaluation of Amlodipine-Polymer Nanocomposites Using Response Surface Methodology. Int. J. Polym. Sci. 2022, 2022, 3427400. [Google Scholar] [CrossRef]
- Khan, S.A.; Khan, S.B.; Khan, L.U.; Farooq, A.; Akhtar, K.; Asiri, A.M. Fourier Transform Infrared Spectroscopy: Fundamentals and Application in Functional Groups and Nanomaterials Characterization. In Handbook of Materials Characterization; Springer International Publishing: Cham, Switzerland, 2018. [Google Scholar]
- Mahmood, T.; Sarfraz, R.M.; Mahmood, A.; Salem-Bekhit, M.M.; Ijaz, H.; Zaman, M.; Akram, M.R.; Taha, E.I.; Sahu, R.K.; Benguerba, Y. Preparation, In Vitro Characterization, and Evaluation of Polymeric pH-Responsive Hydrogels for Controlled Drug Release. ACS Omega 2024, 9, 10498–10516. [Google Scholar] [CrossRef]
- Tulain, U.R.; Erum, A.; Maryam, B.; Sidra, N.S.; Malik, N.S.; Shahid, N.; Malik, A.; Malik, M.Z. An approach to enhance drug solubility: Fabrication, characterization, and safety evaluation of Felodipine polymeric nanoparticles. Polym. Bull. 2024, 81, 16197–16217. [Google Scholar] [CrossRef]
- Salzillo, R.; Schiraldi, C.; Corsuto, L.; D’aGostino, A.; Filosa, R.; De Rosa, M.; La Gatta, A. Optimization of hyaluronan-based eye drop formulations. Carbohydr. Polym. 2016, 153, 275–283. [Google Scholar] [CrossRef]
- Neervannan, S.; Kompella, U.B. Ophthalmic Product Development—From Bench to Bedside; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Almeida, H.; Amaral, M.H.; Lobão, P.; Sousa Lobo, J.M. Applications of poloxamers in ophthalmic pharmaceutical formulations: An overview. Expert Opin. Drug Deliv. 2013, 10, 1223–1237. [Google Scholar] [CrossRef] [PubMed]
- Yao, K.; Chen, W.; Song, F.; McClements, D.J.; Hu, K. Tailoring zein nanoparticle functionality using biopolymer coatings: Impact on curcumin bioaccessibility and antioxidant capacity under simulated gastrointestinal conditions. Food Hydrocoll. 2018, 79, 262–272. [Google Scholar] [CrossRef]
- Branco, I.G.; Sen, K.; Rinaldi, C. Effect of sodium alginate and different types of oil on the physical properties of ultrasound-assisted nanoemulsions. Chem. Eng. Process.-Process. Intensif. 2020, 153, 107942. [Google Scholar] [CrossRef]
- Milani, E.D.I. The Effect of Propylene Glycol Concentration on the Physical Characteristic and Release Rate of Caffeine in Gel. In Proceedings of the International Conference on Drug Development from Natural Resources, Yogyakarta, Indonesia, 3 June 2012; Faculty of Pharmacy, Ahmad Dahlan University: Yogyakarta, Indonesia, 2012; pp. 195–199, ISBN 978-979-18458-5-4. [Google Scholar]
- Masalova, O.; Kulikouskaya, V.; Shutava, T.; Agabekov, V. Alginate and Chitosan Gel Nanoparticles for Efficient Protein Entrapment. Phys. Procedia 2013, 40, 69–75. [Google Scholar] [CrossRef]
- Lee, H.-I.; Kwon, R.-Y.; Choi, S.-J. Food Additive Solvents Increase the Dispersion, Solubility, and Cytotoxicity of ZnO Nanoparticles. Nanomaterials 2023, 13, 2573. [Google Scholar] [CrossRef]
- Takalani, F.; Kumar, P.; Kondiah, P.P.D.; Choonara, Y.E. Co-emulsified Alginate-Eudragit Nanoparticles: Potential Carriers for Localized and Time-defined Release of Tenofovir in the Female Genital Tract. AAPS PharmSciTech. 2024, 25, 15. [Google Scholar] [CrossRef]
- Jang, G.-H.; Kim, Y.-M.; Kim, D.-H.; Shin, J.-W.; Yoon, S.Y.; Bae, J.-W.; Choi, J.-H.; Yoon, M.S. A chitosan/alginate coated nano-liposome to improve intestinal absorption of curcumin for oral administration. Food Sci. Biotechnol. 2024, 33, 1707–1714. [Google Scholar] [CrossRef]
- Wu, P.; Chen, L.; Chen, M.; Chiou, B.-S.; Xu, F.; Liu, F.; Zhong, F. Use of sodium alginate coatings to improve bioavailability of liposomes containing DPP-IV inhibitory collagen peptides. Food Chem. 2023, 414, 135685. [Google Scholar] [CrossRef]
- Pistone, S.; Qoragllu, D.; Smistad, G.; Hiorth, M. Multivariate analysis for the optimization of polysaccharide-based nanoparticles prepared by self-assembly. Colloids Surf. B Biointerfaces 2016, 146, 136–143. [Google Scholar] [CrossRef]
- Witika, B.A.; Smith, V.J.; Walker, R.B. A Comparative Study of the Effect of Different Stabilizers on the Critical Quality Attributes of Self-Assembling Nano Co-Crystals. Pharmaceutics 2020, 12, 182. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Pizarro, R.; Silva-Abreu, M.; Calpena, A.C.; Egea, M.A.; Espina, M.; García, M.L. Development of fluorometholone-loaded PLGA nanoparticles for treatment of inflammatory disorders of anterior and posterior segments of the eye. Int. J. Pharm. 2018, 547, 338–346. [Google Scholar] [CrossRef]
- Bhosale, V.A.; Srivastava, V.; Valamla, B.; Yadav, R.; Singh, S.B.; Mehra, N.K. Preparation and Evaluation of Modified Chitosan Nanoparticles Using Anionic Sodium Alginate Polymer for Treatment of Ocular Disease. Pharmaceutics 2022, 14, 2802. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D.; Maheshwari, D.; Philip, G.; Rana, R.; Bhatia, S.; Singh, M.; Gabrani, R.; Sharma, S.K.; Ali, J.; Sharma, R.K.; et al. Formulation and Optimization of Polymeric Nanoparticles for Intranasal Delivery of Lorazepam Using Box-Behnken Design: In Vitro and In Vivo Evaluation. Biomed Res. Int. 2014, 2014, 1–14. [Google Scholar]
- Tan, F.; Li, H.; Zhang, K.; Xu, L.; Zhang, D.; Han, Y.; Han, J. Sodium Alginate/Chitosan-Coated Liposomes for Oral Delivery of Hydroxy-α-Sanshool: In Vitro and In Vivo Evaluation. Pharmaceutics 2023, 15, 2010. [Google Scholar] [CrossRef] [PubMed]
- Abdelsalam, A.M.; Somaida, A.; Ayoub, A.M.; Alsharif, F.M.; Preis, E.; Wojcik, M.; Bakowsky, U. Surface-tailored zein nanoparticles: Strategies and applications. Pharmaceutics 2021, 13, 1354. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.-C.; Chen, Y.-H.; Lu, D.-W. Overview of Recent Advances in Nano-Based Ocular Drug Delivery. Int. J. Mol. Sci. 2023, 24, 15352. [Google Scholar] [CrossRef]
- Onugwu, A.L.; Attama, A.A.; Nnamani, P.O.; Onugwu, S.O.; Onuigbo, E.B.; Khutoryanskiy, V.V. Development and optimization of solid lipid nanoparticles coated with chitosan and poly(2-ethyl-2-oxazoline) for ocular drug delivery of ciprofloxacin. J. Drug Deliv. Sci. Technol. 2022, 74, 103527. [Google Scholar] [CrossRef]
- Tyagi, N.; Gambhir, K.; Pandey, R.; Gangenahalli, G.; Verma, Y.K. Minimizing the negative charge of Alginate facilitates the delivery of negatively charged molecules inside cells. J. Polym. Res. 2022, 29, 1. [Google Scholar] [CrossRef]
- Herdiana, Y.; Febrina, E.; Nurhasanah, S.; Gozali, D.; Elamin, K.M.; Wathoni, N. Drug Loading in Chitosan-Based Nanoparticles. Pharmaceutics 2024, 16, 1043. [Google Scholar] [CrossRef]
- Trucillo, P. Drug Carriers: A Review on the Most Used Mathematical Models for Drug Release. Processes 2022, 10, 1094. [Google Scholar] [CrossRef]
- Talevi, A.; Ruiz, M.E. Korsmeyer-Peppas, Peppas-Sahlin, and Brazel-Peppas: Models of Drug Release BT—The ADME Encyclopedia: A Comprehensive Guide on Biopharmacy and Pharmacokinetics; Springer International Publishing: Cham, Switzerland, 2021; pp. 1–9. [Google Scholar]
- Kang, S.; He, Y.; Yu, D.-G.; Li, W.; Wang, K. Drug–zein@lipid hybrid nanoparticles: Electrospraying preparation and drug extended release application. Colloids Surf. B Biointerfaces 2021, 201, 111629. [Google Scholar] [CrossRef] [PubMed]
- Pascoli, M.; de Lima, R.; Fraceto, L.F. Zein Nanoparticles and Strategies to Improve Colloidal Stability: A Mini-Review. Front. Chem. 2018, 6, 6. [Google Scholar] [CrossRef] [PubMed]
- Lynch, C.R.; Kondiah, P.P.D.; Choonara, Y.E.; du Toit, L.C.; Ally, N.; Pillay, V. Hydrogel Biomaterials for Application in Ocular Drug Delivery. Front. Bioeng. Biotechnol. 2020, 8, 228. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Ding, J.; Zhu, L.; Liu, Y.; Gao, X.; Zhou, W. Copper carbonate nanoparticles as an effective biomineralized carrier to load macromolecular drugs for multimodal therapy. Chin. Chem. Lett. 2023, 34, 108192. [Google Scholar] [CrossRef]
- Hu, M.; Wu, Y.; Wang, J.; Lu, W.; Gao, Z.; Xu, L.; Cui, S.; Fang, Y.; Nishinari, K. Emulsions Stabilization and Lipid Digestion Profiles of Sodium Alginate Microgels: Effect of the Crosslink Density. Food Biophys. 2021, 16, 346–354. [Google Scholar] [CrossRef]
- Zeb, A.; Gul, M.; Nguyen, T.T.L.; Maeng, H.J. Controlled release and targeted drug delivery with poly(lactic-co-glycolic acid) nanoparticles: Reviewing two decades of research. J. Pharm. Investig. 2022, 52, 683–724. [Google Scholar] [CrossRef]
- Thapa, R.K.; Diep, D.B.; Tønnesen, H.H. Nanomedicine-based antimicrobial peptide delivery for bacterial infections: Recent advances and future prospects. J. Pharm. Investig. 2021, 51, 377–398. [Google Scholar] [CrossRef]
- Athauda, I.D.; Shetty, M.G.; Pai, P.; Hegde, M.; Gurumurthy, S.C.; Babitha, K.S. Enhanced Bactericidal Effects and Drug Delivery with Gentamicin-Conjugated Nanoparticles. J. Clust. Sci. 2024, 35, 371–390. [Google Scholar] [CrossRef]
- Wang, L.; Hu, C.; Shao, L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int. J. Nanomed. 2017, 12, 1227–1249. [Google Scholar] [CrossRef]
- Aman Mohammadi, M.; Ramezani, S.; Hosseini, H.; Mortazavian, A.M.; Hosseini, S.M.; Ghorbani, M. Electrospun Antibacterial and Antioxidant Zein/Polylactic Acid/Hydroxypropyl Methylcellulose Nanofibers as an Active Food Packaging System. Food Bioprocess Technol. 2021, 14, 1529–1541. [Google Scholar] [CrossRef]
- Daneshmand, S.; Shahraki, O.; Hosseynipour, H.; Roshan, F.; Miri, M.A. Piperine-Loaded Zein Electrospun Nanofibers: Development, Characterization and Antibacterial Application. Bionanoscience 2024, 14, 11–26. [Google Scholar] [CrossRef]
- Jana, S.; Jana, S. Alginate Biomaterial: Drug Delivery Strategies and Biomedical Engineering; Springer: Singapore, 2023. [Google Scholar]
- Barbosa, A.D.; Sá, L.G.; Neto, J.B.; Rodrigues, D.S.; Cabral, V.P.; Moreira, L.E.; Aguiar, I.G.; Santos, H.S.; Cavalcanti, B.C.; Marinho, E.S.; et al. Activity of Amlodipine Against Staphylococcus aureus: Association with Oxacillin and Mechanism of Action. Future Microbiol. 2023, 18, 505–519. [Google Scholar] [CrossRef]
- Yi, Z. Evaluation of Amlodipine Inhibition and Antimicrobial Effects. Int. J. Pharm. Chem. 2019, 5, 12. [Google Scholar] [CrossRef]
- Andrade, M.; Neves, J.; Bento, M.; Marques, J.; Seabra, S.G.; Silveira, H.; Rodrigues, L.; Armada, A.; Viveiros, M.; Couto, I.; et al. Evaluation of Amlodipine and Imipramine Efficacy to Treat Galleria mellonella Infection by Biofilm-Producing and Antimicrobial-Resistant Staphylococcus aureus. Antibiotics 2025, 14, 183. [Google Scholar] [CrossRef] [PubMed]
- Janik, W.; Nowotarski, M.; Ledniowska, K.; Shyntum, D.Y.; Krukiewicz, K.; Turczyn, R.; Sabura, E.; Furgoł, S.; Kudła, S.; Dudek, G. Modulation of physicochemical properties and antimicrobial activity of sodium alginate films through the use of chestnut extract and plasticizers. Sci. Rep. 2023, 13, 11530. [Google Scholar] [CrossRef] [PubMed]
- Kalelkar, P.P.; Riddick, M.; García, A.J. Biomaterial-based antimicrobial therapies for the treatment of bacterial infections. Nat. Rev. Mater. 2021, 7, 39–54. [Google Scholar] [CrossRef] [PubMed]
Manipulated Variables | Levels | |
---|---|---|
(−1) | (1) | |
X1: Zein concentration (%) | 1.5 | 2.5 |
X2: Labrafac concentration (%) | 0.75 | 2.25 |
X3: Poloxamer 407 concentration (%) | 0.5 | 1 |
Measured outcomes | Desirability constraints | |
Y1: Particle size (nm) | Minimize | |
Y2: Polydispersity index | Minimize | |
Y3: Zeta potential (absolute value) (mV) | Maximize | |
Y4: Entrapment efficiency (%) | Maximize |
Manipulated Variables | Measured Outcomes | ||||||
---|---|---|---|---|---|---|---|
F# | Zein Concentration (X1) | Labrafac Concentration (X2) | Polaxemer 407 Concentration (X3) | Particle Size (nm) Y1 | Polydispersity Index Y2 | Zeta Potential (mV) Y3 | Entrapment Efficiency (%) Y4 |
Z1 | 2.5 | 1.5 | 1 | 221.9 ± 5.11 | 0.200 ± 0.0201 | 15.25 ± 0.36 | 65.33 ± 1.27 |
Z2 | 2 | 0.75 | 0.5 | 211.2 ± 4.56 | 0.199 ± 0.0079 | 16.64 ± 0.23 | 56.53 ± 3.83 |
Z3 | 2 | 1.5 | 0.75 | 204.0 ± 3.85 | 0.233 ± 0.0017 | 15.89 ± 0.19 | 54.33 ± 2.72 |
Z4 | 2.5 | 2.25 | 0.75 | 234.4 ± 1.72 | 0.249 ± 0.0024 | 15.93 ± 0.29 | 73.38 ± 2.67 |
Z5 | 1.5 | 0.75 | 0.75 | 173.7 ± 9.69 | 0.145 ± 0.0053 | 18.87 ± 0.14 | 39.60 ± 4.98 |
Z6 | 2 | 0.75 | 1 | 186.0 ± 10.03 | 0.161 ± 0.009 | 18.35 ± 0.22 | 60.44 ± 3.02 |
Z7 | 1.5 | 1.5 | 1 | 182.8 ± 8.14 | 0.240 ± 0.0021 | 17.05 ± 0.15 | 36.42 ± 3.82 |
Z8 | 2 | 2.25 | 1 | 207.1 ± 6.36 | 0.272 ± 0.0106 | 15.19 ± 0.56 | 51.47 ± 2.57 |
Z9 | 2 | 1.5 | 0.75 | 223.4 ± 4.17 | 0.201 ± 0.0111 | 17.39 ± 0.21 | 58.02 ± 0.90 |
Z10 | 1.5 | 2.25 | 0.75 | 207.6 ± 7.38 | 0.284 ± 0.0142 | 15.65 ± 0.28 | 33.04 ± 1.65 |
Z11 | 2.5 | 1.5 | 0.5 | 237.4 ± 3.87 | 0.254 ± 0.0127 | 16.51 ± 0.33 | 74.04 ± 1.70 |
Z12 | 2 | 1.5 | 0.75 | 219.3 ± 6.97 | 0.231 ± 0.0115 | 17.42 ± 0.57 | 63.81 ± 3.19 |
Z13 | 2 | 1.5 | 0.75 | 203.4 ± 8.17 | 0.195 ± 0.0098 | 18.51 ± 0.13 | 54.24 ± 2.71 |
Z14 | 2 | 1.5 | 0.75 | 204.4 ± 7.22 | 0.207 ± 0.0004 | 17.58 ± 0.23 | 57.62 ± 2.88 |
Z15 | 1.5 | 1.5 | 0.5 | 200.3 ± 10.02 | 0.202 ± 0.0101 | 17.39 ± 0.17 | 38.50 ± 1.93 |
Z16 | 2.5 | 0.75 | 0.75 | 226.2 ± 5.31 | 0.212 ± 0.0106 | 15.81 ± 0.09 | 71.09 ± 1.55 |
Z17 | 2 | 2.25 | 0.5 | 233.8 ± 11.69 | 0.251 ± 0.0125 | 16.74 ± 0.14 | 56.07 ± 2.80 |
Response | R2 | Adjusted R2 | Predicted R2 | Adequate Precision | Model | F-Value | p-Value | Significance |
---|---|---|---|---|---|---|---|---|
PS (nm) | 0.8914 | 0.8663 | 0.8390 | 18.4560 | Linear | 35.56 | <0.0001 | Significant |
PDI | 0.9273 | 0.8838 | 0.8846 | 16.7791 | 2FI | 21.27 | <0.0001 | Significant |
ZP (mV) | 0.7085 | 0.5336 | 0.4659 | 8.2082 | 2FI | 4.05 | 0.0254 | Significant |
EE (%) | 0.9304 | 0.9143 | 0.8855 | 20.9620 | Linear | 57.89 | <0.0001 | Significant |
Variables | Evaluated Parameters | |||||||
---|---|---|---|---|---|---|---|---|
F | Alginate (mg) | PG % (w/v) | Visc. (cp) | PS (nm) | PDI | ZP (mV) | EE (%) | pH |
C1 | 50 | 2 | 4.61 ± 0.27 | 416.2 ± 4.53 | 0.403 ± 0.0232 | −57.51 ± 1.25 | 68.32 ± 2.31 | 4.89 ± 0.02 |
C2 | 100 | 2 | 7.64 ± 0.21 | 438.9 ± 7.31 | 0.276 ± 0.0573 | −58.62 ± 2.56 | 72.15 ± 1.82 | 4.97 ± 0.01 |
C3 | 150 | 2 | 15.22 ± 0.25 | 454.6 ± 2.36 | 0.327 ± 0.1011 | −65.06 ± 1.13 | 77.96 ± 1.72 | 5.13 ± 0.02 |
C4 | 50 | 4 | 6.13 ± 0.35 | 312.1 ± 10.97 | 0.385 ± 0.0421 | −53.72 ± 2.44 | 72.57 ± 2.13 | 5.11 ± 0.03 |
C5 | 100 | 4 | 13.15 ± 0.17 | 330.3 ± 7.52 | 0.194 ± 0.0351 | −54.72 ± 1.18 | 79.47 ± 1.62 | 5.25 ± 0.02 |
C6 | 150 | 4 | 19.05 ± 0.17 | 349.3 ± 4.61 | 0.210 ± 0.0305 | −56.91 ± 3.45 | 83.19 ± 1.91 | 5.38 ± 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eita, A.S.; Makky, A.M.A.; Anter, A.; Khalil, I.A. Coated Zein Polymeric Nanoparticles Loaded with Amlodipine as a Repurposed Antibacterial Ocular Cure for MRSA-Induced Infection: Optimization, In Vitro, Ex Vivo, and In Vivo Assessments. Pharmaceutics 2025, 17, 1314. https://doi.org/10.3390/pharmaceutics17101314
Eita AS, Makky AMA, Anter A, Khalil IA. Coated Zein Polymeric Nanoparticles Loaded with Amlodipine as a Repurposed Antibacterial Ocular Cure for MRSA-Induced Infection: Optimization, In Vitro, Ex Vivo, and In Vivo Assessments. Pharmaceutics. 2025; 17(10):1314. https://doi.org/10.3390/pharmaceutics17101314
Chicago/Turabian StyleEita, Alaa S., Amna M. A. Makky, Asem Anter, and Islam A. Khalil. 2025. "Coated Zein Polymeric Nanoparticles Loaded with Amlodipine as a Repurposed Antibacterial Ocular Cure for MRSA-Induced Infection: Optimization, In Vitro, Ex Vivo, and In Vivo Assessments" Pharmaceutics 17, no. 10: 1314. https://doi.org/10.3390/pharmaceutics17101314
APA StyleEita, A. S., Makky, A. M. A., Anter, A., & Khalil, I. A. (2025). Coated Zein Polymeric Nanoparticles Loaded with Amlodipine as a Repurposed Antibacterial Ocular Cure for MRSA-Induced Infection: Optimization, In Vitro, Ex Vivo, and In Vivo Assessments. Pharmaceutics, 17(10), 1314. https://doi.org/10.3390/pharmaceutics17101314