Polymer-Based Scaffolds Incorporating Selected Essential Oil Components for Wound Healing: A Review
Abstract
1. Introduction
Scope of the Literature Search
2. EOs and Their Active Constituents in Wound Healing
3. Wound Healing: Physiology and Phases
3.1. Phases of Wound Healing
3.2. Factors Affecting the Wound Healing Process
3.2.1. Local Factors
3.2.2. Systemic Factors
4. Biological Properties of Selected EOs Components Relevant to Wound Healing
4.1. Anti-Inflammatory Activity
4.1.1. Carvacrol/Thymol Anti-Inflammatory
4.1.2. Eugenol Anti-Inflammatory
4.2. Antibacterial
5. Polymer-Based Wound Dressing Scaffolds Enhanced with Selected EO Components
5.1. Nanofibers
5.1.1. Nanofibers Loaded with Eugenol
5.1.2. Nanofibers Loaded with Carvacrol/Thymol
5.2. Hydrogels
5.3. Films
5.3.1. THY/CAR Films
5.3.2. EUG Films
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, F.; Bai, X.; Dai, X.; Li, Y. The biological processes during wound healing. Regen. Med. 2021, 16, 373–390. [Google Scholar] [CrossRef] [PubMed]
- Al Mamun, A.; Shao, C.; Geng, P.; Wang, S.; Xiao, J. Recent advances in molecular mechanisms of skin wound healing and its treatments. Front. Immunol. 2024, 15, 1395479. [Google Scholar] [CrossRef] [PubMed]
- Maheswari, G. Chronic wounds: A rising public health concern. Wound APAC 2024 2024, 7, 6. [Google Scholar]
- Mohammed, H.T.; Fraser, R.D.J.; Cassata, A. Impact of digital wound care solution on healing time: A descriptive study in home health settings. PLoS Digit. Health 2025, 4, e0000855. [Google Scholar] [CrossRef]
- Kachur, K.; Suntres, Z. The antibacterial properties of phenolic isomers, carvacrol and thymol. Crit. Rev. Food Sci. Nutr. 2020, 60, 3042–3053. [Google Scholar] [CrossRef]
- Çakmak, F.; Toptan, H.; Genc Bilgicli, H.; Köroğlu, M.; Zengin, M. Synthesis and investigation of antibacterial properties of thymol, carvacrol, eugenol, and perillyl alcohol based β-halo alcohol and β-halo thiol compounds. J. Biochem. Mol. Toxicol. 2025, 39, e70171. [Google Scholar] [CrossRef]
- Gago, C.; Serralheiro, A.; Miguel, M.G. Anti-inflammatory activity of thymol and thymol-rich essential oils: Mechanisms, applications, and recent findings. Molecules 2025, 30, 2450. [Google Scholar] [CrossRef]
- Elbestawy, M.K.M.; El-Sherbiny, G.M.; Moghannem, S.A. Antibacterial, antibiofilm and anti-inflammatory activities of eugenol clove essential oil against resistant Helicobacter pylori. Molecules 2023, 28, 2448. [Google Scholar] [CrossRef]
- Horvathova, E.; Navarova, J.; Galova, E.; Sevcovicova, A.; Chodakova, L.; Snahnicanova, Z.; Melusova, M.; Kozics, K.; Slamenova, D. Assessment of antioxidative, chelating, and DNA-protective effects of selected essential oil components (eugenol, carvacrol, thymol, borneol, eucalyptol) of plants and intact Rosmarinus officinalis oil. J. Agric. Food Chem. 2014, 62, 6632–6639. [Google Scholar] [CrossRef]
- Gavaric, N.; Mozina, S.S.; Kladar, N.; Bozin, B. Chemical profile, antioxidant and antibacterial activity of thyme and oregano essential oils, thymol and carvacrol and their possible synergism. J. Essent. Oil-Bearing Plants 2015, 18, 1013–1021. [Google Scholar] [CrossRef]
- Damasceno, R.O.S.; Pinheiro, J.L.S.; Rodrigues, L.H.M.; Gomes, R.C.; Duarte, A.B.S.; Emídio, J.J.; Diniz, L.R.L.; de Sousa, D.P. Anti-inflammatory and antioxidant activities of eugenol: An update. Pharmaceuticals 2024, 17, 1505. [Google Scholar] [CrossRef]
- Banerjee, K.; Madhyastha, H.; Sandur, R.V.; Manikandanath, N.T.; Thiagarajan, N.; Thiagarajan, P. Anti-inflammatory and wound healing potential of a clove oil emulsion. Colloids Surf. B Biointerfaces 2020, 193, 111102. [Google Scholar] [CrossRef]
- Feng, Y.; Xie, F.; Ding, R.; Zhang, Q.; Zeng, Y.; Li, L.; Wu, L.; Yu, Y.; Fang, L. One-pot rapid preparation of long-term antioxidant and antibacterial biomedical gels based on lipoic acid and eugenol for accelerating cutaneous wound healing. J. Mater. Chem. B 2024, 12, 12641–12651. [Google Scholar] [CrossRef]
- Buriti, B.M.A.B.; Figueiredo, P.L.B.; Passos, M.F.; da Silva, J.K.R. Polymer-based wound dressings loaded with essential oil for the treatment of wounds: A review. Pharmaceuticals 2024, 17, 897. [Google Scholar] [CrossRef]
- Kowalewska, A.; Majewska-Smolarek, K. Eugenol-based polymeric materials—Antibacterial activity doses for long periods of time. Antibiotics 2023, 12, 1570. [Google Scholar] [CrossRef]
- Najafloo, R.; Behyari, M.; Imani, R.; Nour, S. A mini-review of thymol incorporated materials: Applications in antibacterial wound dressing. J. Drug Deliv. Sci. Technol. 2020, 60, 101904. [Google Scholar] [CrossRef]
- De Luca, I.; Pedram, P.; Moeini, A.; Cerruti, P.; Peluso, G.; Di Salle, A.; Germann, N. Nanotechnology development for formulating essential oils in wound dressing materials to promote the wound-healing process: A review. Appl. Sci. 2021, 11, 1713. [Google Scholar] [CrossRef]
- de Sousa, D.P.; de Assis Oliveira, F.; Arcanjo, D.D.R.; da Fonsêca, D.V.; Duarte, A.B.S.; de Oliveira Barbosa, C.; Ong, T.P.; Brocksom, T.J. Essential oils: Chemistry and pharmacological activities. Biomedicines 2024, 12, 1185. [Google Scholar] [CrossRef]
- Ghazal, T.S.A.; Schelz, Z.; Vidács, L.; Szemerédi, N.; Veres, K.; Spengler, G.; Hohmann, J. Antimicrobial, multidrug resistance reversal and biofilm formation inhibitory effect of Origanum majorana extracts, essential oil and monoterpenes. Plants 2022, 11, 1432. [Google Scholar] [CrossRef]
- Meenu, M.; Padhan, B.; Patel, M.; Patel, R.; Xu, B. Antibacterial activity of essential oils from different parts of plants against Salmonella and Listeria spp. Food Chem. 2023, 404, 134723. [Google Scholar] [CrossRef]
- Koziol, A.; Stryjewska, A.; Librowski, T.; Salat, K.; Gawel, M.; Moniczewski, A.; Lochynski, S. An overview of the pharmacological properties and potential applications of natural monoterpenes. Rev. Med. Chem. 2014, 14, 1156–1168. [Google Scholar] [CrossRef]
- Liu, Z.; Li, Q.X.; Song, B. Pesticidal activity and mode of action of monoterpenes. J. Agric. Food Chem. 2022, 70, 4556–4571. [Google Scholar] [CrossRef]
- Guzmán, E.; Lucia, A. Essential oils and their individual components in cosmetic products. Cosmetics 2021, 8, 114. [Google Scholar] [CrossRef]
- Sarkic, A.; Stappen, I. Essential oils and their single compounds in cosmetics—A critical review. Cosmetics 2018, 5, 11. [Google Scholar] [CrossRef]
- Baginska, S.; Golonko, A.; Swislocka, R.; Lewandowski, W. Monoterpenes as medicinal agents: Exploring the pharmaceutical potential of p-cymene, p-cymenene, and γ-terpenene. Acta Pol. Pharm.—Drug Res. 2023, 80, 879–892. [Google Scholar] [CrossRef]
- Paulino, B.N.; Silva, G.N.; Araujo, F.F.; Neri-Numa, I.A.; Pastore, G.M.; Bicas, J.L.; Molina, G. Beyond natural aromas: The bioactive and technological potential of monoterpenes. Trends Food Sci. Technol. 2022, 128, 188–201. [Google Scholar] [CrossRef]
- Ilktac, M.; Ak-Sakallı, E.; Atli, B.; Oztinen, N.; Ozbil, E.; Demirci, F.; Kosar, M. In vitro synergistic antibacterial activities of carvacrol, thymol and selected carvacrol-rich and carvacrol-deficient essential oil combinations. J. Essent. Oil-Bear. Plants 2025, 28, 281–296. [Google Scholar] [CrossRef]
- Ramadan, K.M.A.; El-Beltagi, H.S.; Bendary, E.S.A.; Ali, H.M. Experimental evaluation of the antioxidant and antitumor activities of thyme and basil essential oils and their phenolic constituents: Theoretical antioxidant evaluation. Chem. Biol. Technol. Agric. 2022, 9, 102. [Google Scholar] [CrossRef]
- Fachini-Queiroz, F.C.; Kummer, R.; Estevao-Silva, C.F.; Carvalho, M.D.D.B.; Cunha, J.M.; Grespan, R.; Bersani-Amado, C.A.; Cuman, R.K.N. Effects of thymol and carvacrol, constituents of Thymus vulgaris L. essential oil, on the inflammatory response. Evid.-Based Complement. Altern. Med. 2012, 2012, 657026. [Google Scholar] [CrossRef]
- Xiao, S.; Yu, H.; Xie, Y.; Guo, Y.; Fan, J.; Yao, W. The anti-inflammatory potential of Cinnamomum camphora (L.) J. Presl essential oil in vitro and in vivo. J. Ethnopharmacol. 2021, 267, 113516. [Google Scholar] [CrossRef]
- Costa, M.F.; Durço, A.O.; Rabelo, T.K.; Barreto, R.S.S.; Guimarães, A.G. Effects of carvacrol, thymol and essential oils containing such monoterpenes on wound healing: A systematic review. J. Pharm. Pharmacol. 2019, 71, 141–155. [Google Scholar] [CrossRef]
- Oliveira, F.; Silva, E.; Matias, A.; Silva, J.M.; Reis, R.L.; Duarte, A.R.C. Menthol-based deep eutectic systems as antimicrobial and anti-inflammatory agents for wound healing. Eur. J. Pharm. Sci. 2023, 182, 106368. [Google Scholar] [CrossRef]
- Amirzade-Iranaq, M.H.; Tajik, M.; Amirmohammadi, M.; Yazdi, F.R.; Takzaree, N. Topical Mentha piperita effects on cutaneous wound healing: A study on TGF-β expression and clinical outcomes. World J. Plast. Surg. 2022, 11, 86–96. [Google Scholar] [CrossRef]
- Modarresi, M.; Farahpour, M.R.; Baradaran, B. Topical application of Mentha piperita essential oil accelerates wound healing in infected mice model. Inflammopharmacology 2019, 27, 531–537. [Google Scholar] [CrossRef]
- Gunal, M.Y.; Heper, A.O.; Zaloglu, N. The effects of topical carvacrol application on wound healing process in male rats. Pharmacogn. J. 2014, 6, 10–14. [Google Scholar] [CrossRef]
- Tabatabaei, F.; Moghaddam, N.A.; Piravar, Z. In vitro evaluation of carvacrol’s wound healing capacity in human dermal fibroblasts grown in high-glucose stress. Jundishapur J. Nat. Pharm. Prod. 2024, 19, e141691. [Google Scholar] [CrossRef]
- Hajibonabi, A.; Yekani, M.; Sharifi, S.; Nahad, J.S.; Dizaj, S.M.; Memar, M.Y. Antimicrobial activity of nanoformulations of carvacrol and thymol: New trend and applications. OpenNano 2023, 13, 100170. [Google Scholar] [CrossRef]
- Li, Q.; Huang, K.X.; Pan, S.; Su, C.; Bi, J.; Lu, X. Thymol disrupts cell homeostasis and inhibits the growth of Staphylococcus aureus. Contrast Media Mol. Imaging 2022, 2022, 8743096. [Google Scholar] [CrossRef]
- Shahzad, S.; Khan, I.U.; Khalid, I. α-Mangostin encapsulated gellan gum membranes for enhanced antibacterial, anti-inflammatory, antioxidant and wound healing activity. Int. J. Biol. Macromol. 2025, 308, 142493. [Google Scholar] [CrossRef]
- Sharifi, S.; Hajipour, M.J.; Gould, L.; Mahmoudi, M. Nanomedicine in healing chronic wounds: Opportunities and challenges. Mol. Pharm. 2021, 18, 550–575. [Google Scholar] [CrossRef]
- Nguyen, H.M.; Ngoc Le, T.T.; Nguyen, A.T.; Thien Le, H.N.; Pham, T.T. Biomedical Materials for Wound Dressing: Recent Advances and Applications. RSC Adv. 2023, 13, 5509–5528. [Google Scholar] [CrossRef]
- Alberts, A.; Tudorache, D.I.; Niculescu, A.G.; Grumezescu, A.M. Advancements in Wound Dressing Materials: Highlighting Recent Progress in Hydrogels, Foams, and Antimicrobial Dressings. Gels 2025, 11, 123. [Google Scholar] [CrossRef]
- Julaeha, E.; Febbe, I.; Karina, M.; Wahyudi, T.; Nurjanah, S.; Vasall, P.R.N.; Permadi, N.; Al-Anshori, J. An Enhanced Efficacy of Antibacterial Wound Dressings Impregnated with Bacterial Cellulose-Based Microencapsulated Lime (Citrus aurantiifolia) Essential Oil. Carbohydr. Polym. Technol. Appl. 2025, 10, 100867. [Google Scholar] [CrossRef]
- Freedman, B.R.; Hwang, C.; Talbot, S.; Hibler, B.; Matoori, S.; Mooney, D.J. Breakthrough Treatments for Accelerated Wound Healing. Sci. Adv. 2023, 9, eade7007. [Google Scholar] [CrossRef] [PubMed]
- Almadani, Y.H.; Vorstenbosch, J.; Davison, P.G.; Murphy, A.M. Wound Healing: A Comprehensive Review. Semin. Plast. Surg. 2021, 35, 141–144. [Google Scholar] [CrossRef] [PubMed]
- Alven, S.; Khwaza, V.; Oyedeji, O.O.; Aderibigbe, B.A. Polymer-Based Scaffolds Loaded with Aloe vera Extract for the Treatment of Wounds. Pharmaceutics 2021, 13, 961. [Google Scholar] [CrossRef] [PubMed]
- Alven, S.; Aderibigbe, B.A. Chitosan-Based Scaffolds Incorporated with Silver Nanoparticles for the Treatment of Infected Wounds. Pharmaceutics 2024, 16, 327. [Google Scholar] [CrossRef]
- Guo, B.; Dong, R.; Liang, Y.; Li, M. Haemostatic Materials for Wound Healing Applications. Nat. Rev. Chem. 2021, 5, 773–791. [Google Scholar] [CrossRef]
- Sari, M.H.M.; Cobre, A.D.; Pontarolo, R.; Ferreira, L.M. Status and Future Scope of Soft Nanoparticles-Based Hydrogel in Wound Healing. Pharmaceutics 2023, 15, 874. [Google Scholar] [CrossRef]
- Diller, R.B.; Tabor, A.J. The Role of the Extracellular Matrix (ECM) in Wound Healing: A Review. Biomimetics 2022, 7, 87. [Google Scholar] [CrossRef]
- Hunt, M.; Torres, M.; Bachar-Wikstrom, E.; Wikstrom, J.D. Cellular and Molecular Roles of Reactive Oxygen Species in Wound Healing. Commun. Biol. 2024, 7, 1534. [Google Scholar] [CrossRef]
- Ud-Din, S.; Bayat, A. Non-Invasive Objective Devices for Monitoring the Inflammatory, Proliferative and Remodelling Phases of Cutaneous Wound Healing and Skin Scarring. Exp. Dermatol. 2016, 25, 579–585. [Google Scholar] [CrossRef] [PubMed]
- Vitale, S.; Colanero, S.; Placidi, M.; Di Emidio, G.; Tatone, C.; Amicarelli, F.; D’Alessandro, A.M. Phytochemistry and Biological Activity of Medicinal Plants in Wound. Molecules 2022, 27, 3566. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.; Montgomery, R.R. Platelets as Delivery Systems for Disease Treatments. Adv. Drug Deliv. Rev. 2010, 62, 1196–1203. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; DiPietro, L.A. Critical Review in Oral Biology & Medicine: Factors Affecting Wound Healing. J. Dent. Res. 2010, 89, 219–229. [Google Scholar]
- Smith, R.; Russo, J.; Fiegel, J.; Brogden, N. Antibiotic Delivery Strategies to Treat Skin Infections When Innate Antimicrobial Defense Fails. Antibiotics 2020, 9, 56. [Google Scholar] [CrossRef]
- El-Ashram, S.; El-Samad, L.M.; Basha, A.A.; El Wakil, A. Naturally-Derived Targeted Therapy for Wound Healing: Beyond Classical Strategies. Pharmacol. Res. 2021, 170, 105749. [Google Scholar] [CrossRef]
- Yip, W.L. Influence of Oxygen on Wound Healing. Int. Wound J. 2015, 12, 620–624. [Google Scholar] [CrossRef]
- Gould, L.; Abadir, P.; Brem, H.; Carter, M.; Conner-Kerr, T.; Davidson, J.; DiPietro, L.; Falanga, V.; Fife, C.; Gardner, S.; et al. Chronic Wound Repair and Healing in Older Adults: Current Status and Future Research. Wound Repair Regen. 2015, 23, 1–13. [Google Scholar] [CrossRef]
- Snyder, R.J.; Fife, C.; Moore, Z. Components and Quality Measures of DIME (Devitalized Tissue, Infection/Inflammation, Moisture Balance, and Edge Preparation) in Wound Care. Adv. Ski. Wound Care 2016, 29, 205–215. [Google Scholar] [CrossRef]
- Xiao, L.; Ni, W.; Zhao, X.; Guo, Y.; Li, X.; Wang, F.; Luo, G.; Zhan, R.; Xu, X. A Moisture Balanced Antibacterial Dressing Loaded with Lysozyme Possesses Antibacterial Activity and Promotes Wound Healing. Soft Matter 2021, 17, 3162–3173. [Google Scholar] [CrossRef]
- Junker, J.P.E.; Kamel, R.A.; Caterson, E.J.; Eriksson, E. Clinical Impact upon Wound Healing and Inflammation in Moist, Wet, and Dry Environments. Adv. Wound Care 2013, 2, 348–356. [Google Scholar] [CrossRef] [PubMed]
- Murray, R.Z.; West, Z.E.; Cowin, A.J.; Farrugia, B.L. Development and Use of Biomaterials as Wound Healing Therapies. Burn. Trauma 2019, 7, 2. [Google Scholar] [CrossRef] [PubMed]
- Cerusico, N.; Aybar, J.P.; Lopez, S.; Molina, S.G.; Jara, R.C.; Cabral, M.E.S.; Valdez, J.C.; Altabef, A.B.; Ramos, A.N. FTIR Spectroscopy of Chronic Venous Leg Ulcer Exudates: An Approach to Spectral Healing Marker Identification. Analyst 2018, 143, 1583–1592. [Google Scholar] [CrossRef] [PubMed]
- Ousey, K.; Cutting, K.; Rogers, A.A.; Rippon, M. The Importance of Hydration in Wound Healing: Reinvigorating the Clinical Perspective. J. Wound Care 2016, 25, 122–130. [Google Scholar] [CrossRef]
- Muthuramalingam, K.; Choi, S.I.; Hyun, C.; Kim, Y.M.; Cho, M. β-Glucan-Based Wet Dressing for Cutaneous Wound Healing. Adv. Wound Care 2019, 8, 125–135. [Google Scholar] [CrossRef]
- Nuutila, K.; Eriksson, E. Moist Wound Healing with Commonly Available Dressings. Adv. Wound Care 2021, 10, 685–698. [Google Scholar] [CrossRef]
- Huang, J.; Fan, C.; Ma, Y.; Huang, G. Exploring Thermal Dynamics in Wound Healing: The Impact of Temperature and Microenvironment. Clin. Cosmet. Investig. Dermatol. 2024, 17, 1251–1258. [Google Scholar] [CrossRef]
- Derwin, R.; Patton, D.; Avsar, P.; Strapp, H.; Moore, Z. The Impact of Topical Agents and Dressing on pH and Temperature on Wound Healing: A Systematic, Narrative Review. Int. Wound J. 2022, 19, 1397–1408. [Google Scholar] [CrossRef]
- Lin, Y.H.; Chen, Y.C.; Cheng, K.S.; Yu, P.J.; Wang, J.L.; Ko, N.Y. Higher Periwound Temperature Associated with Wound Healing of Pressure Ulcers Detected by Infrared Thermography. J. Clin. Med. 2021, 10, 2883. [Google Scholar] [CrossRef]
- Kanazawa, T.; Kitamura, A.; Nakagami, G.; Goto, T.; Miyagaki, T.; Hayashi, A.; Sasaki, S.; Mugita, Y.; Iizaka, S.; Sanada, H. Lower Temperature at the Wound Edge Detected by Thermography Predicts Undermining Development in Pressure Ulcers: A Pilot Study. Int. Wound J. 2016, 13, 454–460. [Google Scholar] [CrossRef]
- Nakagami, G.; Sanada, H.; Iizaka, S.; Kadono, T.; Higashino, T.; Koyanagi, H.; Haga, N. Predicting Delayed Pressure Ulcer Healing Using Thermography: A Prospective Cohort Study. J. Wound Care 2010, 19, 465–472. [Google Scholar] [CrossRef]
- Aldridge, P. Complications of Wound Healing: Causes and Prevention. Companion Anim. 2015, 20, 453–459. [Google Scholar] [CrossRef]
- Hess, C.T. Checklist for Factors Affecting Wound Healing. Adv. Skin Wound Care 2011, 24, 192. [Google Scholar] [CrossRef] [PubMed]
- Summer, M.; Ali, S.; Fiaz, U.; Hussain, T.; Khan, R.R.M.; Fiaz, H. Revealing the Molecular Mechanisms in Wound Healing and the Effects of Different Physiological Factors Including Diabetes, Age, and Stress. J. Mol. Histol. 2024, 55, 637–654. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, T.; Dohi, T.; Maan, Z.N.; Rustad, K.C.; Kwon, S.H.; Padmanabhan, J.; Whittam, A.J.; Suga, H.; Duscher, D.; Rodrigues, M.; et al. Age-Associated Intracellular Superoxide Dismutase Deficiency Potentiates Dermal Fibroblast Dysfunction during Wound Healing. Exp. Dermatol. 2019, 28, 485–492. [Google Scholar] [CrossRef]
- Saldías, M.P.; Fernández, C.; Morgan, A.; Díaz, C.; Morales, D.; Jana, F.; Gómez, A.; Silva, A.; Briceño, F.; Oyarzún, A.; et al. Aged Blood Factors Decrease Cellular Responses Associated with Delayed Gingival Wound Repair. PLoS ONE 2017, 12, e0184189. [Google Scholar] [CrossRef]
- Makrantonaki, E.; Wlaschek, M.; Scharffetter-Kochanek, K. Pathogenesis of Wound Healing Disorders in the Elderly. JDDG J. Ger. Soc. Dermatol. 2017, 15, 255–275. [Google Scholar] [CrossRef]
- Barchitta, M.; Maugeri, A.; Favara, G.; Magnano San Lio, R.; Evola, G.; Agodi, A.; Basile, G. Nutrition and Wound Healing: An Overview Focusing on the Beneficial Effects of Curcumin. Int. J. Mol. Sci. 2019, 20, 1119. [Google Scholar] [CrossRef]
- Gushiken, L.F.S.; Beserra, F.P.; Bastos, J.K.; Jackson, C.J.; Pellizzon, C.H. Cutaneous Wound Healing: An Update from Physiopathology to Current Therapies. Life 2021, 11, 665. [Google Scholar] [CrossRef]
- Shields, B.E. Diet in Wound Care: Can Nutrition Impact Healing? Cutis 2021, 108, 325–328. [Google Scholar] [CrossRef]
- Rybowski, J.; Krzyśkowska, S.; Szczupaj, M.; Popiel, M.; Głowacz, J.; Dziekoński, K. The Impact of Diet on Wound Healing after Dental Surgery—The Role of Micro- and Macronutrients in the Regeneration of Oral Tissues. Qual. Sport 2025, 39, 59476. [Google Scholar] [CrossRef]
- Shakya, S.; Wang, Y.; MacK, J.A.; Maytin, E.V. Hyperglycemia-Induced Changes in Hyaluronan Contribute to Impaired Skin Wound Healing in Diabetes: Review and Perspective. Int. J. Cell Biol. 2015, 2015, 701738. [Google Scholar] [CrossRef]
- Wang, P.H.; Huang, B.S.; Horng, H.C.; Yeh, C.C.; Chen, Y.J. Wound Healing. J. Chin. Med. Assoc. 2018, 81, 94–101. [Google Scholar] [CrossRef]
- Wild, T.; Rahbarnia, A.; Kellner, M.; Sobotka, L.; Eberlein, T. Basics in Nutrition and Wound Healing. Nutrition 2010, 26, 862–866. [Google Scholar] [CrossRef]
- Singh, S.; Young, A.; McNaught, C.E. The Physiology of Wound Healing. Surgery 2017, 35, 473–477. [Google Scholar] [CrossRef]
- Sen, C.K. Human Wounds and Its Burden: An Updated Compendium of Estimates. Adv. Wound Care 2019, 8, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Avishai, E.; Yeghiazaryan, K.; Golubnitschaja, O. Impaired Wound Healing: Facts and Hypotheses for Multi-Professional Considerations in Predictive, Preventive and Personalised Medicine. EPMA J. 2017, 8, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Khwaza, V.; Aderibigbe, B.A. Antibacterial Activity of Selected Essential Oil Components and Their Derivatives: A Review. Antibiotics 2025, 14, 68. [Google Scholar] [CrossRef]
- Popa-Fotea, N.M.; Ferdoschi, C.E.; Micheu, M.M. Molecular and Cellular Mechanisms of Inflammation in Atherosclerosis. Front. Cardiovasc. Med. 2023, 10, 1416. [Google Scholar] [CrossRef]
- Leyane, T.S.; Jere, S.W.; Houreld, N.N. Oxidative Stress in Ageing and Chronic Degenerative Pathologies: Molecular Mechanisms Involved in Counteracting Oxidative Stress and Chronic Inflammation. Int. J. Mol. Sci. 2022, 23, 7273. [Google Scholar] [CrossRef]
- Miguel, M.G. Antioxidant and Anti-Inflammatory Activities of Essential Oils: A Short Review. Molecules 2010, 15, 9252–9287. [Google Scholar] [CrossRef] [PubMed]
- Megha, K.B.; Joseph, X.; Akhil, V.; Mohanan, P.V. Cascade of Immune Mechanism and Consequences of Inflammatory Disorders. Phytomedicine 2021, 91, 153712. [Google Scholar] [CrossRef] [PubMed]
- Sinniah, A.; Yazid, S.; Flower, R.J. From NSAIDs to Glucocorticoids and Beyond. Cells 2021, 10, 3524. [Google Scholar] [CrossRef] [PubMed]
- Bindu, S.; Mazumder, S.; Bandyopadhyay, U. Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) and Organ Damage: A Current Perspective. Biochem. Pharmacol. 2020, 180, 114147. [Google Scholar] [CrossRef]
- Li, Y.; Xu, J.Z.; Gu, C.X.; Liu, G.L.; Tian, K. Carvacrol Suppresses Inflammatory Responses in Rheumatoid Arthritis Fibroblast-Like Synoviocytes. J. Cell. Biochem. 2019, 120, 8169–8176. [Google Scholar] [CrossRef]
- Mateen, S.; Shahzad, S.; Ahmad, S.; Naeem, S.S.; Khalid, S.; Akhtar, K.; Rizvi, W.; Moin, S. Cinnamaldehyde and Eugenol Attenuates Collagen Induced Arthritis via Reduction of Free Radicals and Pro-Inflammatory Cytokines. Phytomedicine 2019, 53, 70–78. [Google Scholar] [CrossRef]
- Gabbai-Armelin, P.R.; Sales, L.S.; Ferrisse, T.M.; De Oliveira, A.B.; De Oliveira, J.R.; Giro, E.M.A.; Brighenti, F.L. A Systematic Review and Meta-Analysis of the Effect of Thymol as an Anti-Inflammatory and Wound Healing Agent: A Review of Thymol Effect on Inflammation and Wound Healing. Phytother. Res. 2022, 36, 3415–3443. [Google Scholar] [CrossRef]
- Cicalău, G.I.P.; Babes, P.A.; Calniceanu, H.; Popa, A.; Ciavoi, G.; Iova, G.M.; Ganea, M.; Scrobotă, I. Anti-Inflammatory and Antioxidant Properties of Carvacrol and Magnolol, in Periodontal Disease and Diabetes Mellitus. Molecules 2021, 26, 6899. [Google Scholar] [CrossRef]
- Aboelwafa, H.R.; Yousef, H.N. The Ameliorative Effect of Thymol against Hydrocortisone-Induced Hepatic Oxidative Stress Injury in Adult Male Rats. Biochem. Cell Biol. 2015, 93, 282–289. [Google Scholar] [CrossRef]
- Guo, C.; Zhang, Y.; Bai, D.; Zhen, W.; Ma, P.; Wang, Z.; Zhao, X.; Ma, X.; Xie, X.; Ito, K.; et al. Aspirin Eugenol Ester Alleviates Energy Metabolism Disorders by Reducing Oxidative Damage and Inflammation in the Livers of Broilers under High-Stocking-Density Stress. Int. J. Mol. Sci. 2025, 26, 1877. [Google Scholar] [CrossRef]
- Marinelli, L.; Di Stefano, A.; Cacciatore, I. Carvacrol and Its Derivatives as Antibacterial Agents. Phytochem. Rev. 2018, 17, 903–921. [Google Scholar] [CrossRef]
- Silva, F.V.; Guimarães, A.G.; Silva, E.R.; Sousa-Neto, B.P.; Machado, F.D.; Quintans-Júnior, L.J.; Arcanjo, D.D.; Oliveira, F.A.; Oliveira, R.C. Anti-Inflammatory and Anti-Ulcer Activities of Carvacrol, a Monoterpene Present in the Essential Oil of Oregano. J. Med. Food 2012, 15, 984–991. [Google Scholar] [CrossRef] [PubMed]
- Munoz-Perez, V.M.; Ortiz, M.I.; Salas-Casas, A.; Perez-Sanchez, A. Thymol and Carvacrol as Potential Tocolytic and Anti-Inflammatory Agents in Pregnant Rat Uterus. Curr. Mol. Pharmacol. 2024, 17, E18761429342128. [Google Scholar] [CrossRef] [PubMed]
- Gholijani, N.; Gharagozloo, M.; Farjadian, S.; Amirghofran, Z. Modulatory Effects of Thymol and Carvacrol on Inflammatory Transcription Factors in Lipopolysaccharide-Treated Macrophages. J. Immunotoxicol. 2016, 13, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Taibi, M.; Elbouzidi, A.; Haddou, M.; Baraich, A.; Ou-Yahia, D.; Bellaouchi, R.; Mothana, R.A.; Al-Yousef, H.M.; Asehraou, A.; Addi, M.; et al. Evaluation of the Interaction between Carvacrol and Thymol, Major Compounds of Ptychotis verticillata Essential Oil: Antioxidant, Anti-Inflammatory and Anticancer Activities against Breast Cancer Lines. Life 2024, 14, 1037. [Google Scholar] [CrossRef]
- El-Sayed, E.S.M.; Mansour, A.M.; Abdul-Hameed, M.S. Thymol and Carvacrol Prevent Doxorubicin-Induced Cardiotoxicity by Abrogation of Oxidative Stress, Inflammation, and Apoptosis in Rats. J. Biochem. Mol. Toxicol. 2016, 30, 37–44. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Yang, H.Y.; Gou, J.; Qi, X.M.; Qiao, Y.B.; Li, Q.S. Carvacrol/Thymol Derivatives as Highly Selective BuChE Inhibitors with Anti-Inflammatory Activities: Discovery and Bio-Evaluation. Bioorg. Chem. 2025, 160, 108430. [Google Scholar] [CrossRef]
- Ulanowska, M.; Olas, B. Biological Properties and Prospects for the Application of Eugenol—A Review. Int. J. Mol. Sci. 2021, 22, 3671. [Google Scholar] [CrossRef]
- Magalhaes, C.B.; Casquilho, N.V.; Machado, M.N.; Riva, D.R.; Travassos, L.H.; Leal-Cardoso, J.H.; Fortunato, R.S.; Faffe, D.S.; Zin, W.A. The Anti-Inflammatory and Anti-Oxidative Actions of Eugenol Improve Lipopolysaccharide-Induced Lung Injury. Respir. Physiol. Neurobiol. 2019, 259, 30–36. [Google Scholar] [CrossRef]
- Mateen, S.; Moin, S.; Khan, A.Q.; Zafar, A.; Fatima, N.; Khan, M.S.; Ashraf, G.M. Anti-oxidant and anti-inflammatory effects of cinnamaldehyde and eugenol on mononuclear cells of rheumatoid arthritis patients. Eur. J. Pharmacol. 2019, 852, 14–24. [Google Scholar] [CrossRef] [PubMed]
- Abdou, A.; Abdel-Wahab, B.A.; Abdallah, D.M.; Ibrahim, S.M.; El-Shazly, A.M. In silico and in vivo anti-inflammatory effect of eugenol and acetyleugenol. Sci. Afr. 2024, 24, e02205. [Google Scholar] [CrossRef]
- Devi, S.; Chauhan, S.; Mannan, A.; Singh, T.G. Targeting cardiovascular risk factors with eugenol: An anti-inflammatory perspective. Inflammopharmacology 2024, 32, 307–317. [Google Scholar] [CrossRef] [PubMed]
- Fonsêca, D.V.; Salgado, P.R.R.; de Carvalho, F.L.; Aragão, K.S.; Ferreira, S.C.; Aragão, K.F.; de Almeida, R.N. Ortho-eugenol exhibits anti-nociceptive and anti-inflammatory activities. Int. Immunopharmacol. 2016, 38, 402–408. [Google Scholar] [CrossRef]
- Aji, N.; Puspitasari, A.; Nafisah, H.; Armilda, L.H.V. Antioxidant and Anti-Propionibacterium acnes Activities of Citronella Oil and Clove Oil, and Their Formulation into Emulgel. Pharm. J. Farm. Indones. 2023, 20, 64–70. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, E.; Xiao, M.; Chen, C.; Xu, W. Study of anti-inflammatory activities of α-d-glucosylated eugenol. Arch. Pharm. Res. 2013, 36, 109–115. [Google Scholar] [CrossRef]
- Pires Costa, E.; Maciel dos Santos, M.; de Paula, R.A.; da Silva, D.A.; Lopes, R.P.; Teixeira, R.R.; Gonçalves, R.V. Antioxidant and Anti-inflammatory Activity of Eugenol, Bis-eugenol, and Clove Essential Oil: An In Vitro Study. ACS Omega 2025, 10, 31033–31045. [Google Scholar] [CrossRef]
- Yogalakshmi, B.; Viswanathan, P.; Anuradha, C.V. Investigation of antioxidant, anti-inflammatory and DNA-protective properties of eugenol in thioacetamide-induced liver injury in rats. Toxicology 2010, 268, 204–212. [Google Scholar] [CrossRef]
- Farhadi, K.; Rajabi, E.; Varpaei, H.A.; Iranzadasl, M.; Khodaparast, S.; Salehi, M. Thymol and carvacrol against Klebsiella: Anti-bacterial, anti-biofilm, and synergistic activities—A systematic review. Front. Pharmacol. 2024, 15, 1487083. [Google Scholar] [CrossRef]
- Ngome, M.T.; Alves, J.G.L.F.; de Oliveira, A.C.F.; da Machado, P.S.; Mondragón-Bernal, O.L.; Piccoli, R.H. Linalool, citral, eugenol and thymol: Control of planktonic and sessile cells of Shigella flexneri. AMB Express 2018, 8, 105. [Google Scholar] [CrossRef]
- Abdelhamid, A.G.; Yousef, A.E. Carvacrol and thymol combat desiccation resistance mechanisms in Salmonella enterica serovar Tennessee. Microorganisms 2022, 10, 44. [Google Scholar] [CrossRef]
- Heckler, C.; Sant’anna, V.; Brandelli, A.; Malheiros, P.S. Combined effect of carvacrol, thymol and nisin against Staphylococcus aureus and Salmonella enteritidis. An. Acad. Bras. Cienc. 2021, 93, e20210550. [Google Scholar] [CrossRef] [PubMed]
- Cid-Pérez, T.S.; Munguía-Pérez, R.; Nevárez-Moorillón, G.V.; Ochoa-Velasco, C.E.; Navarro-Cruz, A.R.; Avila-Sosa, R. Carvacrol and thymol effect in vapor phase on Escherichia coli and Salmonella serovar Typhimurium growth inoculated in a fresh salad. Heliyon 2024, 10, e29638. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.; Huang, S.; Geng, Y.; Huang, X.; Chen, D.; Lai, W.; Guo, H.; Deng, H.; Fang, J.; Yin, L.; et al. A study on the antibacterial mechanism of thymol against Aeromonas hydrophila in vitro. Aquac. Int. 2022, 30, 115–129. [Google Scholar] [CrossRef]
- Wang, L.H.; Zhang, Z.H.; Zeng, X.A.; Gong, D.M.; Wang, M.S. Combination of microbiological, spectroscopic and molecular docking techniques to study the antibacterial mechanism of thymol against Staphylococcus aureus: Membrane damage and genomic DNA binding. Anal. Bioanal. Chem. 2017, 409, 1615–1625. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.; Liang, C.; Wei, W.; Huang, S.; Ren, Y.; Geng, Y.; Huang, X.; Chen, D.; Guo, H.; Fang, J.; et al. The antibacterial activity of thymol against drug-resistant Streptococcus iniae and its protective effect on channel catfish (Ictalurus punctatus). Front. Microbiol. 2022, 13, 914868. [Google Scholar] [CrossRef]
- Liu, T.; Kang, J.; Liu, L. Thymol as a critical component of Thymus vulgaris L. essential oil combats Pseudomonas aeruginosa by intercalating DNA and inactivating biofilm. LWT 2021, 136, 110354. [Google Scholar] [CrossRef]
- Bnyan, I.A.; Abid, A.T.; Obied, H.N. Antibacterial activity of carvacrol against different types of bacteria. J. Nat. Sci. Res. 2020, 4, 13–17. [Google Scholar]
- Luo, K.; Kang, S.; Guo, M.; Shen, C.; Wang, L.; Xia, X.; Lü, X.; Shi, C. Evaluation of the antibacterial mechanism and biofilm removal effect of eugenol on Vibrio vulnificus and its application in fresh oysters. Food Biosci. 2022, 50, 102103. [Google Scholar] [CrossRef]
- Bai, X.; Li, X.; Liu, X.; Xing, Z.; Su, R.; Wang, Y.; Xia, X.; Shi, C. Antibacterial effect of eugenol on Shigella flexneri and its mechanism. Foods 2022, 11, 2565. [Google Scholar] [CrossRef]
- Ashrafudoulla, M.; Mizan, M.F.R.; won Ha, A.J.; Park, S.H.; Do Ha, S. Antibacterial and antibiofilm mechanism of eugenol against antibiotic-resistant Vibrio parahaemolyticus. Food Microbiol. 2020, 91, 103500. [Google Scholar] [CrossRef]
- Su, R.; Bai, X.; Liu, X.; Song, L.; Liu, X.; Zhan, X.; Guo, D.; Wang, Y.; Chang, Y.; Shi, C. Antibacterial mechanism of eugenol against Shigella sonnei and its antibacterial application in lettuce juice. Foodborne Pathog. Dis. 2022, 19, 779–786. [Google Scholar] [CrossRef] [PubMed]
- Sunar, B.S.; Hasçiçek, C. Elektroeğrilmiş nanoliflerin ilaç taşıyıcı sistem olarak ve doku mühendisliğinde kullanımı. Marmara Pharm. J. 2017, 21, 425–435. [Google Scholar] [CrossRef]
- Goyal, R.; Macri, L.K.; Kaplan, H.M.; Kohn, J. Nanoparticles and nanofibers for topical drug delivery. J. Control. Release 2016, 240, 77–92. [Google Scholar] [CrossRef]
- Kalantari, K.; Afifi, A.M.; Jahangirian, H.; Webster, T.J. Biomedical applications of chitosan electrospun nanofibers as a green polymer—Review. Carbohydr. Polym. 2019, 207, 588–600. [Google Scholar] [CrossRef] [PubMed]
- Abrigo, M.; McArthur, S.L.; Kingshott, P. Electrospun nanofibers as dressings for chronic wound care: Advances, challenges, and future prospects. Macromol. Biosci. 2014, 14, 772–792. [Google Scholar] [CrossRef]
- Noori, F.; Osanloo, M.; Moradi, H.R.; Ghaderi Jafarbeigloo, H.; Jirehnezhadyan, M.; Kouhpayeh, S.A.; Tirgare, M.; Bozorgi, A.; Goodarzi, A. Fabrication, characterization, and in vivo implantation of eugenol-loaded nanogels and PCL/Cs electrospun nanofibers for wound healing applications. J. Bioact. Compat. Polym. 2023, 38, 480–492. [Google Scholar] [CrossRef]
- Loudifa, F.E.; Zazouli, S.; Nague, I.; Moubarik, A.; Zanane, C.; Latrache, H.; Jouaiti, A. Characterization and antibacterial activity of cellulose extracted from Washingtonia robusta and Phoenix dactylifera L. impregnated with eugenol: Promising wound dressing. Heliyon 2025, 11, e42310. [Google Scholar] [CrossRef]
- Sethuram, L.; Thomas, J.; Mukherjee, A.; Chandrasekaran, N. Eugenol micro-emulsion reinforced with silver nanocomposite electrospun mats for wound dressing strategies. Mater. Adv. 2021, 2, 2971–2988. [Google Scholar] [CrossRef]
- Mouro, C.; Simões, M.; Gouveia, I.C.; Xu, B. Emulsion electrospun fiber mats of PCL/PVA/chitosan and eugenol for wound dressing applications. Adv. Polym. Technol. 2019, 2019, 9859506. [Google Scholar] [CrossRef]
- Unalan, I.; Endlein, S.J.; Slavik, B.; Buettner, A.; Goldmann, W.H.; Detsch, R.; Boccaccini, A.R. Evaluation of Electrospun Poly(ε-Caprolactone)/Gelatin Nanofiber Mats Containing Clove Essential Oil for Antibacterial Wound Dressing. Pharmaceuticals 2019, 11, 570. [Google Scholar] [CrossRef]
- Hameed, M.; Rasul, A.; Waqas, M.K.; Saadullah, M.; Aslam, N.; Abbas, G.; Latif, S.; Afzal, H.; Inam, S.; Akhtar Shah, P. Formulation and Evaluation of a Clove Oil-Encapsulated Nanofiber Formulation for Effective Wound-Healing. Molecules 2021, 26, 2491. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Xu, X.; Zhu, X.; Tan, X.; Xie, B. Electrospun Carvacrol-Loaded Polyacrylonitrile/Poly(ethylene oxide) Nanofibrous Films as Wound Dressings. ACS Omega 2024, 9, 39472–39483. [Google Scholar] [CrossRef] [PubMed]
- Güler, H.K.; Geysoğlu, M.; Çallioğlu, F.C. Electrospinning of Pvp/Carvacrol/Lanolin Composite Nanofibers. Tekst. Ve Muhendis 2023, 30, 302–309. [Google Scholar] [CrossRef]
- Marković, D.; Milovanović, S.; De Clerck, K.; Zizovic, I.; Stojanović, D.; Radetić, M. Development of Material with Strong Antimicrobial Activity by High Pressure CO2 Impregnation of Polyamide Nanofibers with Thymol. J. CO2 Util. 2018, 26, 19–27. [Google Scholar] [CrossRef]
- Chen, Y.; Qiu, Y.; Chen, W.; Wei, Q. Electrospun Thymol-Loaded Porous Cellulose Acetate Fibers with Potential Biomedical Applications. Mater. Sci. Eng. C 2020, 109, 110536. [Google Scholar] [CrossRef]
- García-Salinas, S.; Gámez, E.; Asín, J.; de Miguel, R.; Andreu, V.; Sancho-Albero, M.; Mendoza, G.; Irusta, S.; Arruebo, M. Efficiency of Antimicrobial Electrospun Thymol-Loaded Polycaprolactone Mats In Vivo. ACS Appl. Bio Mater. 2020, 3, 3430–3439. [Google Scholar] [CrossRef]
- Garcia-Salinas, S.; Evangelopoulos, M.; Gamez-Herrera, E.; Arruebo, M.; Irusta, S.; Taraballi, F.; Mendoza, G.; Tasciotti, E. Electrospun Anti-Inflammatory Patch Loaded with Essential Oils for Wound Healing. Int. J. Pharm. 2020, 577, 119067. [Google Scholar] [CrossRef]
- Chen, Y.; Mensah, A.; Wang, Q.; Li, D.; Qiu, Y.; Wei, Q. Hierarchical Porous Nanofibers Containing Thymol/β-Cyclodextrin: Physico-Chemical Characterization and Potential Biomedical Applications. Mater. Sci. Eng. C 2020, 115, 111155. [Google Scholar] [CrossRef]
- Moradi, S.; Barati, A.; Tonelli, A.E.; Hamedi, H. Chitosan-Based Hydrogels Loading with Thyme Oil Cyclodextrin Inclusion Compounds: From Preparation to Characterization. Eur. Polym. J. 2020, 122, 109303. [Google Scholar] [CrossRef]
- Vasile, C.; Pamfil, D.; Stoleru, E.; Baican, M. New Developments in Medical Applications of Hybrid Hydrogels Containing Natural Polymers. Molecules 2020, 25, 1539. [Google Scholar] [CrossRef]
- Chelu, M. Hydrogels with Essential Oils: Recent Advances in Designs and Applications. Gels 2024, 10, 636. [Google Scholar] [CrossRef]
- Han, Z.; Li, A.; Xue, Z.; Guan, S.B.; Yin, G.; Zheng, X. Eugenol-Loaded Polyurethane Gelatin Dressing for Efficient Angiogenesis and Antibacterial Effects in Refractory Diabetic Wound Defect Healing. Int. J. Biol. Macromol. 2024, 271, 132619. [Google Scholar] [CrossRef] [PubMed]
- Khadim, H.; Zeeshan, R.; Riaz, S.; Tabassum, S.; Ansari, A.A.; Zulfiqar, S.; Yar, M.; Asif, A. Development of Eugenol Loaded Cellulose-Chitosan Based Hydrogels; In Vitro and In Vivo Evaluation for Wound Healing. Colloids Surf. A Physicochem. Eng. Asp. 2024, 693, 134033. [Google Scholar] [CrossRef]
- Zhou, R.; Zhang, W.; Zhang, Y.; Wu, X.; Huang, J.; Bo, R.; Liu, M.; Yu, J.; Li, J. Laponite/Lactoferrin Hydrogel Loaded with Eugenol for Methicillin-Resistant Staphylococcus aureus-Infected Chronic Skin Wound Healing. J. Tissue Viability 2024, 33, 487–503. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Li, F.; Wang, T.; Zhao, L.; Shi, Y. Fabrication of Carboxymethylcellulose Hydrogel Containing β-Cyclodextrin–Eugenol Inclusion Complexes for Promoting Diabetic Wound Healing. J. Biomater. Appl. 2020, 34, 851–863. [Google Scholar] [CrossRef]
- Qiu, Y.; Yang, T.; Zhang, H.; Dai, H.; Gao, H.; Feng, W.; Xu, D.; Duan, J. The Application of pH-Responsive Hyaluronic Acid-Based Essential Oils Hydrogels with Enhanced Anti-Biofilm and Wound Healing. Int. J. Biol. Macromol. 2024, 275, 133559. [Google Scholar] [CrossRef]
- Jiji, S.; Udhayakumar, S.; Rose, C.; Muralidharan, C.; Kadirvelu, K. Thymol Enriched Bacterial Cellulose Hydrogel as Effective Material for Third Degree Burn Wound Repair. Int. J. Biol. Macromol. 2019, 122, 452–460. [Google Scholar] [CrossRef]
- Cui, Z.; Zhang, X.; Zhou, L.; Dong, W.; Wei, Y.; Liu, Z.; Wu, X. A Carrier-Free Injectable Hydrogel Self-Assembled Using Natural Thymol and Glycyrrhizin for MRSA-Infected Wound Healing in Rats. Chem. Eng. J. 2024, 489, 151418. [Google Scholar] [CrossRef]
- Mohsen, A.M.; Nagy, Y.I.; Shehabeldine, A.M.; Okba, M.M. Thymol-Loaded Eudragit RS30D Cationic Nanoparticles-Based Hydrogels for Topical Application in Wounds: In Vitro and In Vivo Evaluation. Pharmaceutics 2023, 15, 19. [Google Scholar] [CrossRef]
- Cuéllar-Gaona, C.G.; Martínez-Ruiz, E.O.; González-López, J.A.; Ibarra-Alonso, M.C.; Dávila-Medina, M.D.; Treviño-Martínez, M.E.; Soria-Arguello, G.; Mendoza-González, N.Y.; Neira-Velázquez, M.G. Development of Chitosan/Carvacrol-Based Hydrogels: Biocompatibility and Antimicrobial Activity Evaluation. ChemistrySelect 2025, 10, e202405865. [Google Scholar] [CrossRef]
- Iqbal, D.N.; Ashraf, A.; Nazir, A.; Alshawwa, S.Z.; Iqbal, M.; Ahmad, N. Fabrication, Properties, and Stability of Oregano Essential Oil and Sodium Alginate-Based Wound-Healing Hydrogels. Dose-Response 2023, 21, 15593258231204186. [Google Scholar] [CrossRef] [PubMed]
- Mahadevi, R.; Shivakumar, M.S.; Natarajan, D.; Sengottuvelu, S.; Ramamoorthy, K. Anti-Inflammatory and Wound Healing Properties of Curcuma amada and Oregano Essential Oil Derived Hydrogel on Wistar Albino Rats. J. Chem. Health Risks 2024, 14, 817–827. [Google Scholar] [CrossRef]
- Alven, S.; Nqoro, X.; Aderibigbe, B. Polymer-Based Materials Loaded with Curcumin for. Polymers 2020, 12, 2286. [Google Scholar] [CrossRef] [PubMed]
- Ahmady, A.R.; Razmjooee, K.; Saber-Samandari, S.; Toghraie, D. Fabrication of Chitosan-Gelatin Films Incorporated with Thymol-Loaded Alginate Microparticles for Controlled Drug Delivery, Antibacterial Activity and Wound Healing: In Vitro and In Vivo Studies. Int. J. Biol. Macromol. 2022, 223, 567–582. [Google Scholar] [CrossRef]
- Acar, G.; Özkahraman, B.; Özbaş, Z. Thymol Incorporated Gellan Gum/Carboxymethyl Cellulose/Hyaluronic Acid Films for Wound Dressings Applications. Cellulose 2023, 30, 9517–9528. [Google Scholar] [CrossRef]
- Pires, A.L.R.; de Azevedo Motta, L.; Dias, A.M.A.; de Sousa, H.C.; Moraes, Â.M.; Braga, M.E.M. Towards Wound Dressings with Improved Properties: Effects of Poly(dimethylsiloxane) on Chitosan-Alginate Films Loaded with Thymol and Beta-Carotene. Mater. Sci. Eng. C 2018, 93, 595–605. [Google Scholar] [CrossRef]
- Najafloo, R.; Imani, R.; Behyari, M.; Nour, S. Synthesis and Characterization of Thymol-Loaded Niosomal Film for the Prevention of Implant-Related Infection. Iran. Biomed. J. 2023, 27, 117–125. [Google Scholar] [CrossRef]
- Łopusiewicz, Ł.; Macieja, S.; Bartkowiak, A.; El Fray, M. Antimicrobial, Antibiofilm, and Antioxidant Activity of Functional Poly(Butylene Succinate) Films Modified with Curcumin and Carvacrol. Materials 2021, 14, 7882. [Google Scholar] [CrossRef]
- Antunes, J.C.; Tavares, T.D.; Teixeira, M.A.; Teixeira, M.O.; Homem, N.C.; Amorim, M.T.P.; Felgueiras, H.P. Eugenol-Containing Essential Oils Loaded onto Chitosan/Polyvinyl Alcohol Blended Films and Their Ability to Eradicate Staphylococcus aureus or Pseudomonas aeruginosa from Infected Microenvironments. Pharmaceutics 2021, 13, 195. [Google Scholar] [CrossRef]
Compound | Mechanism of Action | Therapeutic Effect/Context | Reference |
---|---|---|---|
CAR & THY | Modulation of MAPK, NF-κB, JAK/STAT, and arachidonic acid pathways | Reduction of pro-inflammatory cytokines and mediators | [7] |
CAR | Inhibits edema formation and leukocyte infiltration | Treatment of inflammatory skin conditions; promotes wound healing | [103] |
CAR & THY | Reduced edema (both), but only CAR inhibited leukocyte migration; THY induced chemoattractant response | Local anti-inflammatory effects in edema and pleurisy models | [29] |
CAR & THY | Calcium channel blockade | Anti-inflammatory and uterine relaxant effects; potential tocolytics | [104] |
CAR | ↓ IL-1β and TNF-α (mRNA and protein); ↓ c-Fos, NFAT-1/2, c-Jun; ↑ phospho-p38; ↓ phospho-STAT3 and phospho-SAPK/JNK | Broad anti-inflammatory signaling modulation | [105] |
THY | ↓ IL-1β; ↓ c-Fos, NFAT-1/2; ↓ phospho-STAT3 and phospho-SAPK/JNK | Targeted anti-inflammatory effect, but less extensive than carvacrol | [105] |
CAR & THY | ↓ COX-1, COX-2, 5-LOX enzyme expression | Synergistic anti-inflammatory and cardioprotective effects | [106,107] |
CAR/THY derivatives | Inhibited LPS-induced IL-1β in BV2 microglial cells (IC50 ≈ 8.33 μM); ↓ IL-1β in AD mouse model | Potent anti-inflammatory and neuroprotective effects; improved cognition | [108] |
Mechanism of Action | Therapeutic Context/Effect | Reference |
---|---|---|
Suppression of TNF-α, IL-1β, IL-6 release; inhibition of NADPH oxidase; enhancement of antioxidant enzymes (SOD, catalase, GPx) | Anti-inflammatory and antioxidant effects in LPS-induced acute lung injury | [110] |
Inhibition of cytokine secretion from PBMCs; reduction of ROS/RNS production | Anti-inflammatory and antioxidant activity in rheumatoid arthritis models | [111] |
Favorable COX-2 binding affinity (eugenol and acetyleugenol); good ADMET profile | In silico drug-likeness and anti-inflammatory drug development | [112] |
Downregulation of prostaglandins, cytokines, and chemokines | Prevention of cardiovascular and inflammatory diseases | [113] |
Inhibition of NF-κB and p38 MAPK signaling; reduced TNF-α and IL-1β expression | Anti-inflammatory activity in peritonitis model | [114] |
Inhibition of IL-6 and IL-10 (but not IL-1β) production in LPS-stimulated cells | Immune modulation and anti-inflammatory action | [115] |
α-Eugenol glycoside (α-EG) showed enhanced anti-inflammatory activity, potentiated by α-glucosidase | Superior cellular anti-inflammatory effect compared to parent eugenol | [116] |
Bis-eugenol inhibited TLR4/NF-κB and activated NRF2 and IL-10 pathways | Dual pro-resolution and antioxidant action; enhanced efficacy vs. eugenol | [117] |
Reduction of CYP2E1 activity, lipid/protein oxidation, DNA strand breaks; reversal of COX-2 upregulation | Hepatoprotective and anti-inflammatory effects in thioacetamide liver injury | [118] |
Antibacterial | |||
---|---|---|---|
EO Components | Mechanism of Action | Sensitive Strains | Reference |
THY | Disrupts cell membrane integrity, causing leakage of intracellular materials and eventual bacterial cell death. | Aeromonas hydrophila | [124] |
Penetrates bacterial cells, binds to the DNA minor groove, and destabilizes the secondary structure of DNA. | S. aureus | [125] | |
Damages cell wall and membrane, leading to leakage of intracellular contents; interferes with energy metabolism, membrane transport, and DNA processes; inhibits binary division, nutrient uptake, metal ion transport, nucleotide biosynthesis, DNA repair, and transcriptional pathways | S. iniae | [126,127] | |
Causes irreversible membrane damage, induces nucleic acid leakage, and generates reactive oxygen species (ROS), leading to DNA damage through intercalation. | Pseudomonas aeruginosa | [127] | |
CAR | Causes growth inhibition by damaging cell membranes, increasing permeability, and disrupting cell walls in both Gram-positive and Gram-negative bacteria. | S. aureus, S. epidermidis, S. pneumoniae, E. coli, K. pneumoniae, Proteus mirabilis, Enterobacter spp., Serratia spp. | [128] |
EUG | Disrupts cell membrane integrity via oxidative stress, causing leakage of intracellular components; also effective in biofilm removal. | Vibrio vulnificus | [129] |
Reduces superoxide dismutase (SOD) activity, leading to ROS accumulation, oxidative membrane damage, ATP leakage, and altered membrane potential. | Shigella flexneri | [130] | |
Inhibits biofilm formation by disrupting cell-to-cell interactions; detaches established biofilms, reduces viable cells, increases nucleic acid and protein leakage, decreases metabolic activity and extracellular polymeric substance (EPS) production, and reduces hydrophobicity, motility, and virulence. | V. parahaemolyticus | [131] | |
Elevates intracellular ROS levels, decreases ATP concentration, induces membrane hyperpolarization, reduces membrane integrity, and alters cell morphology. | S. sonnei | [132] |
Nanofiber Composition | Active Compound(s) | Key Findings/Properties | Applications/Potential | Reference |
---|---|---|---|---|
PCL/Chitosan electrospun nanofibers + EUG nanogel | EUG | Nanofibers ~228 nm; EUG nanogel ~126 nm; reduced inflammation & edema; enhanced angiogenesis, collagen synthesis, and re-epithelialization | Bi-component wound dressing; improved tissue healing | [137] |
Cellulose fibers from date palm mesh + EUG | EUG | Strong antibacterial activity (E. coli, S. aureus, S. epidermidis); provided structural support & antimicrobial effect | Antibacterial wound dressings | [138] |
PVA nanofibers + EUG-based microemulsion + AgNPs | EUG + Silver NPs | Superior antibacterial effect (S. aureus); controlled Ag release; good lymphocyte viability; low RBC lysis | Clinical wound care; antibacterial dressings | [139] |
PCL/PVA/Chitosan nanofibers with 5% EUG | EUG | Porous ECM-like structure; antibacterial vs. S. aureus, P. aeruginosa; burst + sustained release; non-cytotoxic | Enhanced wound healing | [140] |
PCL/Gelatin nanofibers + Clove Essential Oil (CEO) | Clove EO (EUGl-rich) | Increased fiber diameter & wettability; antibacterial vs. S. aureus, E. coli; non-toxic to fibroblasts | Antibiotic-free wound healing | [141] |
Chitosan/PEO nanofibers + CEO | Clove EO | High CEO encapsulation; excellent swelling; 79% release at pH 5.5; antibacterial vs. S. aureus, E. coli; non-toxic | Wound healing applications | [142] |
PAN/PEO nanofibers + CAR | CAR | Concentration-dependent antibacterial activity; damaged S. aureus biofilms; reduced wound exudate; accelerated regeneration | Antimicrobial wound dressings | [143] |
PVP nanofibers + CAR + Lanolin | CAR + Lanolin | Improved fiber quality & thermal stability; antimicrobial & wound healing properties | Biomedical wound dressings | [144] |
Polyamide nanofibers + THY | THY | Strong antibacterial effect (E. coli, S. aureus, C. albicans) | Antibacterial wound dressings | [145] |
Porous Cellulose Acetate nanofibers + THY | THY | Controlled release; antibacterial vs. S. aureus, E. coli; promoted cell proliferation | Novel wound healing materials | [146] |
PCL nanofibers + THY | THY | Good mechanical properties; inhibited S. aureus in vivo; minimal inflammation; comparable to chlorhexidine | Infection prevention & tissue regeneration | [147] |
PCL nanofiber patches + THY + Tyrosol | THY, Tyrosol | Thymol downregulated NF-κB inflammatory genes; low cell adhesion; antibacterial & anti-inflammatory | Wound dressings with anti-inflammatory activity | [148] |
Cellulose Acetate nanofibers + THY/β-Cyclodextrin complex | THY (complexed) | Sustained release; improved solubility/loading; strong antibacterial activity; excellent cytocompatibility | Advanced wound healing materials | [149] |
Nanofiber Composition | Active Compound(s) | Key Findings/Properties | Applications/Potential | References |
---|---|---|---|---|
Eugenol-Based Hydrogels | ||||
Polyurethane–gelatin (PG) hydrogel | EUG | Accelerated diabetic wound healing; promoted angiogenesis, proliferation, tissue regeneration; strong antibacterial activity | Diabetic wound treatment | [153] |
Chitosan–oxidized microcrystalline cellulose (CS.OMCC) hydrogel | EUG | High swelling (1165%), biodegradable; antibacterial (E. coli, S. aureus); ↑ VEGF expression; angiogenic | Wound healing & infection control | [154] |
Injectable LAP/LF hydrogel | EUG | Sustained release; antioxidant, antibacterial (MRSA); angiogenesis, collagen deposition; excellent injectability | MRSA-infected wound healing | [155] |
Carboxymethylcellulose hydrogel | EUG–β-cyclodextrin complex | Antibacterial, angiogenesis; ↓ inflammation via LOX-1/NF-κB suppression | Diabetic wound healing | [156] |
Hyaluronic acid (AHA) + Carboxymethyl chitosan hydrogel | EUG + Oregano essential oil | pH-responsive release (↑ 82.1% at pH 5.5); anti-biofilm; accelerated wound healing | Bacteria-associated wounds | [157] |
Thymol-Based Hydrogels | ||||
Bacterial cellulose hydrogel (BCT) | THY | High water retention; antibacterial (burn pathogens); fibroblast proliferation; enhanced re-epithelialization | Burn wound dressing | [158] |
Injectable THY@glycygel (glycyrrhizin micelles) | THY | Carrier-free, reversible sol–gel; antibacterial (MRSA, S. aureus, E. coli); angiogenesis, collagen deposition; ↓ inflammatory cytokines | Bacterial-infected wound treatment | [159] |
Cationic polymeric nanoparticles (CPNPs) in methylcellulose hydrogel | THY | Sustained release; ↑ skin retention (3.3–3.6 fold); faster wound closure; prevented bacterial spread | MRSA-infected wound healing | [160] |
Chitosan/PVA hydrogel (freeze–thaw) | Thyme oil CD inclusion complexes (TM-β, HP-β, γ) | pH-sensitive, controlled release; antimicrobial (Gram +/–); biocompatible; ↑ cell viability | Wound dressings, controlled drug delivery | [150] |
Carvacrol-Based Hydrogels | ||||
Chitosan hydrogel | CAR | Sustained release (48 h); antimicrobial (>95% S. aureus, >90% E. coli); hemocompatible | Wound dressings & drug delivery | [161] |
Sodium alginate hydrogel membrane | Oregano essential oil (CAR & THY) | Porous, thermally stable; antioxidant activity; antibacterial; swelling decreased with higher EO | Wound healing membranes | [162] |
Other EO-Based/Herbal Hydrogels | ||||
Herbal hydrogel (Carbopol 934, SA, NaCMC) | C. amada extract + Oregano oil | Carbopol 934 gel best: high viscosity, full drug release, strong wound contraction, anti-inflammatory activity | Wound healing & anti-inflammatory treatment | [163] |
Film Composition | Active Compound(s) | Key Findings/Properties | Applications/Potential | References |
---|---|---|---|---|
CS–gelatin composite film with thymol-loaded alginate microparticles | THY | 2.5× higher antibacterial activity vs. Gram-negative bacteria; prolonged thymol release (3.5× vs. MPs, 1.7× vs. CS–GEL film); non-toxic with good cell viability; accelerated wound closure in 14 days and complete healing by day 21 | Effective wound dressing with enhanced antibacterial and healing properties | [165] |
Polysaccharide-based films (gellan gum, CMC, hyaluronic acid) | THY | High swelling (~829%/24 h), moderate WVTR (~2376 g/m2/day), ~55% degradation over 21 days; improved flexibility and release (4.42–6.25 mg/g); biocompatible and promoted fibroblast migration | Promising polysaccharide-based wound dressing | [166] |
Chitosan–alginate PECs with poly(dimethylsiloxane) (CAS10) | THY & β-carotene | High tensile strength, non-hemolytic, thrombus formation, stable under physiological conditions; high bioactive loading (1.8 μg/mg thymol, 1.3 μg/mg β-carotene); sustained release profile | Advanced PEC-based wound dressing with anesthetic, anti-inflammatory, and antioxidant properties | [167] |
Fibroin films with niosomal nanocarriers | THY | Sustained release (~40% over 14 days); maintained L929 fibroblast viability; strong antibacterial activity against E. coli, P. aeruginosa, and S. aureus | Controlled-release system for preventing implant-related infections | [168] |
PBS-based films | CAR & Curcumin | Antioxidant activity (DPPH 91.47%, ABTS 99.21%); antimicrobial (6 log E. coli, 4 log S. aureus, 2 log C. albicans); antibiofilm (8.22–87.91%) | Multifunctional biomaterial for wound dressing and active packaging | [169] |
CS/PVA blended films (30:70 w/w) | EUG-containing oils (clove & cinnamon leaf) | Increased thickness and swelling with 10 wt% EO; >5× higher EO loading vs. 1 wt%; unloaded CS eliminated P. aeruginosa in 1 h; EO-loaded films enhanced antibacterial action within 2 h, especially against S. aureus | Promising film for chronic wound treatment | [170] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khwaza, V.; Oyedeji, O.O. Polymer-Based Scaffolds Incorporating Selected Essential Oil Components for Wound Healing: A Review. Pharmaceutics 2025, 17, 1313. https://doi.org/10.3390/pharmaceutics17101313
Khwaza V, Oyedeji OO. Polymer-Based Scaffolds Incorporating Selected Essential Oil Components for Wound Healing: A Review. Pharmaceutics. 2025; 17(10):1313. https://doi.org/10.3390/pharmaceutics17101313
Chicago/Turabian StyleKhwaza, Vuyolwethu, and Opeoluwa O. Oyedeji. 2025. "Polymer-Based Scaffolds Incorporating Selected Essential Oil Components for Wound Healing: A Review" Pharmaceutics 17, no. 10: 1313. https://doi.org/10.3390/pharmaceutics17101313
APA StyleKhwaza, V., & Oyedeji, O. O. (2025). Polymer-Based Scaffolds Incorporating Selected Essential Oil Components for Wound Healing: A Review. Pharmaceutics, 17(10), 1313. https://doi.org/10.3390/pharmaceutics17101313