L-Threonine-Derived Biodegradable Polyurethane Nanoparticles for Sustained Carboplatin Release
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of LTPU
2.2.1. L-Threonine Hexyl Ester (LTHE)
2.2.2. Desaminotyrosyl L-Threonine Hexyl Ester (DLTHE)
2.2.3. PLA-PEG-PLA Triblock Copolymer
2.2.4. LTPU Polymerization
2.3. Fabrication of Blank and FITC-Loaded LTPU NPs
2.4. Fabrication of Carboplatin-Loaded LTPU NPs
2.5. In Vitro Cumulative Release Study of CLNPs in PBS
2.6. Biodegradation Study of LTPU NPs in PBS
2.7. Characterization of the Synthesized LTPU and Its Precursors
2.8. Characterization of the Fabricated LTPU Nanoparticles
3. Results and Discussion
3.1. Characterization of LTHE and DLTHE
3.2. Characterization of PLA-PEG-PLA Triblock Copolymer
3.3. Characterization of LTPU
3.4. Characterization of LTPU NPs
3.5. Drug Loading and Encapsulation (%), In Vitro Cumulative Release Study and Stability Assay
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Davis, S. Drug delivery systems. Interdiscip. Sci. Rev. 2000, 25, 175–183. [Google Scholar] [CrossRef]
- Ranade, V.V.; Hollinger, M.A.; Cannon, J.B. Drug Delivery Systems, 2nd ed.; CRC Press: Boca Raton, CA, USA, 2003; pp. 150–214. [Google Scholar]
- Liu, D.; Yang, F.; Xiong, F.; Gu, N. The smart drug delivery system and its clinical potential. Theranostics 2016, 6, 1306. [Google Scholar] [CrossRef] [PubMed]
- Glassman, P.M.; Muzykantov, V.R. Pharmacokinetic and pharmacodynamic properties of drug delivery systems. J. Pharmacol. Exp. Ther. 2019, 370, 570–580. [Google Scholar] [CrossRef] [PubMed]
- Gardner, C.R. Potential and limitations of drug targeting: An overview. Biomaterials 1985, 6, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Liechty, W.B.; Kryscio, D.R.; Slaughter, B.V.; Peppas, N.A. Polymers for drug delivery systems. Annu. Rev. Chem. Biomol. Eng. 2010, 1, 149–173. [Google Scholar] [CrossRef]
- Sung, Y.K.; Kim, S.W. Recent advances in polymeric drug delivery systems. Biomater. Res. 2020, 24, 12. [Google Scholar] [CrossRef]
- Bikiaris, D.; Koutris, E.; Karavas, E. New aspects in sustained drug release formulations. Recent Pat. Drug Deliv. Formul. 2007, 1, 201–213. [Google Scholar] [CrossRef] [PubMed]
- Subramani, M.; Vekatashwaramoorthy, N.; Sambathkumar, R. A Novel Approach on Role of Polymers Used In Sustained Release Drug Delivery System—A Review. Saudi. J. Med. Pharm. Sci. 2021, 7, 170–178. [Google Scholar] [CrossRef]
- Xie, Z.; Shen, J.; Sun, H.; Li, J.; Wang, X. Polymer-based hydrogels with local drug release for cancer immunotherapy. Biomed. Pharmacother. 2021, 137, 111333. [Google Scholar] [CrossRef]
- Wang, B.; Wang, S.; Zhang, Q.; Deng, Y.; Li, X.; Peng, L.; Zuo, X.; Piao, M.; Kuang, X.; Sheng, S.; et al. Recent advances in polymer-based drug delivery systems for local anesthetics. Acta Biomaterialia. 2019, 96, 55–67. [Google Scholar] [CrossRef] [PubMed]
- Hua, Q.; Qiang, Z.; Chu, M.; Shi, D.; Ren, J. Polymeric drug delivery system with actively targeted cell penetration and nuclear targeting for cancer therapy. ACS Appl. Bio Mater. 2019, 2, 1724–1731. [Google Scholar] [CrossRef]
- Xia, W.; Tao, Z.; Zhu, B.; Zhang, W.; Liu, C.; Chen, S.; Song, M. Targeted delivery of drugs and genes using polymer nanocarriers for cancer therapy. Int. J. Mol. Sci. 2021, 22, 9118. [Google Scholar] [CrossRef]
- Ulery, B.D.; Nair, L.S.; Laurencin, C.T. Biomedical applications of biodegradable polymers. J. Polym. Sci. Part B Polym. Phys. 2011, 49, 832–864. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-Y.; Kang, J.; Yoon, J.-Y.; Chung, I. Synthesis and Characterization of Polyfumarateurethane Nanoparticles for Sustained Release of Bupivacaine. Pharmaceutics 2020, 12, 281. [Google Scholar] [CrossRef] [PubMed]
- Shah, P.N.; Manthe, R.L.; Lopina, S.T.; Yun, Y.H. Electrospinning of L-tyrosine polyurethanes for potential biomedical applications. Polymer 2009, 50, 2281–2289. [Google Scholar] [CrossRef]
- Park, S.Y.; Kim, S.-Y.; Kim, T.; Ahn, H.; Chung, I. Syntheses of biodegradable polymer networks based on polycaprolactone and glutamic acid. Polym. Adv. Technol. 2019, 30, 872–878. [Google Scholar] [CrossRef]
- Park, S.-Y.; Yun, Y.H.; Park, B.-J.; Seo, H.-I.; Chung, I. Fabrication and Biological Activities of Plasmid DNA Gene Carrier Nanoparticles Based on Biodegradable l-Tyrosine Polyurethane. Pharmaceuticals 2022, 15, 17. [Google Scholar] [CrossRef]
- Hyun, J.; Wang, S.; Kim, J.; Rao, K.M.; Park, S.Y.; Chung, I.; Ha, C.-S.; Kim, S.-W.; Yun, Y.H.; Jung, Y. MicroRNA-378 limits activation of hepatic stellate cells and liver fibrosis by suppressing Gli3 expression. Nat. Commun. 2016, 7, 10993. [Google Scholar] [CrossRef] [PubMed]
- Nair, L.S.; Laurencin, C.T. Biodegradable polymers as biomaterials. Prog. Polym. Sci. 2007, 32, 762–798. [Google Scholar] [CrossRef]
- Katoh, T.; Ogawa, Y.; Ohta, Y.; Yokozawa, T. Synthesis of polyester by means of polycondensation of diol ester and dicarboxylic acid ester through ester–ester exchange reaction. J. Polym. Sci. 2021, 59, 787–797. [Google Scholar] [CrossRef]
- Fujimake, T. Processability and properties of aliphatic polyesters, ‘BIONOLLE’, synthesized by polycondensation reaction. Polym. Degrad. Stab. 1998, 59, 209–214. [Google Scholar] [CrossRef]
- Kobayashi, S. Enzymatic ring-opening polymerization and polycondensation for the green synthesis of polyesters. Polym. Adv. Technol. 2015, 26, 677–686. [Google Scholar] [CrossRef]
- Paredes, N.; Rodríguez-Galán, A.; Puiggali, J. Synthesis and characterization of a family of biodegradable poly (ester amide) s derived from glycine. J. Polym. Sci. Part A Polym. Chem. 1998, 36, 1271–1282. [Google Scholar] [CrossRef]
- Fonseca, A.C.; Gil, M.H.; Simões, P.N. Biodegradable poly(ester amide)s—A remarkable opportunity for the biomedical area: Review on the synthesis, characterization and applications. Prog. Polym. Sci. 2014, 39, 1291–1311. [Google Scholar] [CrossRef]
- Lin, Y.; Zhang, K.-Y.; Dong, Z.-M.; Dong, L.-S.; Li, Y.-S. Study of Hydrogen-Bonded Blend of Polylactide with Biodegradable Hyperbranched Poly(ester amide). Macromolecules 2007, 40, 6257–6267. [Google Scholar] [CrossRef]
- Yamanouchi, D.; Wu, J.; Lazar, A.N.; Kent, K.C.; Chu, C.C.; Liu, B. Biodegradable arginine-based poly(ester-amide)s as non-viral gene delivery reagents. Biomaterials 2008, 29, 3269–3277. [Google Scholar] [CrossRef] [PubMed]
- Karimi, P.; Rizkalla, A.S.; Mequanint, K. Versatile Biodegradable Poly(ester amide)s Derived from α-Amino Acids for Vascular Tissue Engineering. Materials 2010, 3, 2346–2368. [Google Scholar] [CrossRef]
- Vroman, I.; Tighzert, L. Biodegradable polymers. Materials 2009, 2, 307–344. [Google Scholar] [CrossRef]
- Luo, Q.; Chen, J.; Gnanasekar, P.; Ma, X.; Qin, D.; Na, H.; Zhu, J.; Yan, N. A facile preparation strategy of polycaprolactone (PCL)-based biodegradable polyurethane elastomer with a highly efficient shape memory effect. New J. Chem. 2020, 44, 658–662. [Google Scholar] [CrossRef]
- Ali, F.B.; Kang, D.J.; Kim, M.; Cho, C.-H.; Kim, B. Synthesis of biodegradable and flexible, polylactic acid based, thermoplastic polyurethane with high gas barrier properties. Polym. Int. 2013, 63, 1620–1626. [Google Scholar] [CrossRef]
- Bruin, P.; Smedinga, J.; Pennings, A.J.; Jonkman, M.F. Biodegradable lysine diisocyanate-based poly(glycolide-co-ϵ-caprolactone)-urethane network in artificial skin. Biomaterials 1990, 11, 291–295. [Google Scholar] [CrossRef] [PubMed]
- Khattab, M.; Hady, N.A.; Dahman, Y. Green Biodegradable Polylactide-Based Polyurethane Triblock Copolymers Reinforced with Cellulose Nanowhiskers. J. Funct. Biomater. 2023, 14, 118. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; He, C.; Tian, H.; Ding, J.; Hsiao, B.S.; Chu, B.; Chen, X. Polymeric nanostructured materials for biomedical applications. Prog. Polym. Sci. 2016, 60, 86–128. [Google Scholar]
- Hickey, J.W.; Santos, J.L.; Williford, J.-M.; Mao, H.-Q. Control of polymeric nanoparticle size to improve therapeutic delivery. J. Control. Release 2015, 219, 536–547. [Google Scholar] [CrossRef]
- Hoshyar, N.; Gray, S.; Han, H.; Bao, G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine 2016, 11, 673–692. [Google Scholar] [CrossRef]
- Begines, B.; Ortiz, T.; Pérez-Aranda, M.; Martinez, G.; Merinero, M.; Argüelles-Arias, F.; Alcudia, A. polymeric nanoparticles for drug delivery: Recent developments and future prospects. Nanomaterials 2020, 10, 1403. [Google Scholar] [CrossRef] [PubMed]
- Subhan, M.A.; Yalamarty, S.S.K.; Filipczak, N.; Parveen, F.; Torchilin, V.P. Recent advances in tumor targeting via EPR effect for cancer treatment. J. Pers. Med. 2021, 11, 571. [Google Scholar] [CrossRef] [PubMed]
- Kalyane, D.; Raval, N.; Maheshwari, R.; Tambe, V.; Kalia, K.; Tekade, R.K. Employment of enhanced permeability and retention effect (EPR): Nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer. Mater. Sci. Eng. C 2019, 98, 1252–1276. [Google Scholar] [CrossRef] [PubMed]
- Abdalla, A.M.E.; Xiao, L.; Ulah, M.W.; Yu, M.; Ouyang, C.; Yang, G. Current challenges of cancer anti-angiogenic therapy and the promise of nanotherapeutics. Theranostics 2018, 8, 533–548. [Google Scholar] [CrossRef]
- Sokol, M.B.; Chirkina, M.V.; Yabbarov, N.G.; Mollaeva, M.R.; Podrugina, T.A.; Pavlova, A.S.; Temnov, V.V.; Hathout, R.M.; Metwally, A.A.; Nikolskaya, E.D. Structural Optimization of Platinum Drugs to Improve the Drug-Loading and Antitumor Efficacy of PLGA Nanoparticles. Pharmaceutics 2022, 14, 2333. [Google Scholar] [CrossRef]
- Winzenburg, G.; Schmidt, C.; Fuchs, S.; Kissel, T. Biodegradable polymers and their potential use in parenteral veterinary drug delivery systems. Adv. Drug Deliv. Rev. 2004, 56, 1453–1466. [Google Scholar] [CrossRef]
- Yang, S.; Leong, K.-F.; Du, Z.; Chua, C.-K. The design of scaffolds for use in tissue engineering. Part 1. traditional factors. Tissue Eng. 2004, 7, 679–689. [Google Scholar] [CrossRef] [PubMed]
- Urbánek, T.; Jäger, E.; Jäger, A.; Hrubý, M. Selectively biodegradable polyesters: Nature-inspired construction materials for future biomedical applications. Polymers 2019, 11, 1061. [Google Scholar] [CrossRef]
Conc. (mg/mL) | Mass (mg) | Vol (mL) | Mass % (w/w) | Vol % (v/v) | |
---|---|---|---|---|---|
LTPU | 14.78 | 133 | 9 | 95 | 14.75 |
PLA-PEG-PLA | 7 | 7 | 1 | 5 | 1.64 |
5% PVA | - | - | 50 | - | 81.97 |
Blank LTPU Nanoparticles | |||||
FITC in H2O | 0 | 0 | 1 | - | 1.64 |
Total | - | 140 | 61 | 100 | 100.00 |
FITC-loaded LTPU Nanoparticles | |||||
FITC in H2O | 0.5 | 0.5 | 1 | 0.36 | 1.64 |
Total | - | 140.5 | 61 | 100.00 | 100.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, S.; Park, S.-Y.; Seo, H.I.; Chung, I. L-Threonine-Derived Biodegradable Polyurethane Nanoparticles for Sustained Carboplatin Release. Pharmaceutics 2025, 17, 28. https://doi.org/10.3390/pharmaceutics17010028
Oh S, Park S-Y, Seo HI, Chung I. L-Threonine-Derived Biodegradable Polyurethane Nanoparticles for Sustained Carboplatin Release. Pharmaceutics. 2025; 17(1):28. https://doi.org/10.3390/pharmaceutics17010028
Chicago/Turabian StyleOh, Seoeun, Soo-Yong Park, Hyung Il Seo, and Ildoo Chung. 2025. "L-Threonine-Derived Biodegradable Polyurethane Nanoparticles for Sustained Carboplatin Release" Pharmaceutics 17, no. 1: 28. https://doi.org/10.3390/pharmaceutics17010028
APA StyleOh, S., Park, S.-Y., Seo, H. I., & Chung, I. (2025). L-Threonine-Derived Biodegradable Polyurethane Nanoparticles for Sustained Carboplatin Release. Pharmaceutics, 17(1), 28. https://doi.org/10.3390/pharmaceutics17010028