Assessment of Enzymatically Derived Blackcurrant Extract as Cosmetic Ingredient—Antioxidant Properties Determination and In Vitro Diffusion Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Enzyme-Assisted Extraction
2.2.2. Extracts Compositional Analysis
2.2.3. Antioxidant Activity Determination
2.2.4. Formulation Preparation
2.2.5. Release Studies
2.2.6. RP-HPLC-UV Analysis
2.2.7. Calculation of Effective Diffusion Coefficients
2.2.8. Statistical Analysis
3. Results and Discussion
3.1. Polyphenol Content and Antioxidant Activity of Blackcurrant Extract
Determination of Blackcurrant Anthocyanins’ Composition
3.2. Release Study
Determination of Diffusion Coefficients
3.3. Transdermal Permeation Study
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Yu, Y.-Q.; Yang, X.; Wu, X.-F.; Fan, Y.-B. Enhancing permeation of drug molecules across the skin via delivery in nanocarriers: Novel strategies for effective transdermal applications. Front. Bioeng. Biotechnol. 2021, 9, 646554. [Google Scholar] [CrossRef] [PubMed]
- Raina, N.; Rani, R.; Thakur, V.K.; Gupta, M. New insights in topical drug delivery for skin disorders: From a nanotechnological perspective. ACS Omega 2023, 8, 19145–19167. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.B.; Martin, G.P.; Jones, S.A.; Akomeah, F.K. Dermal and transdermal drug delivery systems: Current and future prospects. Drug Deliv. 2008, 13, 175–187. [Google Scholar] [CrossRef]
- Krutmann, J. Pre- and probiotics for human skin. J. Dermatol. Sci. 2009, 54, 1–5. [Google Scholar] [CrossRef]
- Fernández-Gallego, N.; Sánchez-Madrid, F.; Cibrian, D. Role of AHR ligands in skin homeostasis and cutaneous inflammation. Cells 2021, 10, 3176. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Nimni, M.E. Transdermal delivery of amino acids and antioxidants enhance collagen synthesis: In vivo and in vitro studies. Connect. Tissue Res. 2005, 46, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Sharma, A.; Mahmood, S.; Thakur, A.; Mirza, M.A.; Bhatia, A. Franz diffusion cell and its implication in skin permeation studies. J. Disper. Sci. Technol. 2023, 45, 943–956. [Google Scholar] [CrossRef]
- Mishra, D.K.; Pandey, V.; Maheshwari, R.; Ghode, P.; Tekade, R.K. Cutaneous and transdermal drug delivery: Techniques and delivery systems. In Advances in Pharmaceutical Product Development and Research, Basic Fundamentals of Drug Delivery, 1st ed.; Tekade, R., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 595–650. [Google Scholar]
- Khazaeli, P.; Pardakhty, A.; Shoorabi, H. Caffeine-loaded niosomes: Characterization and in vitro release studies. Drug Deliv. 2008, 14, 447–452. [Google Scholar] [CrossRef]
- Azhar, S.N.A.S.; Ashari, S.E.; Ahmadc, S.; Salimab, N. In vitro kinetic release study, antimicrobial activity and in vivo toxicity profile of a kojic acid esterbased nanoemulsion for topical application. RSC Adv. 2020, 10, 43894–43903. [Google Scholar] [CrossRef]
- Bartosova, L.; Bajgar, J. Transdermal drug delivery in vitro using diffusion cells. Curr. Med. Chem. 2012, 19, 4671–4677. [Google Scholar] [CrossRef]
- Kocabaş, N.Ö.; Kahraman, E.; Güngör, S. Assessment of membrane type effects on in vitro performance of topical semi-solid products. J. Drug Deliv. Sci. Technol. 2021, 64, 102646. [Google Scholar] [CrossRef]
- Haq, A.; Goodyear, B.; Ameen, D.; Joshi, V.; Michniak-Kohn, B. Strat-M® synthetic membrane: Permeability comparison to human cadaver skin. Int. J. Pharm. 2018, 547, 432–437. [Google Scholar] [CrossRef]
- Uchida, T.; Kadhum, W.R.; Kanai, S.; Todo, H.; Oshizaka, T.; Sugibayashi, K. Prediction of skin permeation by chemical compounds using the artificial membrane, Strat-M™. Eur. J. Pharm. Sci. 2015, 67, 113–118. [Google Scholar] [CrossRef] [PubMed]
- RÄTsep, R.; Bleive, U.; KaldmÄE, H.; Kahu, K.; Kikas, A. Impact of enzymatic treatment on the blackcurrant (Ribes nigrum L.) polyphenols in juice and press-residue. Int. J. Agric. Food Sci. 2020, 4, 43–48. [Google Scholar] [CrossRef]
- Oliveira, H.; Correia, P.; Pereira, A.R.; Araújo, P.; Mateus, N.; de Freitas, V.; Oliveira, J.; Fernandes, I. Exploring the applications of the photoprotective properties of anthocyanins in biological systems. Int. J. Mol. Sci. 2020, 21, 7464. [Google Scholar] [CrossRef]
- Petrov Ivanković, A.; Milivojević, A.; Ćorović, M.; Simović, M.; Banjanac, K.; Jansen, P.; Vukoičić, A.; van den Bogaard, E.; Bezbradica, D. In vitro evaluation of enzymatically derived blackcurrant extract as prebiotic cosmetic ingredient: Extraction conditions optimization and effect on cutaneous microbiota representatives. Chem. Biol. Technol. Agric. 2023, 10, 125. [Google Scholar] [CrossRef]
- Milutinović, M.; Radovanović, N.; Ćorović, M.; Šiler-Marinković, S.; Rajilić-Stojanović, M.; Dimitrijević-Branković, S. Optimisation of microwave-assisted extraction parameters for antioxidants from waste Achillea millefolium dust. Ind. Crops Prod. 2015, 77, 333–341. [Google Scholar] [CrossRef]
- Marjanovic, A.; Djedjibegovic, J.; Lugusic, A.; Sober, M.; Saso, L. Multivariate analysis of polyphenolic content and in vitro antioxidant capacity of wild and cultivated berries from Bosnia and Herzegovina. Sci. Rep. 2021, 11, 19259. [Google Scholar] [CrossRef] [PubMed]
- Formagio, A.; Volobuff, C.; Santiago, M.; Cardoso, C.; Vieira, M.; Valdevina Pereira, Z. Evaluation of antioxidant activity, total flavonoids, tannins and phenolic compounds in Psychotria leaf extracts. Antioxidants 2014, 3, 745–757. [Google Scholar] [CrossRef]
- Boroja, T.; Mihailović, V.; Katanić, J.; Pan, S.P.; Nikles, S.; Imbimbo, P.; Monti, D.M.; Stanković, N.; Stanković, M.S.; Bauer, R. The biological activities of roots and aerial parts of Alchemilla vulgaris L. S. Afr. J. Bot. 2018, 116, 175–184. [Google Scholar] [CrossRef]
- Willis, R. Improved method for measuring hydrolyzable tannins using potassium iodate. Analyst 1998, 123, 435–439. [Google Scholar] [CrossRef]
- Vermerris, W.; Nicholson, R. Isolation and identification of phenolic compounds. In Phenolic Compound Biochemistry; Vermerris, W., Nicholson, R., Eds.; Springer: Dordrecht, The Netherlands, 2006; pp. 151–196. [Google Scholar]
- Darwish, A.G.; Das, P.R.; Ismail, A.; Gajjar, P.; Balasubramani, S.P.; Sheikh, M.B.; Tsolova, V.; Sherif, S.M.; El-Sharkawy, I. Untargeted metabolomics and antioxidant capacities of muscadine grape genotypes during berry development. Antioxidants 2021, 10, 914. [Google Scholar] [CrossRef] [PubMed]
- Petrović, M.; Sužnjević, D.; Pastor, F.; Veljović, M.; Pezo, L.; Antić, M.; Gorjanović, S. Antioxidant capacity determination of complex samples and individual phenolics—Multilateral approach. Comb. Chem. High Throughput Screen. 2016, 19, 58–65. [Google Scholar] [CrossRef]
- Dash, S.; Murthy, P.N.; Nath, L.; Chowdhury, P. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol. Pharm.-Drug Res. 2010, 67, 217–223. [Google Scholar]
- Ćorović, M.; Milivojević, A.; Simović, M.; Banjanac, K.; Pjanović, R.; Bezbradica, D. Enzymatically derived oil-based L-ascorbyl esters: Synthesis, antioxidant properties and controlled release from cosmetic formulations. Sustain. Chem. Pharm. 2020, 15, 100231. [Google Scholar] [CrossRef]
- Petrov, A.; Ćorović, M.; Milivojević, A.; Simović, M.; Banjanac, K.; Pjanović, R.; Bezbradica, D. Prebiotic effect of galacto-oligosaccharides on the skin microbiota and determination of their diffusion properties. Int. J. Cosmet. Sci. 2022, 44, 309–319. [Google Scholar] [CrossRef]
- Pravilović, R.; Janković, T.; Veljković, M.; Todić, B.; Simović, M.; Bezbradica, D.; Nikačević, N. Micro-kinetic model of fructo-oligosaccharide synthesis for prebiotic products. AIChE J. 2023, 69, e18122. [Google Scholar] [CrossRef]
- Gopalan, A.; Reuben, S.C.; Ahmed, S.; Darvesh, A.S.; Hohmann, J.; Bishayee, A. The health benefits of blackcurrants. Food Funct. 2012, 3, 795–809. [Google Scholar] [CrossRef] [PubMed]
- Georgescu, C.; Frum, A.; Virchea, L.-I.; Sumacheva, A.; Shamtsyan, M.; Gligor, F.-G.; Olah, N.K.; Mathe, E.; Mironescu, M. Geographic Variability of Berry Phytochemicals with Antioxidant and Antimicrobial Properties. Molecules 2022, 27, 4986. [Google Scholar] [CrossRef]
- Borowiec, K.; Stachniuk, A.; Szwajgier, D.; Trzpil, A. Polyphenols composition and the biological effects of six selected small dark fruits. Food Chem. 2022, 391, 133281. [Google Scholar] [CrossRef]
- Koleckar, V.; Kubikova, K.; Rehakova, Z.; Kuca, K.; Jun, D.; Jahodar, L. Condensed and hydrolysable tannins as antioxidants influencing the health. Mini-Rev. Med. Chem. 2008, 8, 436–447. [Google Scholar] [CrossRef] [PubMed]
- Apak, R.; Özyürek, M.; Güçlü, K.; Çapanoğlu, E. Antioxidant activity/capacity measurement. 1. Classification, physicochemical principles, mechanisms, and electron transfer (ET)-based assays. J. Agric. Food Chem. 2016, 64, 997–1027. [Google Scholar] [CrossRef]
- Khoo, G.M.; Clausen, M.R.; Pedersen, H.L.; Larsen, E. Bioactivity and chemical composition of blackcurrant (Ribes nigrum) cultivars with and without pesticide treatment. Food Chem. 2012, 132, 1214–1220. [Google Scholar] [CrossRef]
- Liu, Z.; Hu, Y.; Li, X.; Mei, Z.; Wu, S.; He, Y.; Jiang, X.; Sun, J.; Xiao, J.; Deng, L.; et al. Bioactivity and application of anthocyanins in skin protection and cosmetics: An extension as a functional pigment. Phytochem. Rev. 2023, 22, 1441–1467. [Google Scholar] [CrossRef]
- Šimerdová, B.; Bobríková, M.; Lhotská, I.; Kaplan, J.; Křenová, A.; Šatínský, D. Evaluation of anthocyanin profiles in various blackcurrant cultivars over a three-year period using a fast HPLC-dad method. Foods 2021, 10, 1745. [Google Scholar] [CrossRef] [PubMed]
- Marquele, F.D.; Oliveira, A.R.M.; Bonato, P.S.; Lara, M.G.; Fonseca, M.J.V. Propolis extract release evaluation from topical formulations by chemiluminescence and HPLC. J. Pharm. Biomed. Anal. 2006, 41, 461–468. [Google Scholar] [CrossRef]
- Zillich, O.; Schweiggert-Weisz, U.; Hasenkopf, K.; Eisner, P.; Kerscher, M. Release and in vitro skin permeation of polyphenols from cosmetic emulsions. Int. J. Cosmet. Sci. 2013, 35, 491–501. [Google Scholar] [CrossRef]
- Dyja, R.; Jankowski, A. The effect of additives on release and in vitro skin retention of flavonoids from emulsion and gel semisolid formulations. Int. J. Cosmet. Sci. 2017, 39, 442–449. [Google Scholar] [CrossRef] [PubMed]
- Pravilović, R.; Balanč, B.; Djordjević, V.; Bošković-Vragolović, N.; Bugarski, B.; Pjanović, R. Diffusion of polyphenols from alginate, alginate/chitosan, and alginate/inulin particles. J. Food Process Eng. 2019, 42, e13043. [Google Scholar] [CrossRef]
- Pjanović, R.; Bošković-Vragolović, N.; Veljković-Giga, J.; Garić-Grulović, R.; Pejanović, S.; Bugarski, B. Diffusion of drugs from hydrogels and liposomes as drug carriers. J. Chem. Technol. Biotechnol. 2010, 85, 693–698. [Google Scholar] [CrossRef]
- Arct, J.; Oborska, A.; Mojski, M.; Binkowska, A.; Świdzikowska, B. Common cosmetic hydrophilic ingredients as penetration modifiers of flavonoids. Int. J. Cosmet. Sci. 2002, 24, 357–366. [Google Scholar] [CrossRef] [PubMed]
- Haq, A.; Dorrani, M.; Goodyear, B.; Joshi, V.; Michniak-Kohn, B. Membrane properties for permeability testing: Skin versus synthetic membranes. Int. J. Pharm. 2018, 539, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Sangiovanni, E.; Di Lorenzo, C.; Piazza, S.; Manzoni, Y.; Brunelli, C.; Fumagalli, M.; Magnavacca, A.; Martinelli, G.; Colombo, F.; Casiraghi, A.; et al. Vitis vinifera L. leaf extract inhibits in vitro mediators of inflammation and oxidative stress involved in inflammatory-based skin diseases. Antioxidants 2019, 8, 134. [Google Scholar] [CrossRef] [PubMed]
Polyphenol Composition | ||||||
Polyphenols (mg GAE/g DM) | Flavonoids (mg QE/g DM) | Anthocyanins (mg Cy3GE/g DM) | Flavonols (mg QE/g DM) | Phenol Acids (mg CAE/g DM) | Hydrolysable Tannins (mg GAE/g DM) | Condensed Tannins (mg CyE/g DM) |
26.9 ± 1.45 | 3.98 ± 0.24 | 2.21 ± 0.08 | 2.57 ± 0.13 | 3.85 ± 0.27 | 12.5 ± 0.42 | 0.15 ± 0.01 |
Antioxidant activity | ||||||
FRAP (µmol TE/g DM) | ABTS (µmol TE/g DM) | CUPPRAC (µmol TE/g DM) | DPPH (µmol TE/g DM) | |||
122.6 ± 7.05 | 208.2 ± 5.34 | 338.4 ± 16.64 | 103.9 ± 5.19 |
Formulation | Compound | tlag (min) | k∙104 (s−0.5) | R2 | Deff∙108 (cm2/s) | MPE (%) |
---|---|---|---|---|---|---|
Hydrogel | del-3-glu | 15.0 | 2.08 | 0.981 | 0.72 | 3.53 |
del-3-rut | 13.8 | 3.41 | 0.960 | 1.93 | 6.40 | |
cya-3-glu | 3.6 | 5.73 | 0.968 | 5.47 | 6.26 | |
cya-3-rut | 0 | 7.66 | 0.964 | 9.73 | 5.46 | |
O/W cream gel | del-3-glu | 150.8 | 0.87 | 0.996 | 0.13 | 1.95 |
del-3-rut | 73.4 | 0.98 | 0.951 | 0.17 | 3.96 | |
cya-3-glu | 0 | 3.61 | 0.994 | 2.26 | 2.58 | |
cya-3-rut | 0 | 4.54 | 0.987 | 3.57 | 3.94 | |
O/W emulsion | del-3-glu | 180.8 | 0.60 | 0.983 | 0.05 | 3.18 |
del-3-rut | 77.4 | 0.75 | 0.963 | 0.08 | 8.68 | |
cya-3-glu | 3.1 | 2.98 | 0.990 | 1.35 | 4.10 | |
cya-3-rut | 0 | 3.93 | 0.985 | 2.35 | 4.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrov Ivanković, A.; Ćorović, M.; Milivojević, A.; Blagojević, S.; Radulović, A.; Pjanović, R.; Bezbradica, D. Assessment of Enzymatically Derived Blackcurrant Extract as Cosmetic Ingredient—Antioxidant Properties Determination and In Vitro Diffusion Study. Pharmaceutics 2024, 16, 1209. https://doi.org/10.3390/pharmaceutics16091209
Petrov Ivanković A, Ćorović M, Milivojević A, Blagojević S, Radulović A, Pjanović R, Bezbradica D. Assessment of Enzymatically Derived Blackcurrant Extract as Cosmetic Ingredient—Antioxidant Properties Determination and In Vitro Diffusion Study. Pharmaceutics. 2024; 16(9):1209. https://doi.org/10.3390/pharmaceutics16091209
Chicago/Turabian StylePetrov Ivanković, Anja, Marija Ćorović, Ana Milivojević, Stevan Blagojević, Aleksandra Radulović, Rada Pjanović, and Dejan Bezbradica. 2024. "Assessment of Enzymatically Derived Blackcurrant Extract as Cosmetic Ingredient—Antioxidant Properties Determination and In Vitro Diffusion Study" Pharmaceutics 16, no. 9: 1209. https://doi.org/10.3390/pharmaceutics16091209
APA StylePetrov Ivanković, A., Ćorović, M., Milivojević, A., Blagojević, S., Radulović, A., Pjanović, R., & Bezbradica, D. (2024). Assessment of Enzymatically Derived Blackcurrant Extract as Cosmetic Ingredient—Antioxidant Properties Determination and In Vitro Diffusion Study. Pharmaceutics, 16(9), 1209. https://doi.org/10.3390/pharmaceutics16091209