Design of Thermosensitive Niosomes by Eutectic Mixture of Natural Fatty Acids
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Thermoresponsive Niosomes
2.2. Characterization of Thermoresponsive Niosomes
2.3. In Vitro Thermoresponsive Drug Release
2.4. Analysis of Drug Release Kinetics
2.5. Hemolysis Assay
2.6. In Vitro Antibacterial Activity
3. Results and Discussion
3.1. Physicochemical Characterization
3.2. In Vitro Release Studies
3.3. Stability Studies
3.4. Antimicrobial Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eleraky, N.E.; Allam, A.; Hassan, S.B.; Omar, M.M. Nanomedicine fight against antibacterial resistance: An overview of the recent pharmaceutical innovations. Pharmaceutics 2020, 12, 142. [Google Scholar] [CrossRef] [PubMed]
- Lam, S.J.; Wong, E.H.H.K.; Boyer, C.; Qiao, G.G. Antimicrobial polymeric nanoparticles. Prog. Polym. Sci. 2018, 76, 40–64. [Google Scholar] [CrossRef]
- Mutalik, C.; Okoro, G.; Chou, H.L.; Lin, I.H.; Yougbaré, S.; Chang, C.C.; Kuo, T.R. Phase-dependent 1T/2H-MoS2 nanosheets for effective photothermal killing of bacteria. ACS Sustain. Chem. Eng. 2022, 10, 8949–8957. [Google Scholar] [CrossRef]
- Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.P.; Acosta-Torres Diaz-Torres, L.S.; Grillo, R.; Swamy, M.K.; Sharma, S. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnol. 2018, 16, 71. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Xie, B.; Peng, H.; Shi, G.; Sreeniva, B.; Guo, J.; Wang, C.; He, Y. Eradicating Intracellular MRSA via Targeted Delivery of Lysostaphin and Vancomycin with Mannose-Modified Exosomes. J. Control. Release. 2021, 329, 454–467. [Google Scholar] [CrossRef] [PubMed]
- Fenaroli, F.; Repnik, U.; Xu, Y.; Johann, K.; Van Herck, S.; Dey, P.; Skjeldal, F.M.; Frei, D.M.; Bagherifam, S.; Kocere, A. Enhanced Permeability and Retention-Like Extravasation of Nanoparticles from the Vasculature into Tuberculosis Granulomas in Zebrafish and Mouse Models. ACS Nano. 2018, 12, 8646–8661. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zou, L.; Wang, J.; Jin, Q.; Ji, J. Stimuli-responsive nanoplatforms for antibacterial applications. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2022, 14, e1775. [Google Scholar] [CrossRef]
- Spirescu, V.A.; Chircov, C.; Grumezescu, A.M.; Andronescu, E. Polymeric nanoparticles for antimicrobial therapies: An up-to-date overview. Polymers 2021, 13, 724. [Google Scholar] [CrossRef]
- Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 2013, 12, 991–1003. [Google Scholar] [CrossRef]
- Stuart, M.A.C.; Huck, W.T.S.; Genzer, J.; Müller, M.; Ober, C.; Stamm, M.; Sukhorukov, G.B.; Szleifer, I. Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 2010, 9, 101–113. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, X.; Shi, H.; Dong, G.; Zhou, M.; Wang, T.; Xin, H. Thermo-responsive mesoporous silica/lipid bilayer hybrid nanoparticles for doxorubicin on-demand delivery and reduced premature release. Colloids Surf. B Biointerfaces 2017, 160, 527–534. [Google Scholar] [CrossRef] [PubMed]
- Abuwatfa, W.H.; Awad, N.S.; Pitt, W.G.; Husseini, G.A. Thermosensitive polymers and thermo-responsive liposomal drug delivery systems. Polymers 2022, 14, 925. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.; Huo, D.; Xue, J.; Zhu, G.; Liu, H.; Xia, Y. Encapsulation of a Phase-Change Material in Nanocapsules with a Well-Defined Hole in the Wall for the Controlled Release of Drugs. Angew. Chem. Int. Ed. 2019, 58, 10606–10611. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Zhang, N.; Tao, W.; Cao, X.; He, Y. Fatty acids as phase change materials: A review. Renew. Sustain. Energy Rev. 2014, 29, 482–498. [Google Scholar] [CrossRef]
- Zhu, C.; Huo, D.; Chen, Q.; Xue, J.; Shen, S.; Xia, Y. A eutectic mixture of natural fatty acids can serve as the gating material for near-infrared-triggered drug release. Adv. Mater. 2017, 29, 1703702. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.; Huo, D.; Xia, Y. Phase-change materials for controlled release and related applications. Adv. Mat. 2020, 32, e2000660. [Google Scholar] [CrossRef] [PubMed]
- Hunter, J.E.; Zhang, J.; Kris-Etherton, P.M. Cardiovascular disease risk of dietary stearic acid compared with trans, other saturated, and unsaturated fatty acids: A systematic review. Am. J. Clin. Nutr. 2020, 91, 46–63. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.; Zhu, L.; Dong, Z.; Wang, Y.; Wang, X.; Zhou, W.Z. Preparation and evaluation of ofloxacin-loaded palmitic acid solid lipid nanoparticles. Int. J. Nanomed. 2011, 6, 547–555. [Google Scholar] [CrossRef]
- Rusu, A.; Buta, E.L. The development of third-generation tetracycline antibiotics and new perspectives. Pharmaceutics 2021, 13, 2085. [Google Scholar] [CrossRef]
- Zhang, M.; Cai, Z.; Zhang, G.; Zhang, D.; Pan, X. Abiotic mechanism changing tetracycline resistance in root mucus layer of floating plant: The role of antibioticexudate complexation. J. Hazard. Mater. 2021, 416, 125728. [Google Scholar] [CrossRef]
- Gouda, R.; Baishya, H.; Qing, Z. Application of mathematical models in drug release kinetics of carbidopa and levodopa ER tablets. J. Dev. Drugs 2017, 6, 1000171. [Google Scholar] [CrossRef]
- Jain, A.; Jain, S.K. In vitro release kinetics model fitting of liposomes: An insight. Chem. Phys. Lipids 2016, 201, 28–40. [Google Scholar] [CrossRef] [PubMed]
- Rousson, V.; Goşoniu, N.F. An R-square coefficient based on final prediction error. Stat. Methodol. 2007, 4, 331–340. [Google Scholar] [CrossRef]
- Pape, W.J.; Pfannenbecker, U.; Hoppe, U. Validation of the red blood cell test system as in vitro assay for rapid screening of irritation potencial of surfactants. Mol. Toxicol. 1987, 1, 525–536. [Google Scholar]
- Patel, J.B.; Tenover, F.C.; Turnidge, J.D.; Jorgensen, J.H. Susceptibility test methods: Dilution and disk diffusion methods. In Manual of Clinical Microbiology; Amer Society for Microbiology: Washington, DC, USA, 2011; pp. 1122–1143. [Google Scholar]
- European Committee for Antimicrobial Susceptibility testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID). Determination of Minimum Inhibitory Concentration (MICs) of Antibacterial Agents by Broth Dilution; European Society of Clinical Microbiology and Infectious Diseases: Basel, Switzerland, 2003. [Google Scholar]
- Mehrarya, M.; Gharehchelou, B.; Haghighi Poodeh, S.; Jamshidifar, E.; Karimifard, S.; Farasati Far, B.; Akbarzadeh, I.; Seifalian, A. Niosomal formulation for antibacterial applications. J. Drug Target. 2022, 30, 476–493. [Google Scholar] [CrossRef] [PubMed]
- Kumar, G.P.; Rajeshwarrao, P. Nonionic surfactant vesicular systems for effective drug delivery—An overview. Acta Pharm. Sin. B 2011, 1, 208–219. [Google Scholar] [CrossRef]
- Witika, B.A.; Bassey, K.E.; Demana, P.H.; Siwe-Noundou, X.; Poka, M.S. Current advances in specialised niosomal drug delivery: Manufacture, characterization and drug delivery applications. Int. J. Mol. Sci. 2022, 23, 9668. [Google Scholar] [CrossRef] [PubMed]
- Nowroozi, F.; Almasi, A.; Javidi, J.; Haeri, A.; Dadashzadeh, S. Effect of surfactant type, cholesterol content and various downsizing methods on the particle size of niosomes. Iran. J. Pharm. Res. 2018, 17, 1–11. [Google Scholar] [PubMed]
- Tavano, L.; Picci, N.; Ioele, G.; Muzzalupo, R. Tetracycline-niosomes versus Tetracycline Hydrochloride- niosomes: How to Modulate Encapsulation and Percutaneous Permeation Properties. J. Drug 2017, 1, 1–6. [Google Scholar] [CrossRef]
- Junyaprasert, V.B.; Teeranachaideekul, V.; Supaperm, T. Effect of charged and non-ionic membrane additives on physicochemical properties and stability of niosomes. AAPS Pharmscitech. 2008, 9, 851–859. [Google Scholar] [CrossRef]
- Nasseri, B. Effect of cholesterol and temperature on the elastic properties of niosomal membranes. Int. J. Pharm. 2005, 300, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Allen, T.M.; Cleland, L.G. Serum-induced leakage of liposome contents. Biochim. Biophys. Acta Biomembr. 1980, 597, 418–426. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, S.; Prabhakar, B.; Shende, P. Stabilization of lipid vesicles: Upcoming strategic insights for product development. J. Mol. Liq. 2022, 348, 118430. [Google Scholar] [CrossRef]
- Beuchat, L.R.; Golden, D.A. Antimicrobial Occurring Natually Naturally in Foods different molecular weight. Carbohydrate Polymers 1989, 54, 527–530. [Google Scholar]
- Rodríguez-Melcón, C.; Alonso-Calleja, C.; García-Fernández, C.; Carballo, J.; Capita, R. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) for Twelve Antimicrobials (Biocides and Antibiotics) in Eight Strains of Listeria monocytogenes. Biology 2022, 11, 46. [Google Scholar] [CrossRef]
- Grossman, T.H. Tetracycline Antibiotics and Resistance. Cold Spring Harb. Perspect. Med. 2016, 6, a025387. [Google Scholar] [CrossRef] [PubMed]
- Sabath, L.D.; Garner, C.; Wilcox, C.; Finland, M. Susceptibility of Staphylococcus aureus and Staphylococcus epidermidis to 65 antibiotics. Antimicrob. Agents Chemother. 1976, 9, 962–969. [Google Scholar] [CrossRef] [PubMed]
- Aelenei, P.; Rimbu, C.M.; Guguianu, E.; Dimitriu, G.; Aprotosoaie, A.C.; Brebu, M.; Miron, A. Coriander essential oil and linalool–interactions with antibiotics against Gram-positive and Gram-negative bacteria. Lett. Appl. Microbiol. 2019, 68, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Brodersen, D.E.; Clemons, W.M.; Carter, A.P.; Morgan-Warren, R.J.; Wimberly, B.T.; Ramakrishnan, V. The structural basis for the action of the antibiotics tetracycline, pactamycin, and hygromycin B on the 30S ribosomal subunit. Cell 2000, 103, 1143–1154. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, M.; Ogren, M.; Dias, J.N.R.; Silva, M.; Gil, S.; Tavares, L.; Aires-da-Silva, F.; Gaspar, M.M.; Aguiar, S.I. Liposomes as Antibiotic Delivery Systems: A Promising Nanotechnological Strategy against Antimicrobial Resistance. Molecules 2021, 26, 2047. [Google Scholar] [CrossRef]
- Maja, L.; Željko, K.; Mateja, P. Sustainable technologies for liposome preparation. J. Supercrit. Fluids 2020, 165, 104984. [Google Scholar] [CrossRef]
- Ghosh, R.; De, M. Liposome-Based Antibacterial Delivery: An Emergent Approach to Combat Bacterial Infections. ACS Omega 2023, 8, 35442–35451. [Google Scholar] [CrossRef] [PubMed]
- Seleci, D.; Seleci, M.; Walter, J.G.; Stahl, F.; Scheper, T. Niosomes as nanoparticular drug carriers: Fundamentals and recent applications. J. Nanomater. 2016, 7372306. [Google Scholar] [CrossRef]
Release Kinetic Model | Mathematical Equation |
---|---|
First order | Q/Q0 = 1 − ekt |
Korsmeyer–Peppas | Q/Q0 = k tn |
Peppas–Sahlin | Q/Q0 = K1tm + k2 t2m |
Weibull | Q/Q0 = 1 − e (−b × ta) |
Formulation | Span60 | Chol | PCM | Size (nm) | P.I. | Z-Potential (mV) |
---|---|---|---|---|---|---|
SP60 | 1 | - | - | 348.3 ± 6.8 | 0.250 | −28.3 ± 0.87 |
SP60PCM | 1 | - | 0.5 | 327.3 ± 3.6 | 0.220 | −30.6 ± 0.92 |
SP60PCM2 | 1 | - | 0.7 | 270.0 ± 4.5 | 0.237 | −34.8 ± 0.83 |
SP60CH | 0.5 | 0.5 | - | 311.1 ± 4.9 | 0.270 | −35.7 ± 0.76 |
SP60CHPCM | 0.5 | 0.5 | 0.5 | 270.7 ± 8.7 | 0.281 | −37.7 ± 1.18 |
SP60CHPCM2 | 0.5 | 0.5 | 0.7 | 244.9 ± 6.8 | 0.225 | −29.3 ± 0.84 |
Formulation | Size (nm) | P.I. | Z-Potential (mV) | EE% |
---|---|---|---|---|
SP60TC | 375.0 ± 7.9 | 0.175 | −26.1 ± 0.58 | 66.36 ± 3.79 |
SP60PCMTC | 352.5 ± 5.7 | 0.192 | −23.5 ± 1.97 | 53.44 ± 6.57 |
SP60PCM2TC | 355.3 ± 8.5 | 0.245 | −23.0 ± 0.889 | 81.29 ± 8.95 |
SP60CHTC | 488.3 ± 4.3 | 0.184 | −26.1 ± 0.520 | 71.84 ± 5.36 |
SP60CHPCMTC | 316.4 ± 7.5 | 0.263 | −27.9 ± 0.503 | 54.86 ± 6.82 |
SP60CHPCM2TC | 353.3 ± 9.5 | 0.275 | −26.6 ± 0.611 | 66.78 ± 4.77 |
Time (Days) | Size (nm) | P.I. | Z-Potential (mV) | EE% |
---|---|---|---|---|
0 | 353.3 ± 9.5 | 0.275 | −26.6 ± 0.61 | 66.78 ± 4.77 |
15 | 326.4 ± 9.8 | 0.255 | −27. 1 ± 1.01 | 65.34 ± 3.44 |
30 | 391.0 ± 6.3 | 0.276 | −26.0 ± 0.52 | 65.11 ± 3.75 |
45 | 382.8 ± 8.7 | 0.310 | −27.2 ± 0.52 | 64.99 ± 6.78 |
60 | 379.4 ± 3.6 | 0.286 | −25.5 ± 0.42 | 62.59 ± 5.85 |
90 | 384.9 ± 4.4 | 0.274 | −24.5 ± 0.53 | 63.01 ± 4.98 |
MIC | 37 °C | 42 °C | ||||
---|---|---|---|---|---|---|
SP60CHPCM2 | SP60CHPCM2 TC | TC | SP60CHPCM2 | SP60CHPCM2 TC | TC | |
BS | >2970 | 0.77 | 1.62 | 371.26 | 0.77 | 1.62 |
SE | >2970 | 112.81 | 207.94 | 371.26 | 14.10 | 103.97 |
SA | >2970 | 3.52 | 3.25 | 742.57 | 3.52 | 3.25 |
LM | >2970 | 7.05 | 3.25 | >2970 | 3.108 | 1.62 |
EF | >2970 | 28.20 | 25.99 | >2970 | 14.01 | 12.99 |
EC | >2970 | 7.05 | 6.49 | >2970 | 3.52 | 6.49 |
AB | >2970 | 7.05 | 6.49 | >2970 | 3.52 | 3.25 |
KA | >2970 | 14.1 | 6.49 | >2970 | 14.1 | 6.49 |
MBC | 37 °C | 42 °C | ||||
---|---|---|---|---|---|---|
SP60CHPCM2 | SP60CHPCM2 TC | TC | SP60CHPCM2 | SP60CHPCM2 TC | TC | |
BS | >2970 | 0.77 | 1.62 | 742.57 | 0.77 | >6.49 |
SE | >2970 | 112.81 | >415.88 | 1485.14 | >49.74 | >103.97 |
SA | >2970 | 7.05 | >103.97 | 1485.14 | >24.87 | 103.97 |
LM | >2970 | 7.05 | 6.49 | >2970 | 3.108 | 3.25 |
EF | >2970 | 28.20 | >207.94 | >2970 | >49.74 | 51.98 |
EC | >2970 | 7.05 | >25.99 | >2970 | >24.87 | >25.99 |
AB | >2970 | 7.05 | >25.99 | >2970 | 24.87 | 12.99 |
KA | >2970 | 14.1 | >51.98 | >2970 | >49.74 | >25.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazzotta, E.; Romeo, M.; Hafidi, Z.; Perez, L.; Perrotta, I.D.; Muzzalupo, R. Design of Thermosensitive Niosomes by Eutectic Mixture of Natural Fatty Acids. Pharmaceutics 2024, 16, 909. https://doi.org/10.3390/pharmaceutics16070909
Mazzotta E, Romeo M, Hafidi Z, Perez L, Perrotta ID, Muzzalupo R. Design of Thermosensitive Niosomes by Eutectic Mixture of Natural Fatty Acids. Pharmaceutics. 2024; 16(7):909. https://doi.org/10.3390/pharmaceutics16070909
Chicago/Turabian StyleMazzotta, Elisabetta, Martina Romeo, Zakaria Hafidi, Lourdes Perez, Ida Daniela Perrotta, and Rita Muzzalupo. 2024. "Design of Thermosensitive Niosomes by Eutectic Mixture of Natural Fatty Acids" Pharmaceutics 16, no. 7: 909. https://doi.org/10.3390/pharmaceutics16070909
APA StyleMazzotta, E., Romeo, M., Hafidi, Z., Perez, L., Perrotta, I. D., & Muzzalupo, R. (2024). Design of Thermosensitive Niosomes by Eutectic Mixture of Natural Fatty Acids. Pharmaceutics, 16(7), 909. https://doi.org/10.3390/pharmaceutics16070909