An Overview of Hydrothermally Synthesized Titanate Nanotubes: The Factors Affecting Preparation and Their Promising Pharmaceutical Applications
Abstract
:1. Introduction
2. Hydrothermal Synthesis Conditions
2.1. Reaction Temperature
2.2. Reaction Medium
2.3. Reaction Time
2.4. Reaction Pressure
2.5. Stirring, Agitation and Sonication
2.6. Starting Materials
2.7. Molar Ratio
3. Post Treatment
3.1. Acid Treatment
3.2. Thermal Treatment (Calcination)
4. Stability of the Prepared Nanotubes
5. Applications in the Pharmaceutical Field
6. Future Perspectives, Concerns, and Challenges
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hoyer, P. Semiconductor nanotube formation by a two-step template process. Adv. Mater. 1996, 8, 857–859. [Google Scholar] [CrossRef]
- Boudon, J.; Papa, A.-L.; Paris, J.; Millot, N. Titanate nanotubes as a versatile platform for nanomedicine. In Nanomedicine; One Central Press (OCP): Sydney, Australia, 2014; pp. 403–428. [Google Scholar]
- Ranjous, Y.; Regdon, G., Jr.; Pintye-Hodi, K.; Sovany, T. Standpoint on the priority of TNTs and CNTs as targeted drug delivery systems. Drug Discov. Today 2019, 24, 1704–1709. [Google Scholar] [CrossRef] [PubMed]
- Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K. Formation of titanium oxide nanotube. Langmuir 1998, 14, 3160–3163. [Google Scholar] [CrossRef]
- Batool, S.A.; Maqbool, M.S.S.; Javed, M.A.; Niaz, A.; Rehman, M.A.U. A Review on the Fabrication and Characterization of Titania Nanotubes Obtained via Electrochemical Anodization. Surfaces 2022, 5, 456–480. [Google Scholar] [CrossRef]
- Sipos, B.; Pintye-Hodi, K.; Regdon, G., Jr.; Konya, Z.; Viana, M.; Sovany, T. Investigation of the Compressibility and Compactibility of Titanate Nanotube-API Composites. Materials 2018, 11, 2582. [Google Scholar] [CrossRef]
- Fenyvesi, F.; Konya, Z.; Razga, Z.; Vecsernyes, M.; Kasa, P., Jr.; Pintye-Hodi, K.; Bacskay, I. Investigation of the cytotoxic effects of titanate nanotubes on Caco-2 cells. AAPS PharmSciTech 2014, 15, 858–861. [Google Scholar] [CrossRef]
- Wadhwa, S.; Rea, C.; O’Hare, P.; Mathur, A.; Roy, S.S.; Dunlop, P.S.; Byrne, J.A.; Burke, G.; Meenan, B.; McLaughlin, J.A. Comparative in vitro cytotoxicity study of carbon nanotubes and titania nanostructures on human lung epithelial cells. J. Hazard. Mater. 2011, 191, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Papa, A.L.; Dumont, L.; Vandroux, D.; Millot, N. Titanate nanotubes: Towards a novel and safer nanovector for cardiomyocytes. Nanotoxicology 2013, 7, 1131–1142. [Google Scholar] [CrossRef]
- Saker, R.; Jojárt-Laczkovich, O.; Regdon, G.J.r.; Takács, T.; Szenti, I.; Bózsity-Faragó, N.; Zupkó, I.; Sovány, T. Surface Modification of Titanate Nanotubes with a Carboxylic Arm for Further Functionalization Intended to Pharmaceutical Applications. Pharmaceutics 2023, 15, 2780. [Google Scholar] [CrossRef] [PubMed]
- Adeleye, A.T.; John, K.I.; Adeleye, P.G.; Akande, A.A.; Banjoko, O.O. One-dimensional titanate nanotube materials: Heterogeneous solid catalysts for sustainable synthesis of biofuel precursors/value-added chemicals-a review. J. Mater. Sci. 2021, 56, 18391–18416. [Google Scholar] [CrossRef]
- Hossen, M.A.; Solayman, H.; Leong, K.H.; Sim, L.C.; Yaacof, N.; Abd Aziz, A.; Lihua, W.; Monir, M.U. A comprehensive review on advances in TiO2 nanotube (TNT)-based photocatalytic CO2 reduction to value-added products. Energies 2022, 15, 8751. [Google Scholar] [CrossRef]
- Zakir, O.; Ait-Karra, A.; Idouhli, R.; Khadiri, M.; Dikici, B.; Aityoub, A.; Abouelfida, A.; Outzourhit, A. A review on TiO2 nanotubes: Synthesis strategies, modifications, and applications. J. Solid State Electrochem. 2023, 27, 2289–2307. [Google Scholar] [CrossRef]
- Wang, F.; Shi, L.; He, W.X.; Han, D.; Yan, Y.; Niu, Z.Y.; Shi, S.G. Bioinspired micro/nano fabrication on dental implant-bone interface. Appl. Surf. Sci. 2013, 265, 480–488. [Google Scholar] [CrossRef]
- Yao, C.; Webster, T.J. Prolonged antibiotic delivery from anodized nanotubular titanium using a co-precipitation drug loading method. J. Biomed. Mater. Res. B Appl. Biomater. 2009, 91, 587–595. [Google Scholar] [CrossRef]
- Junkar, I.; Kulkarni, M.; Bencina, M.; Kovac, J.; Mrak-Poljsak, K.; Lakota, K.; Sodin-Semrl, S.; Mozetic, M.; Iglic, A. Titanium Dioxide Nanotube Arrays for Cardiovascular Stent Applications. ACS Omega 2020, 5, 7280–7289. [Google Scholar] [CrossRef]
- Zhang, Y.; Gulati, K.; Li, Z.; Di, P.; Liu, Y. Dental Implant Nano-Engineering: Advances, Limitations and Future Directions. Nanomaterials 2021, 11, 2489. [Google Scholar] [CrossRef]
- Abdullah, M.; Kamarudin, S.K. Titanium dioxide nanotubes (TNT) in energy and environmental applications: An overview. Renew. Sustain. Energy Rev. 2017, 76, 212–225. [Google Scholar] [CrossRef]
- Turki, A.; Kochkar, H.; Guillard, C.; Berhault, G.; Ghorbel, A. Effect of Na content and thermal treatment of titanate nanotubes on the photocatalytic degradation of formic acid. Appl. Catal. B Environ. 2013, 138, 401–415. [Google Scholar] [CrossRef]
- Tsai, C.C.; Teng, H.S. Regulation of the physical characteristics of Titania nanotube aggregates synthesized from hydrothermal treatment. Chem. Mater. 2004, 16, 4352–4358. [Google Scholar] [CrossRef]
- Vu, T.H.T.; Au, H.T.; Tran, L.T.; Nguyen, T.M.T.; Tran, T.T.T.; Pham, M.T.; Do, M.H.; Nguyen, D.L. Synthesis of titanium dioxide nanotubes via one-step dynamic hydrothermal process. J. Mater. Sci. 2014, 49, 5617–5625. [Google Scholar] [CrossRef]
- Yang, J.; Jin, Z.; Wang, X.; Li, W.; Zhang, J.; Zhang, S.; Guo, X.; Zhang, Z. Study on composition, structure and formation process of nanotube Na2Ti2O4(OH)2. Dalton Trans. 2003, 20, 3898–3901. [Google Scholar] [CrossRef]
- Morgado, E.; de Abreu, M.A.S.; Pravia, O.R.C.; Marinkovic, B.A.; Jardim, P.M.; Rizzo, F.C.; Araújo, A.S. A study on the structure and thermal stability of titanate nanotubes as a function of sodium content. Solid State Sci. 2006, 8, 888–900. [Google Scholar] [CrossRef]
- Arruda, L.B.; Santos, C.M.; Orlandi, M.O.; Schreiner, W.H.; Lisboa, P.N. Formation and evolution of TiO2 nanotubes in alkaline synthesis. Ceram. Int. 2015, 41, 2884–2891. [Google Scholar] [CrossRef]
- Nada, A.; Moustafa, Y.; Hamdy, A. Improvement of titanium dioxide nanotubes through study washing effect on hydrothermal. Br. J. Environ. Sci. 2014, 2, 29–40. [Google Scholar] [CrossRef]
- Li, W.J.; Fu, T.; Xie, F.; Yu, S.F.; He, S.L. The multi-staged formation process of titanium oxide nanotubes and its thermal stability. Mater. Lett. 2007, 61, 730–735. [Google Scholar] [CrossRef]
- Viet, P.V.; Phan, B.T.; Van Hieu, L.; Thi, C.M. The Effect of Acid Treatment and Reactive Temperature on the Formation of TiO2 Nanotubes. J. Nanosci. Nanotechnol. 2015, 15, 5202–5206. [Google Scholar] [CrossRef] [PubMed]
- Vuong, D.; Tram, D.; Pho, P.; Chien, N. Hydrothermal synthesis and photocatalytic properties of TiO2 nanotubes. In Physics and Engineering of New Materials; Springer Proceedings in Physics (SPPHY, volume 127); Springer: Berlin/Heidelberg, Germany, 2009; pp. 95–101. [Google Scholar] [CrossRef]
- Sreekantan, S.; Wei, L.C. Study on the formation and photocatalytic activity of titanate nanotubes synthesized via hydrothermal method. J. Alloys Compd. 2010, 490, 436–442. [Google Scholar] [CrossRef]
- Ribbens, S.; Meynen, V.; Van Tendeloo, G.; Ke, X.; Mertens, M.; Maes, B.U.W.; Cool, P.; Vansant, E.F. Development of photocatalytic efficient Ti-based nanotubes and nanoribbons by conventional and microwave assisted synthesis strategies. Microporous Mesoporous Mater. 2008, 114, 401–409. [Google Scholar] [CrossRef]
- Yuan, Z.Y.; Su, B.L. Titanium oxide nanotubes, nanofibers and nanowires. Colloid Surf. A 2004, 241, 173–183. [Google Scholar] [CrossRef]
- Lan, Y.; Gao, X.P.; Zhu, H.Y.; Zheng, Z.F.; Yan, T.Y.; Wu, F.; Ringer, S.P.; Song, D.Y. Titanate nanotubes and nanorods prepared from rutile powder. Adv. Funct. Mater. 2005, 15, 1310–1318. [Google Scholar] [CrossRef]
- Lee, D.S.; Lee, S.Y.; Rhee, K.Y.; Park, S.J. Effect of hydrothermal temperature on photocatalytic properties of TiO2 nanotubes. Curr. Appl. Phys. 2014, 14, 415–420. [Google Scholar] [CrossRef]
- Lee, C.K.; Lyu, M.D.; Liu, S.S.; Chen, H.C. The synthetic parameters for the preparation of nanotubular titanate with highly photocatalytic activity. J. Taiwan Inst. Chem. Eng. 2009, 40, 463–470. [Google Scholar] [CrossRef]
- Morgan, D.L.; Zhu, H.Y.; Frost, R.L.; Waclawik, E.R. Determination of a morphological phase diagram of titania/titanate nanostructures from alkaline hydrothermal treatment of Degussa P25. Chem. Mater. 2008, 20, 3800–3802. [Google Scholar] [CrossRef]
- Ma, R.; Fukuda, K.; Sasaki, T.; Osada, M.; Bando, Y. Structural features of titanate nanotubes/nanobelts revealed by Raman, X-ray absorption fine structure and electron diffraction characterizations. J. Phys. Chem. B 2005, 109, 6210–6214. [Google Scholar] [CrossRef] [PubMed]
- Bavykin, D.V.; Parmon, V.N.; Lapkin, A.A.; Walsh, F.C. The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes. J. Mater. Chem. 2004, 14, 3370–3377. [Google Scholar] [CrossRef]
- Seo, D.S.; Lee, J.K.; Kim, H. Preparation of nanotube-shaped TiO2 powder. J. Cryst. Growth 2001, 229, 428–432. [Google Scholar] [CrossRef]
- Cho, S.H.; Nguyen, H.H.; Gyawali, G.; Son, J.E.; Sekino, T.; Joshi, B.; Kim, S.H.; Jo, Y.H.; Kim, T.H.; Lee, S.W. Effect of microwave-assisted hydrothermal process parameters on formation of different TiO2 nanostructures. Catal. Today 2016, 266, 46–52. [Google Scholar] [CrossRef]
- Guo, Y.; Lee, N.H.; Oh, H.J.; Yoon, C.R.; Park, K.S.; Lee, H.G.; Lee, K.S.; Kim, S.J. Structure-tunable synthesis of titanate nanotube thin films via a simple hydrothermal process. Nanotechnology 2007, 18, 295608. [Google Scholar] [CrossRef]
- Nakahira, A.; Kato, W.; Tamai, M.; Isshiki, T.; Nishio, K.; Aritani, H. Synthesis of nanotube from a layered H2Ti4O9·H2O in a hydrothermal treatment using various titania sources. J. Mater. Sci. 2004, 39, 4239–4245. [Google Scholar] [CrossRef]
- Elsanousi, A.; Elssfah, E.M.; Zhang, J.; Lin, J.; Song, H.S.; Tang, C.C. Hydrothermal treatment duration effect on the transformation of titanate nanotubes into nanoribbons. J. Phys. Chem. C 2007, 111, 14353–14357. [Google Scholar] [CrossRef]
- Weng, L.Q.; Song, S.H.; Hodgson, S.; Baker, A.; Yu, J. Synthesis and characterisation of nanotubular titanates and titania. J. Eur. Ceram. Soc. 2006, 26, 1405–1409. [Google Scholar] [CrossRef]
- Ranjitha, A.; Muthukumarasamy, N.; Thambidurai, M.; Velauthapillai, D.; Agilan, S.; Balasundaraprabhu, R. Effect of reaction time on the formation of TiO2 nanotubes prepared by hydrothermal method. Optik 2015, 126, 2491–2494. [Google Scholar] [CrossRef]
- Qamar, M.; Zaidi, S.A.; Rafatullah, M.; Qutob, M.; Kim, S.J.; Drmosh, Q.A. Role of Post-Hydrothermal Treatment on the Microstructures and Photocatalytic Activity of TiO2-Based Nanotubes. Catalysts 2022, 12, 702. [Google Scholar] [CrossRef]
- Poudel, B.; Wang, W.Z.; Dames, C.; Huang, J.Y.; Kunwar, S.; Wang, D.Z.; Banerjee, D.; Chen, G.; Ren, Z.F. Formation of crystallized titania nanotubes and their transformation into nanowires. Nanotechnology 2005, 16, 1935–1940. [Google Scholar] [CrossRef]
- Tsai, C.C.; Teng, H.S. Structural features of nanotubes synthesized from NaOH treatment on TiO2 with different post-treatments. Chem. Mater. 2006, 18, 367–373. [Google Scholar] [CrossRef]
- Safaei, M.; Sarraf-Mamoory, R.; Rashidzadeh, M. The interactive effect of agitation condition and titania particle size in hydrothermal synthesis of titanate nanostructures. J. Nanoparticle Res. 2010, 12, 2723–2728. [Google Scholar] [CrossRef]
- Ma, Y.T.; Lin, Y.; Xiao, X.R.; Zhou, X.W.; Li, X.P. Sonication-hydrothermal combination technique for the synthesis of titanate nanotubes from commercially available precursors. Mater. Res. Bull. 2006, 41, 237–243. [Google Scholar] [CrossRef]
- Preda, S.; Teodorescu, V.S.; Musuc, A.M.; Andronescu, C.; Zaharescu, M. Influence of the TiO2 precursors on the thermal and structural stability of titanate-based nanotubes. J. Mater. Res. 2013, 28, 294–303. [Google Scholar] [CrossRef]
- Saponjic, Z.V.; Dimitrijevic, N.M.; Tiede, D.M.; Goshe, A.J.; Zuo, X.; Chen, L.X.; Barnard, A.S.; Zapol, P.; Curtiss, L.; Rajh, T. Shaping Nanometer-Scale Architecture Through Surface Chemistry. Adv. Mater. 2005, 17, 965–971. [Google Scholar] [CrossRef]
- Camposeco, R.; Castillo, S.; Mejia-Centeno, I.; Navarrete, J.; Gomez, R. Effect of the Ti/Na molar ratio on the acidity and the structure of TiO2 nanostructures: Nanotubes, nanofibers and nanowires. Mater. Charact. 2014, 90, 113–120. [Google Scholar] [CrossRef]
- Nguyen, N.H.; Bai, H. Effect of washing pH on the properties of titanate nanotubes and its activity for photocatalytic oxidation of NO and NO2. Appl. Surf. Sci. 2015, 355, 672–680. [Google Scholar] [CrossRef]
- Lee, C.-K.; Wang, C.-C.; Juang, L.-C.; Lyu, M.-D.; Hung, S.-H.; Liu, S.-S. Effects of sodium content on the microstructures and basic dye cation exchange of titanate nanotubes. Colloids Surf. A Physicochem. Eng. Asp. 2008, 317, 164–173. [Google Scholar] [CrossRef]
- Nakahira, A.; Kubo, T.; Numako, C. TiO2-derived titanate nanotubes by hydrothermal process with acid treatments and their microstructural evaluation. ACS Appl. Mater. Interfaces 2010, 2, 2611–2616. [Google Scholar] [CrossRef] [PubMed]
- Lopez Zavala, M.A.; Lozano Morales, S.A.; Avila-Santos, M. Synthesis of stable TiO2 nanotubes: Effect of hydrothermal treatment, acid washing and annealing temperature. Heliyon 2017, 3, e00456. [Google Scholar] [CrossRef]
- Kiatkittipong, K.; Scott, J.; Amal, R. Hydrothermally synthesized titanate nanostructures: Impact of heat treatment on particle characteristics and photocatalytic properties. ACS Appl. Mater. Interfaces 2011, 3, 3988–3996. [Google Scholar] [CrossRef]
- Aphairaj, D.; Wirunmongkol, T.; Niyomwas, S.; Pavasupree, S.; Limsuwan, P. Synthesis of anatase TiO2 nanotubes derived from a natural leucoxene mineral by the hydrothermal method. Ceram. Int. 2014, 40, 9241–9247. [Google Scholar] [CrossRef]
- Bavykin, D.V.; Friedrich, J.M.; Lapkin, A.A.; Walsh, F.C. Stability of aqueous suspensions of titanate nanotubes. Chem. Mater. 2006, 18, 1124–1129. [Google Scholar] [CrossRef]
- Nian, J.N.; Chen, S.A.; Tsai, C.C.; Teng, H. Structural feature and catalytic performance of Cu species distributed over TiO2 nanotubes. J. Phys. Chem. B 2006, 110, 25817–25824. [Google Scholar] [CrossRef]
- Ranjous, Y.; Kósa, D.; Ujhelyi, Z.; Regdon, G.; Nagy, K.A.; Szenti, I.; Kónya, Z.; Bácskay, I.; Sovány, T. Evaluation of the permeability and in vitro cytotoxicity of functionalized titanate nanotubes on Caco-2 cell line. Acta Pharm. Hung. 2021, 91, 31–39. [Google Scholar] [CrossRef]
- Peng, S.Q.; Zeng, X.P.; Li, Y.X. Titanate nanotube modified with different nickel precursors for enhanced Eosin Y-sensitized photocatalytic hydrogen evolution. Int. J. Hydrogen Energy 2015, 40, 6038–6049. [Google Scholar] [CrossRef]
- Vasilev, K.; Poh, Z.; Kant, K.; Chan, J.; Michelmore, A.; Losic, D. Tailoring the surface functionalities of titania nanotube arrays. Biomaterials 2010, 31, 532–540. [Google Scholar] [CrossRef]
- Lai, S.; Zhang, W.; Liu, F.; Wu, C.; Zeng, D.; Sun, Y.; Xu, Y.; Fang, Y.; Zhou, W. TiO2 nanotubes as animal drug delivery system and in vitro controlled release. J. Nanosci. Nanotechnol. 2013, 13, 91–97. [Google Scholar] [CrossRef]
- Popat, K.C.; Eltgroth, M.; LaTempa, T.J.; Grimes, C.A.; Desai, T.A. Titania nanotubes: A novel platform for drug-eluting coatings for medical implants? Small 2007, 3, 1878–1881. [Google Scholar] [CrossRef] [PubMed]
- Popat, K.C.; Eltgroth, M.; Latempa, T.J.; Grimes, C.A.; Desai, T.A. Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes. Biomaterials 2007, 28, 4880–4888. [Google Scholar] [CrossRef]
- Aninwene, G.E.; Yao, C.; Webster, T.J. Enhanced osteoblast adhesion to drug-coated anodized nanotubular titanium surfaces. Int. J. Nanomed. 2008, 3, 257–264. [Google Scholar] [CrossRef]
- Shrestha, N.K.; Macak, J.M.; Schmidt-Stein, F.; Hahn, R.; Mierke, C.T.; Fabry, B.; Schmuki, P. Magnetically guided titania nanotubes for site-selective photocatalysis and drug release. Angew. Chem. Int. Ed. Engl. 2009, 48, 969–972. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; Mendelsohn, A.D.; LaTempa, T.J.; Yoriya, S.; Grimes, C.A.; Desai, T.A. Long-term small molecule and protein elution from TiO2 nanotubes. Nano Lett. 2009, 9, 1932–1936. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.J.; Kim, H.J.; Lee, J.H.; Choi, H.W.; Kim, H.G.; Chung, H.M.; Do, J.T. Silica coated titania nanotubes for drug delivery system. Mater. Lett. 2010, 64, 1664–1667. [Google Scholar] [CrossRef]
- Aw, M.S.; Simovic, S.; Addai-Mensah, J.; Losic, D. Polymeric micelles in porous and nanotubular implants as a new system for extended delivery of poorly soluble drugs. J. Mater. Chem. 2011, 21, 7082–7089. [Google Scholar] [CrossRef]
- Aw, M.S.; Addai-Mensah, J.; Losic, D. A multi-drug delivery system with sequential release using titania nanotube arrays. Chem. Commun. 2012, 48, 3348–3350. [Google Scholar] [CrossRef]
- Li, H.R.; Cui, Q.; Feng, B.; Wang, J.X.; Lu, X.; Weng, J. Antibacterial activity of TiO2 nanotubes: Influence of crystal phase, morphology and Ag deposition. Appl. Surf. Sci. 2013, 284, 179–183. [Google Scholar] [CrossRef]
- Guo, Z.J.; Chen, C.; Gao, Q.; Li, Y.B.; Zhang, L. Fabrication of silver-incorporated TiO2 nanotubes and evaluation on its antibacterial activity. Mater. Lett. 2014, 137, 464–467. [Google Scholar] [CrossRef]
- Mei, S.; Wang, H.; Wang, W.; Tong, L.; Pan, H.; Ruan, C.; Ma, Q.; Liu, M.; Yang, H.; Zhang, L.; et al. Antibacterial effects and biocompatibility of titanium surfaces with graded silver incorporation in titania nanotubes. Biomaterials 2014, 35, 4255–4265. [Google Scholar] [CrossRef] [PubMed]
- Chennell, P.; Feschet-Chassot, E.; Devers, T.; Awitor, K.O.; Descamps, S.; Sautou, V. In vitro evaluation of TiO2 nanotubes as cefuroxime carriers on orthopaedic implants for the prevention of periprosthetic joint infections. Int. J. Pharm. 2013, 455, 298–305. [Google Scholar] [CrossRef] [PubMed]
- Kumeria, T.; Mon, H.; Aw, M.S.; Gulati, K.; Santos, A.; Griesser, H.J.; Losic, D. Advanced biopolymer-coated drug-releasing titania nanotubes (TNTs) implats with simultaneously enhanced osteoblast adhesion and antibacterial properties. Colloids Surf. B Biointerfaces 2015, 130, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Ma, P.; Hu, Y.; Xu, G.; Xu, K.; Chen, W.; Ran, Q.; Dai, L.; Yu, Y.; Mu, C. Alendronate-loaded hydroxyapatite-TiO2 nanotubes for improved bone formation in osteoporotic rabbits. J. Mater. Chem. B 2016, 4, 1423–1436. [Google Scholar] [CrossRef] [PubMed]
- Faria, H.A.; de Queiroz, A.A. A novel drug delivery of 5-fluorouracil device based on TiO2/ZnS nanotubes. Mater. Sci. Eng. C Mater. Biol. Appl. 2015, 56, 260–268. [Google Scholar] [CrossRef] [PubMed]
- Feschet-Chassot, E.; Raspal, V.; Sibaud, Y.; Awitor, O.K.; Bonnemoy, F.; Bonnet, J.L.; Bohatier, J. Tunable functionality and toxicity studies of titanium dioxide nanotube layers. Thin Solid Film. 2011, 519, 2564–2568. [Google Scholar] [CrossRef]
- Popat, K.C.; Leoni, L.; Grimes, C.A.; Desai, T.A. Influence of engineered titania nanotubular surfaces on bone cells. Biomaterials 2007, 28, 3188–3197. [Google Scholar] [CrossRef]
- Bjursten, L.M.; Rasmusson, L.; Oh, S.; Smith, G.C.; Brammer, K.S.; Jin, S. Titanium dioxide nanotubes enhance bone bonding in vivo. J. Biomed. Mater. Res. A 2010, 92, 1218–1224. [Google Scholar] [CrossRef]
- Kamal, N.; Zaki, A.H.; El-Shahawy, A.A.; Sayed, O.M.; El-Dek, S.I. Changing the morphology of one-dimensional titanate nanostructures affects its tissue distribution and toxicity. Toxicol. Ind. Health 2020, 36, 272–286. [Google Scholar] [CrossRef]
- Magrez, A.; Horvath, L.; Smajda, R.; Salicio, V.; Pasquier, N.; Forro, L.; Schwaller, B. Cellular toxicity of TiO2-based nanofilaments. ACS Nano 2009, 3, 2274–2280. [Google Scholar] [CrossRef]
- Papa, A.-L.; Maurizi, L.; Vandroux, D.; Walker, P.; Millot, N. Synthesis of titanate nanotubes directly coated with USPIO in hydrothermal conditions: A new detectable nanocarrier. J. Phys. Chem. C 2011, 115, 19012–19017. [Google Scholar] [CrossRef]
- Ray, M.; Chatterjee, S.; Das, T.; Bhattacharyya, S.; Ayyub, P.; Mazumdar, S. Conjugation of cytochrome c with hydrogen titanate nanotubes: Novel conformational state with implications for apoptosis. Nanotechnology 2011, 22, 415705. [Google Scholar] [CrossRef]
- Mirjolet, C.; Papa, A.; Créhange, G.; Raguin, O.; Seignez, C.; Paul, C.; Truc, G.; Maingon, P.; Millot, N. The radiosensitization effect of titanate nanotubes as a new tool in radiation therapy for glioblastoma: A proof-of-concept. Radiother. Oncol. 2013, 108, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Kalbacova, M.; Macak, J.; Schmidt-Stein, F.; Mierke, C.; Schmuki, P. TiO2 nanotubes: Photocatalyst for cancer cell killing. Phys. Status Solidi–Rapid Res. Lett. 2008, 2, 194–196. [Google Scholar] [CrossRef]
- Wang, Y.; Yuan, L.; Yao, C.; Fang, J.; Wu, M. Cytotoxicity Evaluation of pH-Controlled Antitumor Drug Release System of Titanium Dioxide Nanotubes. J. Nanosci. Nanotechnol. 2015, 15, 4143–4148. [Google Scholar] [CrossRef]
- Loiseau, A.; Boudon, J.; Oudot, A.; Moreau, M.; Boidot, R.; Chassagnon, R.; Said, N.M.; Roux, S.; Mirjolet, C.; Millot, N. Titanate Nanotubes Engineered with Gold Nanoparticles and Docetaxel to Enhance Radiotherapy on Xenografted Prostate Tumors. Cancers 2019, 11, 1962. [Google Scholar] [CrossRef]
- Paris, J.; Bernhard, Y.; Boudon, J.; Heintz, O.; Millot, N.; Decréau, R.A. Phthalocyanine–titanate nanotubes: A promising nanocarrier detectable by optical imaging in the so-called imaging window. RSC Adv. 2015, 5, 6315–6322. [Google Scholar] [CrossRef]
- Mandal, S.S.; Jose, D.; Bhattacharyya, A.J. Role of surface chemistry in modulating drug release kinetics in titania nanotubes. Mater. Chem. Phys. 2014, 147, 247–253. [Google Scholar] [CrossRef]
- Khoshnood, N.; Zamanian, A.; Massoudi, A. Mussel-inspired surface modification of titania nanotubes as a novel drug delivery system. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 77, 748–754. [Google Scholar] [CrossRef]
- Torres, C.C.; Campos, C.H.; Diaz, C.; Jimenez, V.A.; Vidal, F.; Guzman, L.; Alderete, J.B. PAMAM-grafted TiO2 nanotubes as novel versatile materials for drug delivery applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 65, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Xie, C.L.; Luo, F.; Li, P.; Xiao, X.F. P25 nanoparticles decorated on titania nanotubes arrays as effective drug delivery system for ibuprofen. Appl. Surf. Sci. 2015, 324, 621–626. [Google Scholar] [CrossRef]
- Sipos, B.; Regdon, G.; Konya, Z.; Pintye-Hodi, K.; Sovany, T. Comparative study on the rheological properties and tablettability of various APIs and their composites with titanate nanotubes. Powder Technol. 2017, 321, 419–427. [Google Scholar] [CrossRef]
- Sipos, B.; Pintye-Hodi, K.; Konya, Z.; Kelemen, A.; Regdon, G., Jr.; Sovany, T. Physicochemical characterisation and investigation of the bonding mechanisms of API-titanate nanotube composites as new drug carrier systems. Int. J. Pharm. 2017, 518, 119–129. [Google Scholar] [CrossRef]
- Ranjous, Y.; Regdon, G., Jr.; Pintye-Hodi, K.; Varga, T.; Szenti, I.; Konya, Z.; Sovany, T. Optimization of the Production Process and Product Quality of Titanate Nanotube-Drug Composites. Nanomaterials 2019, 9, 1406. [Google Scholar] [CrossRef]
Synthesis Method | Diameters (nm) | Loaded Agent | Application | Ref. |
---|---|---|---|---|
anodization | 80 | Bovine serum albumin/lysozyme | Controlled drug release in orthopedics and dental implants | [65] |
anodization | 80 | Gentamicin |
| [66] |
anodization | 60 | Penicillin Streptomycin Dexamethasone | Prolonged drug release up to 3 days (nanotubes were coated with drugs) | [67] |
anodization | - | Violet-blue fluorescent marker | Magnetically guided nanotubes for site-specific photoinduced drug release | [68] |
anodization | 100–300 | Albumin Sirolimus Paclitaxel | Small and large molecules for controlled delivery | [69] |
Sol gel/ anodization | 130 | Transcriptional factors | Protein delivery | [70] |
anodization | 110 | Coumarin6 Indomethacin | Implantable extended drug delivery for poorly water-soluble drug | [71] |
anodization | - | Indomethacin Itraconazole Gentamicin sulfate | Multi-drug delivery system with immediate, delayed and sustained therapeutic action possibility in bone implant | [72] |
anodization | 25–100 | Silver NPs | Anti-bacterial activity against E. coli | [73] |
anodization | 180 | Silver NPs | Anti-bacterial activity against E. coli and S. aureus | [74] |
anodization | 80 | Silver NPs | Anti-bacterial activity | [75] |
anodization | 70–90 | cefuroxime | reservoir on the orthopedic implant for local delivery | [76] |
anodization | - | Gentamicin coated with biopolymers (PLGA and chitosan) |
| [77] |
anodization | 70 | alendronate | titanium-based implant with local anti-osteoporosis property | [78] |
Sol-gel | 10–38 | 5-Fluorouracil | anticancer sustained drug delivery system | [79] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saker, R.; Shammout, H.; Regdon, G., Jr.; Sovány, T. An Overview of Hydrothermally Synthesized Titanate Nanotubes: The Factors Affecting Preparation and Their Promising Pharmaceutical Applications. Pharmaceutics 2024, 16, 635. https://doi.org/10.3390/pharmaceutics16050635
Saker R, Shammout H, Regdon G Jr., Sovány T. An Overview of Hydrothermally Synthesized Titanate Nanotubes: The Factors Affecting Preparation and Their Promising Pharmaceutical Applications. Pharmaceutics. 2024; 16(5):635. https://doi.org/10.3390/pharmaceutics16050635
Chicago/Turabian StyleSaker, Ranim, Hadi Shammout, Géza Regdon, Jr., and Tamás Sovány. 2024. "An Overview of Hydrothermally Synthesized Titanate Nanotubes: The Factors Affecting Preparation and Their Promising Pharmaceutical Applications" Pharmaceutics 16, no. 5: 635. https://doi.org/10.3390/pharmaceutics16050635
APA StyleSaker, R., Shammout, H., Regdon, G., Jr., & Sovány, T. (2024). An Overview of Hydrothermally Synthesized Titanate Nanotubes: The Factors Affecting Preparation and Their Promising Pharmaceutical Applications. Pharmaceutics, 16(5), 635. https://doi.org/10.3390/pharmaceutics16050635