Nanoencapsulation of Achyrocline satureioides (Lam) DC—Essential Oil and Controlled Release: Experiments and Modeling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Essential Oil
2.2. GC-MS Analysis
2.3. Preparation of Nanoformulations
2.4. Characterization of the Nanoformulations
2.5. Nanoencapsulation Efficiency
2.6. Stability and Release
2.7. Perfumery Radar
2.8. Air Diffusion
3. Results and Discussion
3.1. Chemical Analysis
3.2. Characterization of the Nanocapsules
3.3. Essential Oil Encapsulation Efficiency
3.4. Results on Stability and Release
3.5. Results from Perfumery Radar
3.6. Diffusion and Modeling
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Garcia, D.; Wu, Y.; Furlan, M.R.; Hassani, D.; Khalid, M.; Huang, D.; Ming, L.C. Dry Biomass and Volatile Oil Production of Achyrocline satureioides Subjected to Agronomic Management Practices. Rev. Bras. Farmacogn. 2021, 31, 832–837. [Google Scholar] [CrossRef]
- Neto, J.A.R.; Tarôco, B.R.P.; Dos Santos, H.B.; Thomé, R.G.; Wolfram, E.; de A Ribeiro, R.I.M. Using the plants of Brazilian Cerrado for wound healing: From traditional use to scientific approach. J. Ethnopharmacol. 2020, 260, 112547. [Google Scholar] [CrossRef] [PubMed]
- Retta, D.; Dellacassa, E.; Villamil, J.; Suárez, S.A.; Bandoni, A.L. Marcela, a promising medicinal and aromatic plant from Latin America: A review. Ind. Crops Prod. 2012, 38, 27–38. [Google Scholar] [CrossRef]
- Jaenson, T.G.T.; Pålsson, K.; Borg-Karlson, A.-K. Evaluation of extracts and oils of mosquito (Diptera: Culicidae) repellent plants from Sweden and Guinea-Bissau. J. Med. Entomol. 2006, 43, 113–119. [Google Scholar] [CrossRef]
- Trongtokit, Y.; Rongsriyam, Y.; Komalamisra, N.; Apiwathnasorn, C. Comparative repellency of 38 essential oils against mosquito bites. Phyther. Res. 2005, 19, 303–309. [Google Scholar] [CrossRef]
- Leal, P.F.; Queiroga, C.L.; Rodrigues, M.V.N.; Montanari, I.; Meireles, A.M.A. Global yields, chemical compositions, and antioxidant activities of extracts from Achyrocline alata and Achyrocline satureioides. Pharmacogn. Mag. 2006, 2, 153. [Google Scholar]
- Pires, V.P.; Almeida, R.N.; Wagner, V.M.; Lucas, A.M.; Vargas, R.M.F.; Cassel, E. Extraction process of the Achyrocline satureioides (Lam) DC. essential oil by steam distillation: Modeling, aromatic potential and fractionation. J. Essent. Oil Res. 2019, 31, 286–296. [Google Scholar] [CrossRef]
- El Asbahani, A.; Miladi, K.; Badri, W.; Sala, M.; Addi, E.H.A.; Casabianca, H.; El Mousadik, A.; Hartmann, D.; Jilale, A.; Renaud, F.N.R. Essential oils: From extraction to encapsulation. Int. J. Pharm. 2015, 483, 220–243. [Google Scholar] [CrossRef]
- Saifullah, M.; Shishir, M.R.I.; Ferdowsi, R.; Rahman, M.R.T.; Van Vuong, Q. Micro and nano encapsulation, retention and controlled release of flavor and aroma compounds: A critical review. Trends Food Sci. Technol. 2019, 86, 230–251. [Google Scholar] [CrossRef]
- Lammari, N.; Louaer, O.; Meniai, A.H.; Elaissari, A. Encapsulation of essential oils via nanoprecipitation process: Overview, progress, challenges and prospects. Pharmaceutics 2020, 12, 431. [Google Scholar] [CrossRef]
- Froiio, F.; Ginot, L.; Paolino, D.; Lebaz, N.; Bentaher, A.; Fessi, H.; Elaissari, A. Essential oils-loaded polymer particles: Preparation, characterization and antimicrobial property. Polymers 2019, 11, 1017. [Google Scholar] [CrossRef] [PubMed]
- Hosseinkhani, B.; Callewaert, C.; Vanbeveren, N.; Boon, N. Novel biocompatible nanocapsules for slow release of fragrances on the human skin. New Biotechnol. 2015, 32, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, M.A.; Rodriguez, O.; Gomes, P.; Mata, V.; Rodrigues, A. Perfume Engineering: Design, Performance and Classification, 1st ed.; Butterworth-Heinemann: Waltham, MA, USA, 2013. [Google Scholar]
- Vargas, R.M.F.; Barroso, M.S.T.; Neto, R.G.; Scopel, R.; Falcão, M.A.; da Silva, C.F.; Cassel, E. Natural products obtained by subcritical and supercritical fluid extraction from Achyrocline satureioides (Lam) DC using CO2. Ind. Crops Prod. 2013, 50, 430–435. [Google Scholar] [CrossRef]
- Teixeira, M.A.; Rodríguez, O.; Rodrigues, A.E. Perfumery Radar: A Predictive Tool for Perfume Family Classification. Ind. Eng. Chem. Res. 2010, 49, 11764–11777. [Google Scholar] [CrossRef]
- Almeida, R.N.; Costa, P.; Pereira, J.; Cassel, E.; Rodrigues, A.E. Evaporation and Permeation of Fragrance Applied to the Skin. Ind. Eng. Chem. Res. 2019, 58, 9644–9650. [Google Scholar] [CrossRef]
- Almeida, R.N.; Rodrigues, A.E.; Vargas, R.M.F.; Cassel, E. Radial diffusion model for fragrance materials: Prediction and validation. AIChE J. 2021, 67, e17351. [Google Scholar] [CrossRef]
- Costa, P.; Teixeira, M.A.; Lièvre, Y.; Loureiro, J.M.; Rodrigues, A.E. Modeling Fragrance Components Release from a Simplified Matrix Used in Toiletries and Household Products. Ind. Eng. Chem. Res. 2015, 54, 11720–11731. [Google Scholar] [CrossRef]
- Costa, P.; Velasco, C.V.; Loureiro, J.M.; Rodrigues, A.E. Effect of cosmetic matrices on the release and odour profiles of the supercritical CO2 extract of Origanum majorana L. Int. J. Cosmet. Sci. 2016, 38, 364–374. [Google Scholar] [CrossRef]
- Souza Junior, E.T.D.; Siqueira, L.M.; Almeida, R.N.; Lucas, A.M.; Silva, C.G.F.D.; Cassel, E.; Vargas, R.M.F. Comparison of different extraction techniques of Zingiber officinale essential oil. Braz. Arch. Biol. Technol. 2020, 63, e20190213. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oils by Gas Chromatography/Mass Spectrometry; Allured Publ. Corp.: Carol Stream, IL, USA, 2007. [Google Scholar]
- Fessi, H.; Puisieux, F.; Devissaguet, J.P.; Ammoury, N.; Benita, S. Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int. J. Pharm. 1989, 55, R1–R4. [Google Scholar] [CrossRef]
- Baldissera, M.D.; Oliveira, C.B.; Rech, V.C.; Rezer, J.F.P.; Sagrillo, M.R.; Alves, M.P.; da Silva, A.P.T.; Leal, D.B.R.; Boligon, A.A.; Athayde, M.L. Treatment with essential oil of Achyrocline satureioides in rats infected with Trypanosoma evansi: Relationship between protective effect and tissue damage. Pathol. Pract. 2014, 210, 1068–1074. [Google Scholar] [CrossRef] [PubMed]
- Ritter, C.S.; Baldissera, M.D.; Grando, T.H.; Souza, C.F.; Sagrillo, M.R.; da Silva, A.P.T.; Moresco, R.N.; Guarda, N.S.; da Silva, A.S.; Stefani, L.M. Achyrocline satureioides essential oil-loaded in nanocapsules reduces cytotoxic damage in liver of rats infected by Trypanosoma evansi. Microb. Pathog. 2017, 103, 149–154. [Google Scholar] [CrossRef] [PubMed]
- da Silva, C.F.; Petró, R.R.; Almeida, R.N.; Cassel, E.; Vargas, R.M.F. On the production and release of Hedychium coronarium essential oil from nanoformulations. Ind. Crops Prod. 2021, 171, 113984. [Google Scholar] [CrossRef]
- Scopel, R.; Falcão, M.A.; Cappellari, A.R.; Morrone, F.B.; Guterres, S.S.; Cassel, E.; Kasko, A.M.; Vargas, R.M.F. Lipid-polymer hybrid nanoparticles as a targeted drug delivery system for melanoma treatment. Int. J. Polym. Mater. Polym. Biomater. 2022, 71, 127–138. [Google Scholar] [CrossRef]
- Mohamed, A.; Finkenstadt, V.L.; Gordon, S.H.; Biresaw, G.; Palmquist, D.E.; Rayas-Duarte, P. Thermal properties of PCL/gluten bioblends characterized by TGA, DSC, SEM, and infrared-PAS. J. Appl. Polym. Sci. 2008, 110, 3256–3266. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.-E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Rufino, M.D.S.M.; Alves, R.E.; Brito, E.S.D.; Morais, S.M.D.; Sampaio, C.D.G.; Pérez-Jiménez, J.; Saura-Colixto, F.D. Metodologia Científica: Determinação da Atividade Antioxidante Total em Frutas pela Captura do Radical Livre. Comun. Técnico on line. 2007. Available online: https://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/426953 (accessed on 20 November 2024).
- van Gemert, L.J. Odour Thresholds: Compilations of Odour Threshold Values in Air, Water and Other Media; Oliemans Punter: Utrecht, The Netherlands, 2011. [Google Scholar]
- Brechbill, G.O. A Reference Book on Fragrance Ingredients; Fragrance Books Inc.: NJ, USA, 2006. [Google Scholar]
- Teixeira, M.A.; Barrault, L.; Rodríguez, O.; Carvalho, C.C.; Rodrigues, A.E. Perfumery Radar 2.0: A Step toward Fragrance Design and Classification. Ind. Eng. Chem. Res. 2014, 53, 8890–8912. [Google Scholar] [CrossRef]
- Teixeira, M.A.; Rodríguez, O.; Mata, V.G.; Rodrigues, A.E. The diffusion of perfume mixtures and the odor performance. Chem. Eng. Sci. 2009, 64, 2570–2589. [Google Scholar] [CrossRef]
- Peppas, N.A. Analysis of Fickian and non-Fickian drug release from polymers. Pharm. Acta Helv. 1985, 60, 110–111. [Google Scholar]
- Lagarias, J.C.; Reeds, J.A.; Wright, M.H.; Wright, P.E. Convergence properties of the Nelder—Mead simplex method in low dimensions. SIAM J. Optim. 1998, 9, 112–147. [Google Scholar] [CrossRef]
- Higuchi, T. Rate of release of medicaments from ointment bases containing drugs in suspension. J. Pharm. Sci. 1961, 50, 874–875. [Google Scholar] [CrossRef] [PubMed]
- Korsmeyer, R.W.; Peppas, N.A. Effect of the morphology of hydrophilic polymeric matrices on the diffusion and release of water soluble drugs. J. Membr. Sci. 1981, 9, 211–227. [Google Scholar] [CrossRef]
- Korsmeyer, R.W.; Gurny, R.; Doelker, E.; Buri, P.; Peppas, N.A. Mechanisms of solute release from porous hydrophilic polymers. Int. J. Pharm. 1983, 15, 25–35. [Google Scholar] [CrossRef]
- Peppas, N.A.; Sahlin, J.J. A simple equation for the description of solute release. III. Coupling of diffusion and relaxation. Int. J. Pharm. 1989, 57, 169–172. [Google Scholar] [CrossRef]
- Lopes, C.M.; Lobo, J.M.S.; Costa, P. Formas farmacêuticas de liberação modificada: Polímeros hidrofílicos. Rev. Bras. Cienc. Farm. 2005, 41, 143–154. [Google Scholar] [CrossRef]
- Gil, A.; De La Fuente, E.B.; Lenardis, A.E.; Pereira, M.L.; Suarez, S.A.; Bandoni, A.; vanBaren, C.; Lira, P.D.L.; Ghersa, C.M. Coriander essential oil compositionfrom two genotypes grown in different environmental conditions. J. Agric. Food Chem. 2002, 50, 2870–2877. [Google Scholar] [CrossRef]
- Retta, D.; Gattuso, M.; Gattuso, S.; Lira, P.L.; van Baren, C.; Ferraro, G.; Bandoni, A. Essential oil composition of Achyrocline flaccida (Weinm.) DC.(Asteraceae) from different locations of Argentina. Biochem. Syst. Ecol. 2009, 36, 877–881. [Google Scholar] [CrossRef]
- Garcez, J.J.; Barros, F.; Lucas, A.M.; Xavier, V.B.; Fianco, A.L.; Cassel, E.; Vargas, R.M.F. Evaluation and mathematical modeling of processing variables for a supercritical fluid extraction of aromatic compounds from Anethum graveolens. Ind. Crop. Prod. 2017, 95, 733–741. [Google Scholar] [CrossRef]
- Garcez, J.J.; da Silva, C.G.F.; Lucas, A.M.; Fianco, A.L.; Almeida, R.N.; Cassel, E.; Vargas, R.M.F. Evaluation of different extraction techniques in the processing of Anethum graveolens L. seeds for phytochemicals recovery. J. Appl. Res. Med. Aromat. Plants 2020, 18, 100263. [Google Scholar] [CrossRef]
- Labuckas, D.; Maestri, D.; Grosso, N.; Zygadlo, J. Essential Oil of Achyrocline satureioides, Achyrocline alata and Achyrocline tomentosa. Planta Medica 1999, 65, 184–186. [Google Scholar] [CrossRef]
- Gondim, C.N.F.L.; Carneiro, J.N.P.; Leite, C.P.; Andrade Pinheiro, J.C.; do Amaral, W.; Deschamps, C.; da Silva, L.E.; Sampaio, N.F.L.; Gondim, G.E.C.; Coutinho, H.D.M. GC-MS-FID characterization and antibacterial activity of the essential oil from Achyrocline satureioides (Lam) DC. J. Plant Biochem. Biotechnol. 2021, 31, 294–298. [Google Scholar] [CrossRef]
- Clogston, J.D.; Patri, A.K. Zeta potential measurement. In Characterization of Nanoparticles Intended for Drug Delivery; McNeil, S.E., Ed.; Springer: New York, NY, USA, 2011; pp. 63–70. [Google Scholar]
- Kazmaier, P.; Chopra, N. Bridging size scales with self-assembling supramolecular materials. MRS Bull. 2000, 25, 30–35. [Google Scholar] [CrossRef]
- Liu, Y.; Tan, J.; Thomas, A.; Ou-Yang, D.; Muzykantov, V.R. The shape of things to come: Importance of design in nanotechnology for drug delivery. Ther. Deliv. 2012, 3, 181–194. [Google Scholar] [CrossRef]
- Külkamp-Guerreiro, I.C.; Paese, K.; Guterres, S.S.; Pohlmann, A.R. Stabilization of lipoic acid by encapsulation in polymeric nanocapsules designed for cutaneous administration. Quim. Nova 2009, 32, 2078–2084. [Google Scholar] [CrossRef]
- Guterres, S.S.; Fessi, H.; Barratt, G.; Devissaguet, J.-P.; Puisieux, F. Poly (DL-lactide) nanocapsules containing diclofenac: I. Formulation and stability study. Int. J. Pharm. 1995, 113, 57–63. [Google Scholar] [CrossRef]
- Lemoine, D.; Francois, C.; Kedzierewicz, F.; Preat, V.; Hoffman, M.; Maincent, P. Stability study of nanoparticles of poly(ɛ-caprolactone), poly(d,l-lactide) and poly(d,l-lactide-co-glycolide). Biomaterials 1996, 17, 2191–2197. [Google Scholar] [CrossRef] [PubMed]
- Goubet, I.; Le Quere, J.-L.; Voilley, A.J. Retention of aroma compounds by carbohydrates: Influence of their physicochemical characteristics and of their physical state. A review. J. Agric. Food Chem. 1998, 46, 1981–1990. [Google Scholar] [CrossRef]
- Zuidam, N.J.; Heinrich, E. Encapsulation of aroma. In Encapsulation Technologies for Active Food Ingredients and Food Processing; Springer: New York, NY, USA, 2010; pp. 127–160. [Google Scholar]
- Peppas, N.A.; Korsmeyer, R.W. Dynamically swelling hydrogels in controlled release applications. In Hydrogels in Medicine and Pharmacy, vol. 3. Properties and Applications; Peppas, N.A., Ed.; CRC Press: Boca Raton, FL, USA, 1987; pp. 109–136. [Google Scholar]
- Kim, H.; Fassihi, R. Application of Binary Polymer System in Drug Release Rate Modulation. 2. Influence of Formulation Variables and Hydrodynamic Conditions on Release Kinetics. J. Pharm. Sci. 1997, 86, 323–328. [Google Scholar]
- Ramkissoon-Ganorkar, C.; Liu, F.; Baudys, M.; Kim, S.W. Effect of molecular weight and polydispersity on kinetics of dissolution and release from pH/temperature-sensitive polymers. J. Biomater. Sci. Polym. Ed. 1999, 10, 1149–1161. [Google Scholar] [CrossRef] [PubMed]
- Fagundes, P.; Carniel, T.K.; Hall, M.C.; Colpani, G.L.; Silva, L.L.; Zanetti, M.; de Mello, J.M.; Dalcanton, F.; Fiori, M.A. Encapsulation of Nerol Oil in Polycaprolactone Polymer and Stability Evaluation. J. Polym. Environ. 2022, 30, 125–135. [Google Scholar] [CrossRef]
- Ali, M.; Meaney, S.P.; Abedin, M.J.; Holt, P.; Majumder, M.; Tabor, R.F. Graphene oxide–silica hybrid capsules for sustained fragrance release. J. Colloid Interface Sci. 2019, 552, 528–539. [Google Scholar] [CrossRef] [PubMed]
- Sansukcharearnpon, A.; Wanichwecharungruang, S.; Leepipatpaiboon, N.; Kerdcharoen, T.; Arayachukeat, S. High loading fragrance encapsulation based on a polymer-blend: Preparation and release behavior. Int. J. Pharm. 2010, 391, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ma, J.; Xu, Q. Polyelectrolyte complex from cationized casein and sodium alginate for fragrance controlled release. Colloids Surf. B Biointerfaces 2019, 178, 439–444. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, L.P.; Caon, T.; Battisti, M.A.; da Silva, C.H.B.; Simões, C.M.O.; Reginatto, F.H.; de Campos, A.M. Antioxidant polymeric nanoparticles containing standardized extract of Ilex paraguariensis A. St.-Hil. for topical use. Ind. Crops Prod. 2017, 108, 738–747. [Google Scholar] [CrossRef]
Number of Families | Family | ||
---|---|---|---|
Primary | Secondary | Tertiary | |
1 | 100% | - | - |
2 | 70% | 30% | - |
3 | 60% | 30% | 10% |
Compound | RIc a | RIt b | Area (%) c | ||
---|---|---|---|---|---|
α-Pinene | 930 | 932 | 39.17 | ± | 0.67 |
Camphene | 941 | 946 | 1.81 | ± | 0.07 |
β-Pinene | 969 | 974 | 1.05 | ± | 0.16 |
p-Cymene | 1020 | 1022 | 0.39 | ± | 0.07 |
Limonene | 1024 | 1024 | 2.73 | ± | 0.12 |
Eucalyptol | 1026 | 1026 | 0.23 | ± | 0.01 |
Z-β-Ocimene | 1036 | 1032 | 1.76 | ± | 1.54 |
E-β-Ocimene | 1046 | 1044 | 0.15 | ± | 0.01 |
γ-Terpinene | 1054 | 1054 | 0.24 | ± | 0.01 |
Terpinolene | 1083 | 1086 | 0.51 | ± | 0.11 |
Exo-fenchol | 1108 | 1118 | 0.32 | ± | 0.18 |
Terpinen-4-ol | 1160 | 1174 | 0.66 | ± | 2.20 |
α-Terpineol | 1186 | 1186 | 0.37 | ± | 0.20 |
α-Copaene | 1369 | 1374 | 4.09 | ± | 0.10 |
Isocaryophyllene | 1399 | 1408 | 0.23 | ± | 0.03 |
β-Caryophyllene | 1414 | 1417 | 18.71 | ± | 3.00 |
β-Gurjunene | 1431 | 1431 | 0.78 | ± | 0.38 |
α-Guaiene | 1443 | 1437 | 0.26 | ± | 0.27 |
α-Humulene | 1447 | 1452 | 4.79 | ± | 2.08 |
Alloaromandrene | 1453 | 1458 | 0.60 | ± | 0.46 |
γ-Muurolene | 1470 | 1478 | 1.47 | ± | 0.35 |
β-Selinene | 1479 | 1489 | 3.01 | ± | 0.05 |
α-Muurolene | 1494 | 1500 | 1.07 | ± | 0.10 |
γ-Cadinene | 1507 | 1513 | 1.40 | ± | 0.11 |
δ-Cadinene | 1518 | 1522 | 4.05 | ± | 2.82 |
trans-Cadina-1.4-diene | 1526 | 1533 | 0.33 | ± | 0.20 |
α-Cadinene | 1531 | 1537 | 0.29 | ± | 0.29 |
α-Calacorene | 1536 | 1544 | 0.78 | ± | 0.44 |
Caryophyllenyl alcohol | 1563 | 1570 | 1.06 | ± | 0.40 |
epi-α-Cadinol | 1635 | 1638 | 0.61 | ± | 0.22 |
α-Cadinol | 1649 | 1652 | 0.26 | ± | 0.13 |
Total identified | 93.18 | 0.54 |
Formulation | Particle Size (nm) | CV (%) | PDI | CV (%) | ZP (mV) | CV (%) |
---|---|---|---|---|---|---|
M1 | 168.77 ± 0.40 a | 0.24 | 0.146 ± 0.011 a | 7.534 | −29.40 ± 6.60 a | 22.45 |
M2 | 174.10 ± 0.82 a. b | 0.47 | 0.147 ± 0.020 a | 13.605 | −24.03 ± 1.93 a | 8.03 |
M3 | 178.30 ± 1.18 b. c | 0.66 | 0.137 ± 0.014 a | 10.219 | −31.03 ± 1.80 a | 5.80 |
M4 | 181.20 ± 2.79 c | 1.54 | 0.249 ± 0.007 b | 2.811 | −35.60 ± 10.67 a | 29.97 |
M5 | 190.83 ± 4.41 d | 2.31 | 0.228 ± 0.007 b | 3.070 | −32.87 ± 0.85 a | 2.59 |
Formulation | Particle Size (nm) | CV (%) | PDI | CV (%) | ZP (mV) | CV (%) |
---|---|---|---|---|---|---|
M3 | 178.30 ± 1.18 a | 1 | 0.137 ± 0.014 a | 11 | −31.03 ± 1.80 a | 6 |
EM3 | 329.67 ± 56.8 b | 17 | 0.401 ± 0.056 c | 14 | −31.87 ± 1.30 a | 4 |
PP | 187.50 ± 1.25 a | 1 | 0.243 ± 0.008 b | 3 | −28.07 ± 2.01 a | 7 |
Formulation | Compound | % Mass in Emulsion | % In Filtrate | Encapsulation Efficiency (%) |
---|---|---|---|---|
M3/EM3 | α-Pinene | 72 | - | ≥72 |
β-Caryophyllene | 9 | trace | 9 < % < 100 |
Compound | Molecular Formula | (g.gmol−1) | (Pa) | a (mg.m−³) | b,c (kg.m−³) | Odor Family d |
---|---|---|---|---|---|---|
α-Pinene | C10H16 | 136.23 | 513 | 0.240 | 860 | Woody (pine) |
Camphene | C10H16 | 136.23 | 450 | - | 839 | Woody (camphor) |
β-Pinene | C10H16 | 136.23 | 390 | 0.180 | 873 | Woody (pine), oriental |
Limonene | C10H16 | 136.23 | 264 | 0.619 | 854 | Citrus |
Z-β-ocimene | C10H14 | 134.22 | 208 | 0.010 | 810 | Floral, herbal |
α-Copaene | C15H24 | 204.35 | 5 | - | 939 | Woody, oriental |
β-Caryophyllene | C15H24 | 204.35 | 4 | 1.500 | 907 | Woody, oriental |
α-Humulene | C15H24 | 204.35 | 1.1 | - | 889 | Woody |
β-Selinene | C15H24 | 204.35 | 2.3 | - | 914 | Herbal |
δ-Cadinene | C15H24 | 204.35 | 0.9 | - | 910 | Herbal, woody |
α-Pinene | n | k (min−n) | R² | R² adj | SQE | RMEQ |
---|---|---|---|---|---|---|
EM3 | 0.47 | 0.0189 | 0.9699 | 0.9900 | 0.0453 | 0.0549 |
M3 | 0.30 | 0.0786 | 0.9273 | 0.9758 | 0.0827 | 0.0742 |
Essential oil | 0.45 | 0.0234 | 0.9461 | 0.9820 | 0.0876 | 0.0764 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Silva, C.G.F.; Petró, R.R.; de Castro, J.H.; Almeida, R.N.; Cassel, E.; Vargas, R.M.F. Nanoencapsulation of Achyrocline satureioides (Lam) DC—Essential Oil and Controlled Release: Experiments and Modeling. Pharmaceutics 2024, 16, 1560. https://doi.org/10.3390/pharmaceutics16121560
da Silva CGF, Petró RR, de Castro JH, Almeida RN, Cassel E, Vargas RMF. Nanoencapsulation of Achyrocline satureioides (Lam) DC—Essential Oil and Controlled Release: Experiments and Modeling. Pharmaceutics. 2024; 16(12):1560. https://doi.org/10.3390/pharmaceutics16121560
Chicago/Turabian Styleda Silva, Caroline G. F., Rafaela R. Petró, Jéssica H. de Castro, Rafael N. Almeida, Eduardo Cassel, and Rubem M. F. Vargas. 2024. "Nanoencapsulation of Achyrocline satureioides (Lam) DC—Essential Oil and Controlled Release: Experiments and Modeling" Pharmaceutics 16, no. 12: 1560. https://doi.org/10.3390/pharmaceutics16121560
APA Styleda Silva, C. G. F., Petró, R. R., de Castro, J. H., Almeida, R. N., Cassel, E., & Vargas, R. M. F. (2024). Nanoencapsulation of Achyrocline satureioides (Lam) DC—Essential Oil and Controlled Release: Experiments and Modeling. Pharmaceutics, 16(12), 1560. https://doi.org/10.3390/pharmaceutics16121560