PAMAM-Calix-Dendrimers: Third Generation Synthesis and Impact of Generation and Macrocyclic Core Conformation on Hemotoxicity and Calf Thymus DNA Binding
Abstract
1. Introduction
2. Materials and Methods
General Experimental Information
3. Results and Discussion
3.1. Synthesis
3.2. Hemolytic Activity and Platelets Aggregation
3.3. Interaction of PAMAM-Calix-Dendrimers with Calf Thymus DNA
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tomalia, D.A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P. A New Class of Polymers: Starburst-Dendritic Macromolecules. Polym. J. 1985, 17, 117–132. [Google Scholar] [CrossRef]
- Chis, A.A.; Dobrea, C.; Morgovan, C.; Arseniu, A.M.; Rus, L.L.; Butuca, A.; Juncan, A.M.; Totan, M.; Vonica-Tincu, A.L.; Cormos, G.; et al. Applications and Limitations of Dendrimers in Biomedicine. Molecules 2020, 25, 3982. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, K.; Imaoka, T.; Tanabe, M.; Kambe, T. New Horizon of Nanoparticle and Cluster Catalysis with Dendrimers. Chem. Rev. 2020, 120, 1397–1437. [Google Scholar] [CrossRef] [PubMed]
- Beezer, A.E.; King, A.S.H.; Martin, I.K.; Mitchel, J.C.; Twyman, L.J.; Wain, C.F. Dendrimers As Potential Drug Carriers; Encapsulation of Acidic Hydrophobes Within Water Soluble PAMAM Derivatives. Tetrahedron 2003, 59, 3873–3880. [Google Scholar] [CrossRef]
- Pérez-Ferreiro, M.; Abelairas, A.M.; Criado, A.; Gómez, I.J.; Mosquera, J. Dendrimers: Exploring Their Wide Structural Variety and Applications. Polymers 2023, 15, 4369. [Google Scholar] [CrossRef]
- Scott, R.W.J.; Wilson, O.M.; Crooks, R.M. Synthesis, Characterization, and Applications of Dendrimer-Encapsulated Nanoparticles. J. Phys. Chem. B 2005, 109, 692–704. [Google Scholar] [CrossRef]
- Pandita, D.; Madaan, K.; Kumar, S.; Poonia, N.; Lather, V. Dendrimers in Drug Delivery and Targeting: Drug-Dendrimer Interactions and Toxicity Issues. J. Pharm. Bioallied Sci. 2014, 6, 139. [Google Scholar] [CrossRef]
- Anti-Infective Products. Available online: https://starpharma.com/technology/product-portfolio (accessed on 18 September 2024).
- Heery, G.; Dong, Y.D. Method of Prophylaxis of Coronavirus and/or Respiratory Syncytial Virus Infection. Australian Patent AU 2021290329 Al, 23 May 2024. [Google Scholar]
- Labieniec-Watala, M.; Watala, C. PAMAM Dendrimers: Destined for Success or Doomed to Fail? Plain and Modified PAMAM Dendrimers in the Context of Biomedical Applications. J. Pharm. Sci. 2015, 104, 2–14. [Google Scholar] [CrossRef]
- Janaszewska, A.; Lazniewska, J.; Trzepiński, P.; Marcinkowska, M.; Klajnert-Maculewicz, B. Cytotoxicity of Dendrimers. Biomolecules 2019, 9, 330. [Google Scholar] [CrossRef]
- Li, X.; Naeem, A.; Xiao, S.; Hu, L.; Zhang, J.; Zheng, Q. Safety Challenges and Application Strategies for the Use of Dendrimers in Medicine. Pharmaceutics 2022, 14, 1292. [Google Scholar] [CrossRef]
- Shi, X.; Lesniak, W.; Islam, M.T.; MuÑiz, M.C.; Balogh, L.P.; Baker, J.R. Comprehensive Characterization of Surface-Functionalized Poly(Amidoamine) Dendrimers with Acetamide, Hydroxyl, and Carboxyl Groups. Colloids Surf. A Physicochem. Eng. Asp. 2006, 272, 139–150. [Google Scholar] [CrossRef]
- Vidal, F.; Vásquez, P.; Cayumán, F.; Díaz, C.; Fuentealba, J.; Aguayo, L.; Yévenes, G.; Alderete, J.; Guzmán, L. Prevention of Synaptic Alterations and Neurotoxic Effects of PAMAM Dendrimers by Surface Functionalization. Nanomaterials 2017, 8, 7. [Google Scholar] [CrossRef] [PubMed]
- Ghaffari, M.; Dehghan, G.; Abedi-Gaballu, F.; Kashanian, S.; Baradaran, B.; Ezzati Nazhad Dolatabadi, J.; Losic, D. Surface Functionalized Dendrimers As Controlled-Release Delivery Nanosystems for Tumor Targeting. Eur. J. Pharm. Sci. 2018, 122, 311–330. [Google Scholar] [CrossRef]
- Han, Y.L.; Kim, S.Y.; Kim, T.; Kim, K.H.; Park, J.W. The Role of Terminal Groups in Dendrimer Systems for the Treatment of Organic Contaminants in Aqueous Environments. J. Clean. Prod. 2020, 250, 119494. [Google Scholar] [CrossRef]
- Kharwade, R.; Badole, P.; Mahajan, N.; More, S. Toxicity and Surface Modification of Dendrimers: A Critical Review. Curr. Drug Deliv. 2022, 19, 451–465. [Google Scholar] [CrossRef]
- Yamakawa, K.; Nakano-Narusawa, Y.; Hashimoto, N.; Yokohira, M.; Matsuda, Y. Development and Clinical Trials of Nucleic Acid Medicines for Pancreatic Cancer Treatment. Int. J. Mol. Sci. 2019, 20, 4224. [Google Scholar] [CrossRef]
- Portugal, J. Insights into DNA-Drug Interactions in the Era of Omics. Biopolymers 2021, 112, e23385. [Google Scholar] [CrossRef]
- Gangrade, A.; Stephanopoulos, N.; Bhatia, D. Programmable, Self-Assembled DNA Nanodevices for Cellular Programming and Tissue Engineering. Nanoscale 2021, 13, 16834–16846. [Google Scholar] [CrossRef]
- Collette, D.; Dunlap, D.; Finzi, L. Macromolecular Crowding and DNA: Bridging the Gap between in Vitro and in Vivo. Int. J. Mol. Sci. 2023, 24, 17502. [Google Scholar] [CrossRef]
- Zygmuntowicz, A.; Burmańczuk, A.; Markiewicz, W. Selected Biological Medicinal Products and Their Veterinary Use. Animals 2020, 10, 2343. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhu, L.; Wang, X.; Jin, H. RNA-Based Therapeutics: An Overview and Prospectus. Cell Death Dis. 2022, 13, 644. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Chen, L.; Gao, Y.; Song, C.; Ouyang, Z.; Li, C.; Mignani, S.; Majoral, J.P.; Shi, X.; Shen, M. Impact of Molecular Rigidity on the Gene Delivery Efficiency of Core–Shell Tecto Dendrimers. J. Mater. Chem. B 2021, 9, 6149–6154. [Google Scholar] [CrossRef]
- Li, J.; Shen, M.; Shi, X. Poly(Amidoamine) Dendrimer-Gold Nanohybrids in Cancer Gene Therapy: A Concise Overview. ACS Appl. Bio Mater. 2020, 3, 5590–5605. [Google Scholar] [CrossRef] [PubMed]
- Shen, S.; Gao, Y.; Ouyang, Z.; Jia, B.; Shen, M.; Shi, X. Photothermal-Triggered Dendrimer Nanovaccines Boost Systemic Antitumor Immunity. J. Control. Release 2023, 355, 171–183. [Google Scholar] [CrossRef] [PubMed]
- Bogdan, A.R.; Davies, N.L.; James, K. Comparison of Diffusion Coefficients for Matched Pairs of Macrocyclic and Linear Molecules Over a Drug-Like Molecular Weight Range. Org. Biomol. Chem. 2011, 9, 7727. [Google Scholar] [CrossRef]
- Hussain, I.; Muhammad, N.; Subhani, Q.; Shou, D.; Jin, M.; Yu, L.; Lu, G.; Wen, X.; Intisar, A.; Yan, Z. A Review on Structural Aspects and Applications of PAMAM Dendrimers in Analytical Chemistry: Frontiers from Separation Sciences to Chemical Sensor Technologies. TrAC Trends Anal. Chem. 2022, 157, 116810. [Google Scholar] [CrossRef]
- López-Méndez, L.J.; Cuéllar-Ramírez, E.E.; Cabrera-Quiñones, N.C.; Rojas-Aguirre, Y.; Guadarrama, P. Convergent Click Synthesis of Macromolecular Dendritic Β-Cyclodextrin Derivatives As Non-Conventional Drug Carriers: Albendazole As Guest Model. Int. J. Biol. Macromol. 2020, 164, 1704–1714. [Google Scholar] [CrossRef]
- Bettucci, O.; Pascual, J.; Turren-Cruz, S.H.; Cabrera-Espinoza, A.; Matsuda, W.; Völker, S.F.; Köbler, H.; Nierengarten, I.; Reginato, G.; Collavini, S.; et al. Dendritic-Like Molecules Built on a Pillar[5]Arene Core As Hole Transporting Materials for Perovskite Solar Cells. Chem.-Eur. J. 2021, 27, 8110–8117. [Google Scholar] [CrossRef]
- Padnya, P.; Mostovaya, O.; Ovchinnikov, D.; Shiabiev, I.; Pysin, D.; Akhmedov, A.; Mukhametzyanov, T.; Lyubina, A.; Voloshina, A.; Petrov, K.; et al. Combined Antimicrobial Agents Based on Self-Assembled PAMAM-Calix-Dendrimers/Lysozyme Nanoparticles: Design, Antibacterial Properties and Cytotoxicity. J. Mol. Liq. 2023, 389, 122838. [Google Scholar] [CrossRef]
- Mostovaya, O.; Shiabiev, I.; Pysin, D.; Stanavaya, A.; Abashkin, V.; Shcharbin, D.; Padnya, P.; Stoikov, I. PAMAM-Calix-Dendrimers: Second Generation Synthesis, Fluorescent Properties and Catecholamines Binding. Pharmaceutics 2022, 14, 2748. [Google Scholar] [CrossRef]
- Mostovaya, O.; Padnya, P.; Shiabiev, I.; Mukhametzyanov, T.; Stoikov, I. PAMAM-Calix-Dendrimers: Synthesis and Thiacalixarene Conformation Effect on DNA Binding. Int. J. Mol. Sci. 2021, 22, 11901. [Google Scholar] [CrossRef] [PubMed]
- Nazarova, A.; Shiabiev, I.; Shibaeva, K.; Mostovaya, O.; Mukhametzyanov, T.; Khannanov, A.; Evtugyn, V.; Zelenikhin, P.; Shi, X.; Shen, M.; et al. Thiacalixarene Carboxylic Acid Derivatives As Inhibitors of Lysozyme Fibrillation. Int. J. Mol. Sci. 2024, 25, 4721. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Lee, Y.O.; Bhalla, V.; Kumar, M.; Kim, J.S. Recent Developments of Thiacalixarene Based Molecular Motifs. Chem. Soc. Rev. 2014, 43, 4824. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Guo, X. Development of Calixarene-Based Drug Nanocarriers. J. Mol. Liq. 2021, 325, 115246. [Google Scholar] [CrossRef]
- Padnya, P.; Gorbachuk, V.; Stoikov, I. The Role of Calix[N]Arenes and Pillar[N]Arenes in the Design of Silver Nanoparticles: Self-Assembly and Application. Int. J. Mol. Sci. 2020, 21, 1425. [Google Scholar] [CrossRef]
- Yamada, M.; Rajiv Gandhi, M.; Kunda, U.M.R.; Hamada, F. Thiacalixarenes: Emergent Supramolecules in Crystal Engineering and Molecular Recognition. J. Incl. Phenom. Macrocycl. Chem. 2016, 85, 1–18. [Google Scholar] [CrossRef]
- Iki, N. Thiacalixarenes. In Calixarenes Beyond; Springer: Cham, Switzerland, 2016; pp. 335–362. [Google Scholar] [CrossRef]
- Burilov, V.; Fatykhova, A.; Mironova, D.; Sultanova, E.; Nugmanov, R.; Artemenko, A.; Volodina, A.; Daminova, A.; Evtugyn, V.; Solovieva, S.; et al. Oxyethylated Fluoresceine—(Thia)Calix[4]Arene Conjugates: Synthesis and Visible-Light Photoredox Catalysis in Water–Organic Media. Molecules 2022, 28, 261. [Google Scholar] [CrossRef]
- Kulikova, T.; Padnya, P.; Shiabiev, I.; Rogov, A.; Stoikov, I.; Evtugyn, G. Electrochemical Sensing of Interactions between DNA and Charged Macrocycles. Chemosensors 2021, 9, 347. [Google Scholar] [CrossRef]
- Kulikova, T.; Shamagsumova, R.; Rogov, A.; Stoikov, I.; Padnya, P.; Shiabiev, I.; Evtugyn, G. Electrochemical DNA-Sensor Based on Macrocyclic Dendrimers with Terminal Amino Groups and Carbon Nanomaterials. Sensors 2023, 23, 4761. [Google Scholar] [CrossRef]
- Flood, R.J.; Ramberg, K.O.; Mengel, D.B.; Guagnini, F.; Crowley, P.B. Protein Frameworks with Thiacalixarene and Zinc. Cryst. Growth Des. 2022, 22, 3271–3276. [Google Scholar] [CrossRef]
- Khariushin, I.V.; Bulach, V.; Solovieva, S.E.; Antipin, I.S.; Ovsyannikov, A.S.; Ferlay, S. Thiacalix[4]Arene Macrocycles As Versatile Building Blocks for the Rational Design of High-Nuclearity Metallic Clusters, Metallamacrocycles, Porous Coordination Cages and Containers. Coord. Chem. Rev. 2024, 513, 215846. [Google Scholar] [CrossRef]
- Nierengarten, I.; Holler, M.; Rémy, M.; Hahn, U.; Billot, A.; Deschenaux, R.; Nierengarten, J.F. Grafting Dendrons Onto Pillar[5]Arene Scaffolds. Molecules 2021, 26, 2358. [Google Scholar] [CrossRef] [PubMed]
- Rulev, A.Y. Aza-Michael Reaction: A Decade Later—Is the Research Over? Eur. J. Org. Chem. 2023, 26, e202300451. [Google Scholar] [CrossRef]
- Rulev, A.Y. Aza-Michael Reaction: Achievements and Prospects. Russ. Chem. Rev. 2011, 80, 197–218. [Google Scholar] [CrossRef]
- Ficker, M.; Paolucci, V.; Christensen, J.B. Improved Large-Scale Synthesis and Characterization of Small and Medium Generation PAMAM Dendrimers. Can. J. Chem. 2017, 95, 954–964. [Google Scholar] [CrossRef]
- Hong, S.; Leroueil, P.R.; Janus, E.K.; Peters, J.L.; Kober, M.M.; Islam, M.T.; Orr, B.G.; Baker, J.R.; Banaszak Holl, M.M. Interaction of Polycationic Polymers with Supported Lipid Bilayers and Cells: Nanoscale Hole Formation and Enhanced Membrane Permeability. Bioconjugate Chem. 2006, 17, 728–734. [Google Scholar] [CrossRef]
- Kelly, C.V.; Liroff, M.G.; Triplett, L.D.; Leroueil, P.R.; Mullen, D.G.; Wallace, J.M.; Meshinchi, S.; Baker, J.R.; Orr, B.G.; Banaszak Holl, M.M. Stoichiometry and Structure of Poly(Amidoamine) Dendrimer−Lipid Complexes. ACS Nano 2009, 3, 1886–1896. [Google Scholar] [CrossRef]
- Shurpik, D.N.; Padnya, P.L.; Stoikov, I.I.; Cragg, P.J. Antimicrobial Activity of Calixarenes and Related Macrocycles. Molecules 2020, 25, 5145. [Google Scholar] [CrossRef]
- Radomski, A.; Jurasz, P.; Alonso-Escolano, D.; Drews, M.; Morandi, M.; Malinski, T.; Radomski, M.W. Nanoparticle-Induced Platelet Aggregation and Vascular Thrombosis. Br. J. Pharmacol. 2005, 146, 882–893. [Google Scholar] [CrossRef]
- Hante, N.K.; Medina, C.; Santos-Martinez, M.J. Effect on Platelet Function of Metal-Based Nanoparticles Developed for Medical Applications. Front. Cardiovasc. Med. 2019, 6, 139. [Google Scholar] [CrossRef]
- Sinha, R.; Das, S.K.; Ghosh, M.; Chowdhury, J. Fabrication of Gold Nanoparticles Tethered in Heat-Cooled Calf Thymus-Deoxyribonucleic Acid Langmuir-Blodgett Film As Effective Surface-Enhanced Raman Scattering Sensing Platform. Front. Chem. 2022, 10, 1034060. [Google Scholar] [CrossRef] [PubMed]
- Yoo, S.; Dugasani, S.R.; Mitta, S.B.; Park, S.H. Layer-Dependent Characterization of Individual and Mixed Ion-Doped Multi-Layered DNA Thin Films. Appl. Surf. Sci. 2019, 479, 47–54. [Google Scholar] [CrossRef]
- Luo, J.; Xie, Z.; Lam, J.W.Y.; Cheng, L.; Tang, B.Z.; Chen, H.; Qiu, C.; Kwok, H.S.; Zhan, X.; Liu, Y.; et al. Aggregation-Induced Emission of 1-Methyl-1,2,3,4,5-Pentaphenylsilole. Chem. Commun. 2001, 2001, 1740–1741. [Google Scholar] [CrossRef]
- Freifelder, D.M. Physical Biochemistry: Applications to Biochemistry and Molecular Biology (Life Sciences/Biochemistry), 2nd ed.; W. H. Freeman: San Francisco, CA, USA, 1982; 761p. [Google Scholar]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy; Springer: Boston, MA, USA, 2006; 954p. [Google Scholar]
- Andreeva, D.V.; Tikhomirov, A.S.; Shchekotikhin, A.E. Ligands of G-Quadruplex Nucleic Acids. Russ. Chem. Rev. 2021, 90, 1–38. [Google Scholar] [CrossRef]
- Nordén, B.; Kurucsev, T. Analysing DNA Complexes by Circular and Linear Dichroism. J. Mol. Recognit. 1994, 7, 141–155. [Google Scholar] [CrossRef]
- Yakimova, L.S.; Nugmanova, A.R.; Mostovaya, O.A.; Vavilova, A.A.; Shurpik, D.N.; Mukhametzyanov, T.A.; Stoikov, I.I. Nanostructured Polyelectrolyte Complexes Based on Water-Soluble Thiacalix[4]Arene and Pillar[5]Arene: Self-Assembly in Micelleplexes and Polyplexes at Packaging DNA. Nanomaterials 2020, 10, 777. [Google Scholar] [CrossRef] [PubMed]
- Husain, M.A.; Yaseen, Z.; Rehman, S.U.; Sarwar, T.; Tabish, M. Naproxen Intercalates with DNA and Causes Photocleavage through ROS Generation. FEBS J. 2013, 280, 6569–6580. [Google Scholar] [CrossRef]
- Alves, J.E.F.; de Oliveira, J.F.; de Lima Souza, T.R.C.; de Moura, R.O.; de Carvalho Júnior, L.B.; Alves de Lima, M.C.; de Almeida, S.M.V. Novel Indole-Thiazole and Indole-Thiazolidinone Derivatives As DNA Groove Binders. Int. J. Biol. Macromol. 2021, 170, 622–635. [Google Scholar] [CrossRef] [PubMed]
- Brittain, H.G. Chapter 11 Circular Dichroism Studies of the Optical Activity Induced in Achiral Molecules through Association with Chiral Substances. Tech. Instrum. Anal. Chem. 1994, 14, 307–341. [Google Scholar] [CrossRef]
- Haque, L.; Bhuiya, S.; Giri, I.; Chowdhury, S.; Das, S. Structural Alteration of Low PH, Low Temperature Induced Protonated Form of DNA to the Canonical Form by the Benzophenanthridine Alkaloid Nitidine: Spectroscopic Exploration. Int. J. Biological Macromol. 2018, 119, 1106–1112. [Google Scholar] [CrossRef]
- Galindo-Murillo, R.; Cheatham, T.E. Ethidium Bromide Interactions with DNA: An Exploration of a Classic DNA–Ligand Complex with Unbiased Molecular Dynamics Simulations. Nucleic Acids Res. 2021, 49, 3735–3747. [Google Scholar] [CrossRef] [PubMed]
- Vardevanyan, P.O.; Antonyan, A.P.; Hambardzumyan, L.A.; Shahinyan, M.A.; Karapetian, A.T. Thermodynamic Analysis of DNA Complexes with Methylene Blue, Ethidium Bromide and Hoechst 33258. Biopolym. Cell 2013, 29, 515–520. [Google Scholar] [CrossRef]
- Khairutdinov, B.; Ermakova, E.; Sitnitsky, A.; Stoikov, I.; Zuev, Y. Supramolecular Complex Formed by DNA Oligonucleotide and Thiacalix[4]Arene. NMR-Spectroscopy and Molecular Docking. J. Mol. Struct. 2014, 1074, 126–133. [Google Scholar] [CrossRef]
- Kamaly, N.; He, J.C.; Ausiello, D.A.; Farokhzad, O.C. Nanomedicines for Renal Disease: Current Status and Future Applications. Nat. Rev. Nephrol. 2016, 12, 738–753. [Google Scholar] [CrossRef] [PubMed]
- Hao, M.; Chen, B.; Zhao, X.; Zhao, N.; Xu, F.J. Organic/Inorganic Nanocomposites for Cancer Immunotherapy. Mater. Chem. Front. 2020, 4, 2571–2609. [Google Scholar] [CrossRef]
- Ivanenkov, Y.A.; Maklakova, S.Y.; Beloglazkina, E.K.; Zyk, N.V.; Nazarenko, A.G.; Tonevitsky, A.G.; Kotelianski, V.E.; Majouga, A.G. Development of Liver Cell-Targeted Drug Delivery Systems: Experimental Approaches. Russ. Chem. Rev. 2017, 86, 750–776. [Google Scholar] [CrossRef]
- Ibragimova, R.R.; Burilov, V.A.; Aimetdinov, A.R.; Mironova, D.A.; Evtugyn, V.G.; Osin, Y.N.; Solovieva, S.E.; Antipin, I.S. Polycationic Derivatives of P-Tert-Butylthiacalix[4]Arene in 1,3-Alternate Stereoisomeric Form: New DNA Condensing Agents. Macroheterocycles 2016, 9, 433–441. [Google Scholar] [CrossRef]
- Xiu, K.M.; Yang, J.J.; Zhao, N.N.; Li, J.S.; Xu, F.J. Multiarm Cationic Star Polymers by Atom Transfer Radical Polymerization From β-Cyclodextrin Cores: Influence of Arm Number and Length on Gene Delivery. Acta Biomater. 2013, 9, 4726–4733. [Google Scholar] [CrossRef]
- Padnya, P.L.; Khripunova, I.A.; Mostovaya, O.A.; Mukhametzyanov, T.A.; Evtugyn, V.G.; Vorobev, V.V.; Osin, Y.N.; Stoikov, I.I. Self-Assembly of Chiral Fluorescent Nanoparticles Based on Water-Soluble L-Tryptophan Derivatives of P-Tert-Butylthiacalix[4]Arene. Beilstein J. Nanotechnol. 2017, 8, 1825–1835. [Google Scholar] [CrossRef]
Dendrimer | C50, µM | ||
---|---|---|---|
cone | partial cone | 1,3-alternate | |
G1 | 5.77 | 8.44 | 3.56 |
G2 | 3.00 | 3.22 | 3.15 |
G3 | 1.31 | 1.28 | 1.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mostovaya, O.; Shiabiev, I.; Ovchinnikov, D.; Pysin, D.; Mukhametzyanov, T.; Stanavaya, A.; Abashkin, V.; Shcharbin, D.; Khannanov, A.; Kutyreva, M.; et al. PAMAM-Calix-Dendrimers: Third Generation Synthesis and Impact of Generation and Macrocyclic Core Conformation on Hemotoxicity and Calf Thymus DNA Binding. Pharmaceutics 2024, 16, 1379. https://doi.org/10.3390/pharmaceutics16111379
Mostovaya O, Shiabiev I, Ovchinnikov D, Pysin D, Mukhametzyanov T, Stanavaya A, Abashkin V, Shcharbin D, Khannanov A, Kutyreva M, et al. PAMAM-Calix-Dendrimers: Third Generation Synthesis and Impact of Generation and Macrocyclic Core Conformation on Hemotoxicity and Calf Thymus DNA Binding. Pharmaceutics. 2024; 16(11):1379. https://doi.org/10.3390/pharmaceutics16111379
Chicago/Turabian StyleMostovaya, Olga, Igor Shiabiev, Daniil Ovchinnikov, Dmitry Pysin, Timur Mukhametzyanov, Alesia Stanavaya, Viktar Abashkin, Dzmitry Shcharbin, Arthur Khannanov, Marianna Kutyreva, and et al. 2024. "PAMAM-Calix-Dendrimers: Third Generation Synthesis and Impact of Generation and Macrocyclic Core Conformation on Hemotoxicity and Calf Thymus DNA Binding" Pharmaceutics 16, no. 11: 1379. https://doi.org/10.3390/pharmaceutics16111379
APA StyleMostovaya, O., Shiabiev, I., Ovchinnikov, D., Pysin, D., Mukhametzyanov, T., Stanavaya, A., Abashkin, V., Shcharbin, D., Khannanov, A., Kutyreva, M., Shen, M., Shi, X., Padnya, P., & Stoikov, I. (2024). PAMAM-Calix-Dendrimers: Third Generation Synthesis and Impact of Generation and Macrocyclic Core Conformation on Hemotoxicity and Calf Thymus DNA Binding. Pharmaceutics, 16(11), 1379. https://doi.org/10.3390/pharmaceutics16111379