Comparative Analysis of Physical and Chemical Properties of Differently Obtained Zn—Methionine Chelate with Proved Antibiofilm Properties (Part II)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Synthesized Complex Zn(Met)2
2.3. Isolation of the Zn(Met)2(SO4)x·nH2O Crystals
2.4. Solubility
2.5. Dynamic Light Scattering (DLS)
2.6. Fourier Transform Infrared (FT-IR) Spectroscopy
2.7. X-ray Fluorescence Analysis (XRF)
2.8. Thermogravimetric Analysis (TGA)
2.9. Complexometric Titration
2.10. Differential Scanning Calorimetry (DSC)
2.11. Optical Activity
2.12. X-ray Powder Diffraction (XRD)
2.13. Molecular Modeling and Data Processing
3. Results and Discussion
3.1. Obtained Complexes
3.2. Solubility
3.3. Dynamic Light Scattering (DLS)
3.4. Fourier Transform Infrared (FT-IR) Spectroscopy
3.5. X-ray Fluorescence Analysis (XRF)
3.6. Thermogravimetric Analysis (TGA)
3.7. Complexometric Titration
3.8. Differential Scanning Calorimetry
3.9. Optical Activity
3.10. X-ray Powder Diffraction
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ciofu, O.; Moser, C.; Jensen, P.Ø.; Høiby, N. Tolerance and resistance of microbial biofilms. Nat. Rev. Microbiol. 2022, 20, 621–635. [Google Scholar] [CrossRef] [PubMed]
- Kariyawasam, R.M.; Julien, D.A.; Jelinski, D.C.; Larose, S.L.; Rennert-May, E.; Conly, J.M.; Dingle, T.C.; Chen, J.Z.; Tyrrell, G.J.; Ronksley, P.E.; et al. Antimicrobial resistance (AMR) in COVID-19 patients: A systematic review and meta-analysis (November 2019–June 2021). Antimicrob. Resist. Infect. Control 2022, 11, 45. [Google Scholar] [CrossRef] [PubMed]
- Chang, R.Y.K.; Nang, S.C.; Chan, H.K.; Li, J. Novel antimicrobial agents for combating antibiotic-resistant bacteria. Adv. Drug Deliv. Rev. 2022, 187, 114378. [Google Scholar] [CrossRef] [PubMed]
- Ozdal, M.; Gurkok, S. Recent advances in nanoparticles as antibacterial agent. ADMET DMPK 2022, 10, 115–129. [Google Scholar] [CrossRef] [PubMed]
- Moriwa, Y.; Suzuki, N.; Shoji, A.; Yanagida, A. Analysis of complexation interactions between metal ions and drugs under pseudo-physiological pH conditions by a high-throughput screening method using a solid-phase extraction cartridge. Anal. Sci. 2020, 36, 709–715. [Google Scholar] [CrossRef]
- Boros, E.; Dyson, P.J.; Gasser, G. Classification of metal-based drugs according to their mechanisms of action. Chem 2020, 6, 41–60. [Google Scholar] [CrossRef]
- Jurca, T.; Marian, E.; Vicaş, L.G.; Mureşan, M.; Fritea, L. Metal Complexes of Pharmaceutical Substances. In Spectroscopic Analyses—Developments and Applications; Sharmin, E., Zafar, F., Eds.; IntechOpen: London, UK, 2017; pp. 123–142. [Google Scholar] [CrossRef]
- Ali, H.A.; Omar, S.N.; Darawsheh, M.D.; Fares, H. Synthesis, characterization and antimicrobial activity of zinc(II) ibuprofen complexes with nitrogen-based ligands. J. Coord. Chem. 2016, 69, 1110–1122. [Google Scholar] [CrossRef]
- Al Sharabati, M.; Sabouni, R.; Husseini, G.A. Biomedical Applications of Metal-Organic Frameworks for Disease Diagnosis and Drug Delivery: A Review. Nanomaterials 2022, 12, 277. [Google Scholar] [CrossRef]
- Bahrani, S.; Hashemi, S.A.; Mousavi, S.M.; Azhdari, R. Zinc-based metal–organic frameworks as nontoxic and biodegradable platforms for biomedical applications: Review study. Drug Metab. Rev. 2019, 51, 356–377. [Google Scholar] [CrossRef]
- Wang, S.; Cheng, J.; Niu, Y.; Li, P.; Zhang, X.; Lin, J. Strategies for Zinc Uptake in Pseudomonas aeruginosa at the Host-Pathogen Interface. Front. Microbiol. 2021, 12, 741873. [Google Scholar] [CrossRef]
- Formosa-Dague, C.; Speziale, P.; Foster, T.J.; Geoghegan, J.A.; Dufrêne, Y.F. Zinc-dependent mechanical properties of Staphylococcus aureus biofilm-forming surface protein SasG. Proc. Natl. Acad. Sci. USA 2016, 113, 410–415. [Google Scholar] [CrossRef] [PubMed]
- Brown, L.R.; Caulkins, R.C.; Schartel, T.E.; Rosch, J.W.; Honsa, E.S.; Schultz-Cherry, S.; Meliopoulos, V.A.; Cherry, S.; Thornton, J.A. Increased Zinc Availability Enhances Initial Aggregation and Biofilm Formation of Streptococcus pneumoniae. Front. Cell. Infect. Microbiol. 2017, 7, 233. [Google Scholar] [CrossRef] [PubMed]
- Abdelghafar, A.; Yousef, N.; Askoura, M. Zinc oxide nanoparticles reduce biofilm formation, synergize antibiotics action and attenuate Staphylococcus aureus virulence in host; an important message to clinicians. BMC Microbiol. 2022, 22, 244. [Google Scholar] [CrossRef] [PubMed]
- Mahamuni-Badiger, P.P.; Patil, P.M.; Badiger, M.V.; Patel, P.R.; Thorat-Gadgil, B.S.; Pandit, A.; Bohara, R.A. Biofilm formation to inhibition: Role of zinc oxide-based nanoparticles. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 108, 110319. [Google Scholar] [CrossRef]
- Husain, F.M.; Qais, F.A.; Ahmad, I.; Hakeem, M.J.; Baig, M.H.; Masood Khan, J.; Al-Shabib, N.A. Biosynthesized Zinc Oxide Nanoparticles Disrupt Established Biofilms of Pathogenic Bacteria. Appl. Sci. 2022, 12, 710. [Google Scholar] [CrossRef]
- Chen, Y.; Cai, J.; Liu, D.; Liu, S.; Lei, D.; Zheng, L.; Wei, Q.; Gao, M. Zinc-based metal organic framework with antibacterial and anti-inflammatory properties for promoting wound healing. Regen Biomater. 2022, 9, rbac019. [Google Scholar] [CrossRef]
- Hakkak, R.A.; Ranjbar, M.; Mirzaie, S. Ultrasonic synthesis of Zn(II)methionine nanostructures: As a precursor for ZnO nanoparticles and in vitro study. J. Part. Sci. Technol. 2020, 5, 109–116. [Google Scholar] [CrossRef]
- Nastiti, S.A.H.; Jatmika, C. Synthesis and analysis of zinc methionine, zinc glycine, copper leucine, and copper glycine complexes using atomic absorption spectrophotometry. Int. J. Appl. Pharm. 2018, 10, 388–391. [Google Scholar] [CrossRef]
- Lee, Y.-R.; Kim, J.; Ahn, W.-S. Synthesis of metal-organic frameworks: A mini review. Korean J. Chem. Eng. 2013, 30, 1667–1680. [Google Scholar] [CrossRef]
- Marukhlenko, A.V.; Morozova, M.A.; Mbarga, A.M.J.; Antipova, N.V.; Syroeshkin, A.V.; Podoprigora, I.V.; Maksimova, T.V. Chelation of Zinc with Biogenic Amino Acids: Description of Properties Using Balaban Index, Assessment of Biological Activity on Spirostomum Ambiguum Cellular Biosensor, Influence on Biofilms and Direct Antibacterial Action. Pharmaceuticals 2022, 15, 979. [Google Scholar] [CrossRef]
- Marukhlenko, A.V.; Maksimova, T.V.; Pleteneva, T.V.; Morozova, M.A. Development and Validation of Method for the Quantitative Determination of Zinc in its Chelate Complexes Using Energy Dispersive X-ray Fluorescence Spectroscopy. Drug Dev. Regist. 2021, 10, 154–161. [Google Scholar] [CrossRef]
- Wilson, R.B.; de Meester, P.; Hodgson, D.J. Structural characterization of bis(L-methionato)zinc(II), Zn(L-met)2. Inorg. Chem. 1977, 16, 1498–1502. [Google Scholar] [CrossRef]
- Abendrot, M.; Chęcińska, L.; Kusz, J.; Lisowska, K.; Zawadzka, K.; Felczak, A.; Kalinowska-Lis, U. Zinc(II) Complexes with Amino Acids for Potential Use in Dermatology: Synthesis, Crystal Structures, and Antibacterial Activity. Molecules 2020, 25, 951. [Google Scholar] [CrossRef] [PubMed]
- Council of Europe. 01/2008:20232 Loss on Drying (Method D). In The European Pharmacopoeia, 8th ed.; Council of Europe: Strasbourg, France, 2013; Volume 1. [Google Scholar]
- Hallman, P.S.; Perrin, D.D.; Watt, A.E. The computed distribution of copper (II) and zinc (II) ions among seventeen amino acids present in human blood plasma. Biochem. J. 1971, 121, 549–555. [Google Scholar] [CrossRef] [PubMed]
- Council of Europe. 01/2013:10000 Solubility. In The European Pharmacopoeia, 8th ed.; Council of Europe: Strasbourg, France, 2013; Volume 1. [Google Scholar]
- Council of Europe. 01/2008:20511 Complexometric Titrations. In The European Pharmacopoeia, 8th ed.; Council of Europe: Strasbourg, France, 2013; Volume 1. [Google Scholar]
- Council of Europe. 01/2010:2159 Zinc Sulfate Monohydrate. In The European Pharmacopoeia, 8th ed.; Council of Europe: Strasbourg, France, 2013; Volume 2. [Google Scholar]
- MolView v2.4. Available online: https://molview.org/ (accessed on 23 October 2022).
- WebMo v22.0.009e. Available online: https://www.webmo.net/demoserver/cgi-bin/webmo/login.cgi (accessed on 23 October 2022).
- Mamun, M.A.; Omar, A.; Bakshi, P.K.; Ehsan, M.Q. Synthesis and spectroscopic, magnetic and cyclic voltammetric characterization of some metal complexes of methionine: [(C5H10NO2S)2MII]; M II = Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II). J. Saudi Chem. Soc. 2010, 14, 23–31. [Google Scholar] [CrossRef]
- Star, L.; van der Klis, J.D.; Rapp, C.; Ward, T.L. Bioavailability of organic and inorganic zinc sources in male broilers. Poult. Sci. 2012, 91, 3115–3120. [Google Scholar] [CrossRef] [PubMed]
- Hillyer, J.F.; Albrecht, R.M. Gastrointestinal persorption and tissue distribution of differently sized colloidal gold nanoparticles. J. Pharm. Sci. 2001, 90, 1927–1936. [Google Scholar] [CrossRef] [PubMed]
- Golovnev, N.N.; Novikova, G.V. Synthesis of D-element compounds with amino acids. Vestn. Krasn. Gos. Universiteta. Estestv. Nauk. 2006, 2, 38–44. (In Russian) [Google Scholar]
- Tori, K.; Iitaka, Y. Crystal Structures and Molecular Conformations of L-Methionine and L-Norleucine. Acta Cryst. B 1973, 29, 2799–2807. [Google Scholar] [CrossRef]
- Smets, M.M.H.; Brugman, S.J.T.; van Eck, E.R.H.; Tinnemans, P.; Meekes, H.; Cuppen, H. Understanding the single-crystal-to-single-crystal solid-state phase transition of DL-methionine. CrystEngComm 2016, 18, 9363–9373. [Google Scholar] [CrossRef]
- Yamanobe, M.; Takiyama, H.; Matsuoka, M. Polymorphic transformation of dl-methionine crystals in aqueous solutions. J. Cryst. Growth 2002, 237, 2221–2226. [Google Scholar] [CrossRef]
- Mathieson, A. McL. The Crystal Structures of the Dimorphs of DL-Methionine. Acta Cryst. 1952, 5, 332–341. [Google Scholar] [CrossRef]
- Suresh, M.; Srinivasan, K. Polymorphic Control of α and β dl-Methionine through Swift Cooling Crystallization Process. Cryst. Res. Technol. 2021, 56, 2000208. [Google Scholar] [CrossRef]
- Condrate, R.A.; Nakamoto, K. Infrared Spectra and Normal Coordinate Analysis of Metal Glycino Complexes. J. Chem. Phys. 1965, 42, 2590–2598. [Google Scholar] [CrossRef]
- Yasui, T. Metal complexes of amino acids. I. The circular dichroism of copper(II) complexes with optically active amino acids. Bull. Chem. Soc. Jpn. 1965, 38, 1746–1749. [Google Scholar] [CrossRef]
- Yasui, T.; Hidaka, J.; Shimura, Y. Metal Complexes of Amino Acids. III. The Circular Dichroism of Cobalt(III) Ammine and Ethylenediamine Complexes with L-Amino Acids. Bull. Chem. Soc. Jpn. 1966, 39, 2417–2424. [Google Scholar] [CrossRef]
- Dudev, T.; Lim, C. Tetrahedral vs Octahedral Zinc Complexes with Ligands of Biological Interest: A DFT/CDM Study. J. Am. Chem. Soc. 2000, 112, 11146–11153. [Google Scholar] [CrossRef]
pH | [α]20D ± SD | |
---|---|---|
Zn(Met)2 | L-Met | |
−1.35 | +14.00 ± 0.31 | +23.24 ± 0.06 |
12.95 | −2.64 ± 0.29 | +2.19 ± 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marukhlenko, A.V.; Tumasov, V.N.; Butusov, L.A.; Shandryuk, G.A.; Morozova, M.A. Comparative Analysis of Physical and Chemical Properties of Differently Obtained Zn—Methionine Chelate with Proved Antibiofilm Properties (Part II). Pharmaceutics 2023, 15, 590. https://doi.org/10.3390/pharmaceutics15020590
Marukhlenko AV, Tumasov VN, Butusov LA, Shandryuk GA, Morozova MA. Comparative Analysis of Physical and Chemical Properties of Differently Obtained Zn—Methionine Chelate with Proved Antibiofilm Properties (Part II). Pharmaceutics. 2023; 15(2):590. https://doi.org/10.3390/pharmaceutics15020590
Chicago/Turabian StyleMarukhlenko, Alla V., Vladimir N. Tumasov, Leonid A. Butusov, Georgy A. Shandryuk, and Mariya A. Morozova. 2023. "Comparative Analysis of Physical and Chemical Properties of Differently Obtained Zn—Methionine Chelate with Proved Antibiofilm Properties (Part II)" Pharmaceutics 15, no. 2: 590. https://doi.org/10.3390/pharmaceutics15020590