Biological Activity of Fermented Plant Extracts for Potential Dermal Applications
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy
2.2. Inclusion and Exclusion Criteria
3. Biological Activity of Fermented Plant Extract for Dermal Applications
3.1. Antimicrobial Activity
3.2. Antioxidant Activity
3.3. Anti-Inflammatory Activity
3.4. Melanogenic Inhibitory Effects
3.5. Wound Healing Activity
4. Fermented Plant Extracts for Dermal Applications
4.1. Anti-Aging Products
4.2. Skin Whitening Products
4.3. The Moisturizing Products
4.4. The Hair Growth Products
4.5. Wound Healing Products
5. Toxicological Aspect
6. Future Research Directions
7. Conclusions
Funding
Conflicts of Interest
References
- Wang, C.Y.; Ng, C.C.; Lin, H.T.; Shyu, Y.T. Free radical-scavenging and tyrosinase-inhibiting activities of extracts from sorghum distillery residue. J. Biosci. Bioeng. 2011, 111, 554–556. [Google Scholar] [CrossRef] [PubMed]
- Majchrzak, W.; Motyl, I.; Śmigielski, K. Biological and cosmetical importance of fermented raw materials: An overview. Molecules 2022, 27, 4845. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Zhang, M.; Mujumdar, A.S.; Gao, Z. Recent research process of fermented plant extract: A review. Trends Food Sci. Technol. 2017, 65, 40–48. [Google Scholar] [CrossRef]
- Makhamrueang, N.; Raiwa, A.; Jiaranaikulwanitch, J.; Kaewarsar, E.; Butrungrod, W.; Sirilun, S. Beneficial bio-extract of Camellia sinensis var. assamica fermented with a combination of probiotics as a potential ingredient for skin care. Cosmetics 2023, 10, 85. [Google Scholar] [CrossRef]
- Li, S.; Tao, Y.; Li, D.; Wen, G.; Zhou, J.; Manickam, S.; Han, Y.; Chai, W.S. Fermentation of blueberry juices using autochthonous lactic acid bacteria isolated from fruit environment: Fermentation characteristics and evolution of phenolic profiles. Chemosphere 2021, 276, 130090. [Google Scholar] [CrossRef] [PubMed]
- Villarreal-Soto, S.A.; Beaufort, S.; Bouajila, J.; Souchard, J.P.; Renard, T.; Rollan, S.; Taillandier, P. Impact of fermentation conditions on the production of bioactive compounds with anticancer, anti-inflammatory and antioxidant properties in kombucha tea extracts. Process Biochem. 2019, 83, 44–54. [Google Scholar] [CrossRef]
- Ziemlewska, A.; Nizioł-Łukaszewska, Z.; Bujak, T.; Zagórska-Dziok, M.; Wójciak, M.; Sowa, I. Effect of fermentation time on the content of bioactive compounds with cosmetic and dermatological properties in Kombucha Yerba Mate extracts. Sci. Rep. 2021, 11, 18792. [Google Scholar] [CrossRef] [PubMed]
- Leri, M.; Scuto, M.; Ontario, M.L.; Calabrese, V.; Calabrese, E.J.; Bucciantini, M.; Stefani, M. Healthy effects of plant polyphenols: Molecular mechanisms. Int. J. Molec. Sci. 2020, 21, 1250. [Google Scholar] [CrossRef]
- Park, E.H.; Kim, H.S.; Eom, S.J.; Kim, K.T.; Paik, H.D. Antioxidative and anticanceric activities of magnolia (Magnolia denudata) flower petal extract fermented by Pediococcus acidilactici KCCM 11614. Molecules 2015, 20, 12154–12165. [Google Scholar] [CrossRef]
- Jo, M.N.; Jung, J.E.; Lee, J.H.; Park, S.H.; Yoon, H.J.; Kim, K.T.; Paik, H.D. Cytotoxicity of the white ginseng extract and red ginseng extract treated with partially purified β-glucosidase from Aspergillus usamii KCTC 6954. Food Sci. Biotechnol. 2014, 23, 215–219. [Google Scholar] [CrossRef]
- Kim, M.; Yang, J.; Kwon, Y.S.; Kim, M.J. Antioxidant and anticancer effects of fermented Rhus verniciflua stem bark extracts in HCT-116 cells. Sci. Asia 2015, 41, 2306. [Google Scholar] [CrossRef]
- Song, J.H.; Jeong, G.H.; Park, S.L.; Won, S.Y.; Paek, N.S.; Lee, B.H.; Moon, S.K. Inhibitory effects of fermented extract of Ophiopogon japonicas on thrombin-induced vascular smooth muscle cells. Mol. Med. Rep. 2016, 13, 426–432. [Google Scholar] [CrossRef] [PubMed]
- Rabhi, C.; Arcile, G.; Cariel, L.; Lenoir, C.; Bignon, J.; Wdzieczak-Bakala, J.; Ouazzani, J. Antiangiogenic-like properties of fermented extracts of ayurvedic medicinal plants. J. Med. Food 2015, 18, 1065–1072. [Google Scholar] [CrossRef]
- Ismail, A.F.; El-Sonbaty, S.M. Fermentation enhances the protective role of Ginkgo biloba on gamma-irradiation-induced neuroinflammatory gene expression and stress hormones in rat brain. J. Photochem. Photobiol. B Biol. 2016, 158, 154–163. [Google Scholar] [CrossRef] [PubMed]
- Barbagallo, M.; Marotta, F.; Dominguez, L.J. Oxidative stress in patients with Alzheimer’s disease: Effect of extracts of fermented papaya powder. Mediat. Inflamm. 2015, 2015, 624801. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Mori, A.; Chen, Q.; Zhao, B. Fermented papaya preparation attenuates β-amyloid precursor protein: β-amyloid-mediated copper neurotoxicity in β-amyloid precursor protein and β-amyloid precursor protein Swedish mutation overexpressing SH-SY5Y cells. Neuroscience 2006, 143, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Jeon, G.; Ro, H.S.; Kim, G.R.; Lee, H.Y. Enhancement of melanogenic inhibitory effects of the leaf skin extracts of Aloe barbadensis Miller by the fermentation process. Fermentation 2022, 8, 580. [Google Scholar] [CrossRef]
- Park, Y.A.; Lee, S.R.; Lee, J.W.; Koo, H.J.; Jang, S.A.; Yun, S.W.; Kim, H.J.; Woo, J.S.; Park, M.R.; Kang, S.C.; et al. Suppressive effect of fermented Angelica tenuissima root extract against photoaging: Possible involvement of hemeoxygenase-1. J. Microbiol. Biotechnol. 2018, 28, 1391–1400. [Google Scholar] [CrossRef]
- Okamoto, T.; Sugimoto, S.; Noda, M.; Yokooji, T.; Danshiitsoodol, N.; Higashikawa, F.; Sugiyama, M. Interleukin-8 release inhibitors generated by fermentation of Artemisia princeps Pampanini herb extract with Lactobacillus plantarum SN13T. Front. Microbiol. 2020, 11, 1159. [Google Scholar] [CrossRef]
- Ho, C.C.; Ng, S.C.; Chuang, H.L.; Chen, J.Y.; Wen, S.Y.; Kuo, C.H.; Mahalakshmi, B.; Le, Q.W.; Huang, C.Y.; Kuo, W.W. Seven traditional Chinese herbal extracts fermented by Lactobacillus rhamnosus provide anti-pigmentation effects by regulating the CREB /MITF/ tyrosinase pathway. Environ. Toxicol. 2021, 36, 654–664. [Google Scholar] [CrossRef]
- Oh, B.T.; Jeong, S.Y.; Velmurugan, P.; Park, J.H.; Jeong, D.Y. Probiotic-mediated blueberry (Vaccinium corymbosum L.) fruit fermentation to yield functionalized products for augmented antibacterial and antioxidant activity. J. Biosci. Bioeng. 2017, 124, 542–550. [Google Scholar] [CrossRef] [PubMed]
- Collard, E.; Roy, S. Improved function of diabetic wound-site macrophages and accelerated wound closure in response to oral supplementation of a fermented papaya preparation. Antioxid. Redox Signal. 2010, 13, 599–606. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.M.; Chung, Y.C.; Chen, P.Y.; Chang, Y.C.; Chen, W.L. Fermentation of Chenopodium formosanum leaf extract with Aspergillus oryzae significantly enhanced its physiological activities. Appl. Sci. 2023, 13, 2917. [Google Scholar] [CrossRef]
- Cha, J.Y.; Yang, H.J.; Moon, H.I.; Cho, Y.S. Inhibitory effect and mechanism on melanogenesis from fermented herbal composition for medical or food uses. Food Res. Int. 2012, 45, 225–231. [Google Scholar] [CrossRef]
- Nizioł-Łukaszewska, Z.; Ziemlewska, A.; Bujak, T.; Zagórska-Dziok, M.; Zarębska, M.; Hordyjewicz-Baran, Z.; Wasilewski, T. Effect of fermentation time on antioxidant and anti-ageing properties of green coffee Kombucha ferments. Molecules 2020, 25, 5394. [Google Scholar]
- Sun, Q.; Fang, J.; Wang, Z.; Song, Z.; Geng, J.; Wang, D.; Wang, C.; Li, M. Two Laminaria japonica fermentation broths alleviate oxidative stress and inflammatory response caused by UVB damage: Photoprotective and reparative effects. Mar. Drugs 2022, 20, 650. [Google Scholar] [CrossRef] [PubMed]
- Ha, J.H.; Kim, A.R.; Lee, K.S.; Xuan, S.H.; Kang, H.C.; Lee, D.H.; Cha, M.Y.; Kim, H.J.; An, M.; Park, S.N. Anti-aging activity of Lavandula angustifolia extract fermented with Pediococcus pentosaceus DK1 isolated from Diospyros kaki fruit in UVB-irradiated human skin fibroblasts and analysis of principal components. J. Microbiol. Biotechnol. 2019, 29, 21–29. [Google Scholar] [CrossRef]
- Mosallam, F.M.; El-Sayyad, G.S.; Fathy, R.M.; El-Batal, A.I. Biomolecules-mediated synthesis of selenium nanoparticles using Aspergillus oryzae fermented Lupin extract and gamma radiation for hindering the growth of some multidrug-resistant bacteria and pathogenic fungi. Microbial Pathog. 2018, 122, 108–116. [Google Scholar] [CrossRef]
- Yang, J.; Cho, H.; Gil, M.; Kim, K.E. Anti-inflammation and anti-melanogenic effects of maca root extracts fermented using Lactobacillus strains. Antioxidants 2023, 12, 798. [Google Scholar] [CrossRef]
- Wu, L.; Chen, C.; Cheng, C.; Dai, H.; Ai, Y.; Lin, C.; Chung, Y. Evaluation of tyrosinase inhibitory, antioxidant, antimicrobial, and antiaging activities of Magnolia officinalis extracts after Aspergillus niger fermentation. BioMed Res. Int. 2018, 2018, 5201786. [Google Scholar] [CrossRef]
- Lorenz, P.; Zilkowski, I.; Mailänder, L.K.; Klaiber, I.; Nicolay, S.; Garcia-Käufer, M.; Zimmermann-Klemd, A.M.; Turek, C.; Stintzing, F.C.; Kammerer, D.R.; et al. Comparison of aqueous and Lactobacterial-fermented Mercurialis perennis L. (Dog’s Mercury) extracts with respect to their immunostimulating activity. Fermentation 2023, 9, 190. [Google Scholar] [CrossRef]
- Shakya, S.; Danshiitsoodol, N.; Sugimoto, S.; Noda, M.; Sugiyama, M. Anti-oxidant and anti-inflammatory substance generated newly in Paeoniae Radix Alba extract fermented with plant-derived Lactobacillus brevis 174A. Antioxidants 2021, 10, 1071. [Google Scholar] [CrossRef] [PubMed]
- You, S.; Shi, X.; Yu, D.; Zhao, D.; An, Q.; Wang, D.; Zhang, J.; Li, M.; Wang, C. Fermentation of Panax notoginseng root extract polysaccharides attenuates oxidative stress and promotes type I procollagen synthesis in human dermal fibroblast cells. BMC Complement. Med. Ther. 2021, 21, 34. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.K.; Kang, D.J. Anti-pollution activity, antioxidant and anti-inflammatory effects of fermented extract from Smilax china leaf in macrophages and keratinocytes. Cosmetics 2022, 9, 120. [Google Scholar] [CrossRef]
- Nam, G.H.; Kawk, H.W.; Kim, S.Y.; Kim, Y.M. Solvent fractions of fermented Trapa japonica fruit extract stimulate collagen synthesis through TGF-β1/GSK-3β/β-catenin pathway in human dermal fibroblasts. J. Cosmet. Dermatol. 2020, 19, 226–233. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.W.; Lim, J.M.; Mohan, H.; Seralathan, K.K.; Park, Y.J.; Lee, J.H.; Oh, B.T. Enhanced bioactivity of Zanthoxylum schinifolium fermented extract: Anti-inflammatory, anti-bacterial, and anti-melanogenic activity. J. Biosci. Bioeng. 2020, 129, 638–645. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.S.; Eweys, A.S.; Zhang, J.Y.; Zhu, Y.; Bai, J.; Darwesh, O.M.; Zhang, H.B.; Xiao, X. Fermentation affects the antioxidant activity of plant-based food material through the release and production of bioactive components. Antioxidants 2021, 10, 2004. [Google Scholar] [CrossRef] [PubMed]
- Chouhan, S.; Guleria, S. Anti-inflammatory activity of medicinal plants: Present status and future perspectives. Bot. Leads Drug Discov. 2020, 67–92. [Google Scholar] [CrossRef]
- Shahbazi, R.; Sharifzad, F.; Bagheri, R.; Alsadi, N.; Yasavoli-Sharahi, H.; Matar, C. Anti-inflammatory and immunomodulatory properties of fermented plant foods. Nutrients 2021, 13, 1516. [Google Scholar] [CrossRef]
- Lin, J.Y.; Fisher, D.E. Melanocyte biology and skin pigmentation. Nature 2007, 445, 843–850. [Google Scholar] [CrossRef]
- Uyen, L.D.P.; Nguyen, D.H.; Kim, E.K. Mechanism of skin pigmentation. Biotech. Bioproc. Eng. 2008, 13, 383–395. [Google Scholar] [CrossRef]
- Ahn, H.Y.; Choo, Y.M.; Cho, Y.S. Anti-pigmentation effects of eight Phellinus linteus-fermented traditional crude herbal extracts on brown guinea pigs of ultraviolet b-induced hyperpigmentation. J. Microbiol. Biotechnol. 2018, 28, 375–380. [Google Scholar] [CrossRef]
- Kim, K.; Huh, Y.; Lim, K.M. Anti-pigmentary natural compounds and their mode of action. Int. J. Molec. Sci. 2021, 22, 6206. [Google Scholar] [CrossRef]
- Gantwerker, E.A.; Hom, D.B. Skin: Histology and physiology of wound healing. Facial Plast. Surg. Clin. N. Am. 2011, 19, 441–453. [Google Scholar] [CrossRef]
- Herman, A.; Herman, A.P. Herbal products and their active constituents for diabetic wound healing—Preclinical and clinical studies: A systematic review. Pharmaceutics 2023, 15, 281. [Google Scholar] [CrossRef]
- Sivamaruthi, B.S.; Chaiyasut, C.; Kesika, P. Cosmeceutical importance of fermented plant extracts: A short review. Int. J. Appl. Pharm. 2018, 10, 31–34. [Google Scholar] [CrossRef]
- Ro, H.S.; Jang, H.J.; Kim, G.R.; Park, S.J.; Lee, H.Y. Enhancement of the anti-skin wrinkling effects of Aloe arborescens Miller extracts associated with lactic acid fermentation. Evid.-Based Complement. Altern. Med. 2020, 2020, 2743594. [Google Scholar] [CrossRef]
- Lee, H.; Choi, W.; Ro, H.; Kim, G.; Lee, H. Skin Antiaging effects of the fermented outer layers of leaf skin of Aloe barbadensis miller associated with the enhancement of mitochondrial activities of UVb-irradiated human skin fibroblasts. Appl. Sci. 2021, 11, 5660. [Google Scholar] [CrossRef]
- Park, Y.S.; Nam, G.H.; Jo, K.J.; Kawk, H.W.; Yoo, J.G.; Jang, J.D.; Kang, S.; Kim, S.Y.; Kim, Y.M. Adequacy of the anti-aging and anti-wrinkle effects of the Artemisia vulgaris fermented solvent fraction. KSBB J. 2019, 34, 199–206. [Google Scholar] [CrossRef]
- Pham, Q.L.; Jang, H.J.; Kim, K.B. Anti-wrinkle effect of fermented black ginseng on human fibroblasts. Int. J. Molec. Med. 2017, 39, 681–686. [Google Scholar] [CrossRef] [PubMed]
- Bae, J.T.; Ko, H.J.; Kim, G.B.; Pyo, H.B.; Lee, G.S. Protective effects of fermented Citrus Unshiu peel extract against ultraviolet-A-induced photoageing in human dermal fibrobolasts. Phytother. Res. 2012, 26, 1851–1856. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Bae, J.T.; Song, M.H.; Lee, G.S.; Choe, S.Y.; Pyo, H.B. Biological activities of Fructus arctii fermented with the basidiomycete Grifola frondosa. Arch. Pharm. Res. 2010, 33, 1943–1951. [Google Scholar] [CrossRef]
- Hering, A.; Stefanowicz-Hajduk, J.; Gucwa, M.; Wielgomas, B.; Ochocka, J.R. Photoprotection and antiaging activity of extracts from honeybush (Cyclopia sp.)—In vitro wound healing and inhibition of the skin extracellular matrix enzymes: Tyrosinase, collagenase, elastase and hyaluronidase. Pharmaceutics 2023, 15, 1542. [Google Scholar] [CrossRef] [PubMed]
- Mayer, W.; Weibel, M.; De Luca, C.; Ibragimova, G.; Trakhtman, I.; Kharaeva, Z.; Chandler, D.L.; Korkina, L. Biomolecules of fermented tropical fruits and fermenting microbes as regulators of human hair loss, hair quality, and scalp microbiota. Biomolecules 2023, 13, 699. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Kim, Y.J.; Cheung, W.H. Biological effects of yeast-fermented plant root extract mixture on skin cells. Asian J. Beauty Cosmetol. 2022, 20, 349–359. [Google Scholar] [CrossRef]
- Jang, J.D.; Kim, M.; Nam, G.H.; Kim, Y.M.; Kang, S.M.; Lee, K.Y.; Park, Y.J. Antiaging activity of peptide identified from fermented Trapa Japonica fruit extract in human dermal fibroblasts. Evid. Based Compl. Altern. Med. 2020, 2020, 5895029. [Google Scholar] [CrossRef] [PubMed]
- Nam, G.H.; Jo, K.J.; Park, Y.S.; Kawk, H.W.; Yoo, J.G.; Jang, J.D.; Kang, S.M.; Kim, S.Y.; Kim, Y.M. Bacillus/Trapa japonica fruit extract ferment filtrate enhances human hair follicle dermal papilla cell proliferation via the Akt/ERK/GSK-3β signaling pathway. BMC Complement. Altern. Med. 2019, 19, 104. [Google Scholar] [CrossRef]
- Kang, Y.M.; Hong, C.H.; Kang, S.H.; Seo, D.S.; Kim, S.O.; Lee, H.Y.; Sim, H.J.; An, H.J. Anti-photoaging effect of plant extract fermented with Lactobacillus buchneri on CCD-986sk fibroblasts and HaCaT keratinocytes. J. Funct. Biomater. 2020, 11, 3. [Google Scholar] [CrossRef]
- Ganceviciene, R.; Liakou, A.I.; Theodoridis, A.; Makrantonaki, E.; Zouboulis, C.C. Skin anti-aging strategies. Derm.-Endocrinol. 2012, 4, 308–319. [Google Scholar] [CrossRef]
- Hussain, A.; Bose, S.; Wang, J.H.; Yadav, M.K.; Mahajan, G.B.; Kim, H. Fermentation is a feasible strategy for enhancing the bioactivity of herbal medicines. Food Res. Int. 2016, 81, 1–16. [Google Scholar] [CrossRef]
- Hur, S.J.; Lee, S.Y.; Kim, Y.C.; Choi, I.; Kim, G.B. Effect of fermentation on the antioxidant activity in plant-based foods. Food Chem. 2014, 160, 346–356. [Google Scholar] [CrossRef] [PubMed]
- Daglia, M. Polyphenols as antimicrobial agents. Curr. Opin. Biotech. 2012, 23, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Yahfoufi, N.; Alsadi, N.; Jambi, M.; Matar, C. The immunomodulatory and anti-inflammatory role of polyphenols. Nutrients 2018, 10, 1618. [Google Scholar] [CrossRef]
- Guimarães, I.; Baptista-Silva, S.; Pintado, M.; Oliveira, L.A. Polyphenols: A promising avenue in therapeutic solutions for wound care. Appl. Sci. 2021, 11, 1230. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, M.; Mujumdar, A.S. New technology to overcome defects in production of fermented plant products—A review. Trends Food Sci. Technol. 2021, 116, 829–841. [Google Scholar] [CrossRef]
- Ingle, K.P.; Deshmukh, A.G.; Padole, D.A.; Dudhare, M.S.; Moharil, M.P.; Khelurkar, V.C. Phytochemicals: Extraction methods, identification and detection of bioactive compounds from plant extracts. J. Pharmacogn. Phytochem. 2017, 6, 32–36. [Google Scholar]
Plants | Microorganism | Active Compounds in FPE | Biological Activity | Ref. |
---|---|---|---|---|
Aloe vera | Lactobacillus plantarum BN41 | aloesin | melanogenic inhibitor | [17] |
Angelica tenuissima | Aspergillus oryzae | - | anti-inflammatory activity | [18] |
Artemisia princeps | Lactobacillus plantarum SN13T | catechol, seco-tanapartholide C | anti-inflammatory activity | [19] |
Atractylodes macrocephala, Paeonia lactiflora, Bletilla striata, Poria cocos, Dictamnus dasycarpus, Ampelopsis japonica, Tribulus terrestris | Lactobacillus rhamnosus | - | melanogenic inhibitor | [20] |
Vaccinium corymbosum (blueberry fruit) | Bacillus amyloliquefaciens, Starmerella bombicola, Lactobacillus brevis | - | antibacterial activity antioxidant activity | [21] |
Carica papaya | - | - | wound healing activity | [22] |
Chenopodium formosanum | Aspergillus oryzae | protocatechuic acid, epicatechin, gallic acid, quercetin | antioxidant activity anti-inflammatory activity antimicrobial activity skin-whitening activity | [23] |
ginseng | Aspergillus usamii | - | antioxidant activity | [10] |
Glycyrrhiza glabra, Broussonetia kazinoki, Morus alba, Angelica gigas, Atractylodes macrocephala, Poria cocos, Paeonia albiflora, Lithospermum officinale | Phellinus linteus | - | melanogenic inhibitor | [24] |
green coffee beans | kombucha | caffeine, trigonelline, phenolic compounds | antioxidant activity | [25] |
Laminaria japonica | Saccharomyces cerevisiae | polysaccharide, phenolic compounds | antioxidant activity anti-inflammatory activity | [26] |
Lavandula angustifolia | Pediococcus pentosaceus DK1 | luteolin-7-O-glucoside, apigenin-7-O-glucoside, chlorogenic acid | antioxidant activity | [27] |
Lupin (Lupinus polyphyllus) | Aspergillus oryzae | selenium nanoparticles | antimicrobial activity | [28] |
maca root | Lactobacillus plantarum, Lactobacillus rhamnosus Lactobacillus casei, Lactobacillus gasseri | polyphenols | anti-inflammatory activity melanogenic inhibitor | [29] |
Magnolia denudata | Pediococcus acidilactici KCCM 11614 | polyphenols | antioxidant activity | [9] |
Magnolia officinalis | Aspergillus niger | - | antibacterial activity melanogenic inhibitor | [30] |
Mercurialis perennis | Lactobacillus plantarum Pediococcus pentosaceus | cinnamic acids depsides containing glucaric, malic, and 2-hydroxyglutaric acids along with quercetin and kaempferol glycosides | anti-inflammatory activity | [31] |
Paeoniae alba | Lactobacillus brevis 174A | pyrogallol | antioxidant activity anti-inflammatory activity | [32] |
Panax notoginseng | Saccharomyces cerevisiae CGMCC 17452 | polysaccharide, ginsenoside, flavonoids | antioxidant activity | [33] |
Rhus verniciflua | - | - | antioxidant activity | [11] |
Smilax china | Lactobacillus bulgaricus, Lactobacillus reuteri | - | antioxidant activity | [34] |
Trapa japonica | Bacillus methulotrophicus Bacillus subtilis | - | wound healing activity | [35] |
Zanthoxylum schinifolium | Lactobacillus rhamnosus A6-5 | benzamides, ginsenoside, tricosanamide, gynuramide | antibacterial activity melanogenic inhibitor | [36] |
Plants | Microorganism | Active Compounds | Biological Activity | Potential Application | Ref. |
---|---|---|---|---|---|
Aloe arborescens | Lactobacillus plantarum | barbaloin polysaccharides | antioxidant activity collagen production inhibition of MMP-1 synthesis | anti-wrinkle product | [47] |
Aloe barbadensis | Lactobacillus plantarum | quercetin | antioxidant activity collagen production inhibition of MMP-1 synthesis | anti-wrinkle product protection against oxidative stress | [48] |
Aloe vera | Lactobacillus plantarum BN41 | aloesin | antioxidant activity inhibition of tyrosinase inhibition of melanin synthesis | skin whitening product | [17] |
Angelica tenuissima | Aspergillus oryzae | - | increase wound healing stimulate procollagen type-I and elastase synthesis inhibition of MMP-1 synthesis | anti-photoaging product | [18] |
Artemisia vulgaris | Bacillus methanolicus Bacillus subtilis | - | increase wound healing stimulate procollagen type-I and collagen synthesis inhibition of MMP-1 synthesis | anti-aging product | [49] |
Atractylodes macrocephala, Paeonia lactiflora, Bletilla striata, Poria cocos, Dictamnus dasycarpus, Ampelopsis japonica, Tribulus terrestris | Lactobacillus rhamnosus | - | suppressed α-MSH-induced melanogenesis significantly attenuated melanin production and tyrosinase activities | skin whitening product | [20] |
black ginseng | Saccharomyces cerevisiae | - | stimulate type I procollagen synthesis decrease MMP-1, MMP-2 and MMP-9 synthesis increase TIMP-2 expression | anti-wrinkle product | [50] |
Citrus unshiu | Schizophyllum commune | hesperetin | decrease in the expression level of MMP-1 increase collagen synthesis | anti-photoaging product | [51] |
Fructus arctii | Grifola frondosa | arctigenin caffeic acid | antioxidant activity anti-inflammatory activity inhibition of MMP-1 activity | anti-aging product | [52] |
honeybush | - | mangiferin hesperidin | antioxidant activity inhibit collagenase, tyrosinase, and hyaluronidase activity | anti-aging product wound healing product | [53] |
papaya, mangosteen | - | - | increased hair density improved hair follicle structure inhibiting hair loss inhibiting lipid peroxidation in scalp skin | lotion for androgenic or diffuse alopecia | [54] |
Taraxacum officinale, Arctium lappa, Pueraria lobata, Anemarrhena asphodeloides, Nelumbo nucifera | Saccharomyces cerevisiae | - | antioxidant activity anti-inflammatory activity | anti-aging product | [55] |
Trapa japonica | Bacillus subtilis Bacillus methylotrophicus | - | increase collagen synthesis reduction expression levels of MMP-1 and MMP-9 | anti-aging product | [56] |
Trapa japonica | Bacillus subtilis Bacillus methylotrophicus | - | stimulated cell proliferation and migration inhibited type I 5α-reductase enhanced angiogenesis | hair growth products treatment for alopecia | [57] |
Triticum aestivum, Avena sativa, Glycine max, Helianthus tuberosus, Smallanthus sonchifolius | Lactobacillus buchneri | - | antioxidant activity decreased elastase activity increased type I collagen expression in a UVB-induced fibroblast and keratinocytes | anti-photoaging product | [58] |
Yerba Mate | Kombucha | caffeoylquinic acid, dicaffeoylquinic acid | antioxidant activity inhibit the activity of lipoxygenase, collagenase, and elastase enzymes | moisturizing product | [7] |
Plants/Active Compound | Microorganism | Effective Dose of FPE vs. Control | Research Model | Application | Ref. |
---|---|---|---|---|---|
A. macrocephala, P. lactiflora, B. striata, P. cocos, D. dasycarpus, A. japonica, T. terrestris | Lactobacillus rhamnosus | vehicle with 2% and 6% FPE control: vehicle treatment: 3 times a week for 8 weeks | C57BL/6J nude mice | skin whitening product (anti-melanogenic effects, protection against UVB-induced hyperpigmentation) | [20] |
Carica papaya | - | oral supplementation (0.2 g/kg) FPE control: placebo supplement treatment: 5 days/week for 8 weeks | obese diabetic (db/db) mice | diabetic wound healing product (proangiogenic activity) | [22] |
papaya, mangosteen | - | placebo group (n = 29), experimental group (n = 100)-lotion with 2.0% w/w for each FPE, control group (n = 25)-lotion with 0.5% w/w caffeine treatment: lotion-daily once a day, shampoo-3 times a week for 3 months | 154 women and men with androgenic/diffuse alopecia | product for androgenic or diffuse alopecia (hair care cosmetics significantly inhibited hair loss, increased hair density/thickness, and improved hair follicle structure) | [54] |
Trapa japonica | Bacillus subtilis B. methylotrophicus | eye cream with 0.5% peptide isolated from FPE/control: none treatment: twice a day for 8 weeks | 22 women, aged 41 to 57 years | anti-aging product (ant wrinkle activity) | [55] |
Yerba Mate/caffeoylquinic acid, dicaffeoylquinic acid | Kombucha | 0.2 mL of 100 µg/mL fermented yerba mate control: none | 15 volunteers | moisturizing and long-lasting hydration product (inhibit the activity of lipoxygenase, collagenase, and elastase enzymes) | [7] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herman, A.; Herman, A.P. Biological Activity of Fermented Plant Extracts for Potential Dermal Applications. Pharmaceutics 2023, 15, 2775. https://doi.org/10.3390/pharmaceutics15122775
Herman A, Herman AP. Biological Activity of Fermented Plant Extracts for Potential Dermal Applications. Pharmaceutics. 2023; 15(12):2775. https://doi.org/10.3390/pharmaceutics15122775
Chicago/Turabian StyleHerman, Anna, and Andrzej Przemysław Herman. 2023. "Biological Activity of Fermented Plant Extracts for Potential Dermal Applications" Pharmaceutics 15, no. 12: 2775. https://doi.org/10.3390/pharmaceutics15122775
APA StyleHerman, A., & Herman, A. P. (2023). Biological Activity of Fermented Plant Extracts for Potential Dermal Applications. Pharmaceutics, 15(12), 2775. https://doi.org/10.3390/pharmaceutics15122775