Therapeutics for Chemotherapy-Induced Peripheral Neuropathy: Approaches with Natural Compounds from Traditional Eastern Medicine
Abstract
:1. Introduction
2. Development of CIPN Symptoms by Chemotherapeutic Agents
3. Peripheral and Spinal Mechanisms of the CIPN
4. Brain Changes Observed in Subjects with CIPN
5. Candidates for New Therapeutics: Approach with Knowledge from Traditional Eastern Medicine
5.1. Aconitum
5.2. Astragalus
5.3. Coptis
5.4. Cinnamommum
5.5. Curcuma
5.6. Dryobalanops
5.7. Lithospermum
5.8. Paeonia
5.9. Plantago
5.10. Sophora
5.11. Bee Venom Therapy
5.12. Pharmacopuncture Therapies
5.13. Gyeji Ga Chul Bu Tang
5.14. Siwei Jianbu Tang
5.15. Ucha Shinki Hwan, Also Referred to as Jeseng Singi Hwan
5.16. Yukgunja Tang
5.17. Other Herbal Formulas
6. Barriers in the Spread of Therapeutics for CIPN Based on Traditional Eastern Medicine
7. Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Kerckhove, N.; Collin, A.; Condé, S.; Chaleteix, C.; Pezet, D.; Balayssac, D. Long-term effects, pathophysiological mechanisms, and risk factors of chemotherapy-induced peripheral neuropathies: A comprehensive literature review. Front. Pharmacol. 2017, 8, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flatters, S.J.L.; Dougherty, P.M.; Colvin, L.A. Clinical and preclinical perspectives on Chemotherapy-Induced Peripheral Neuropathy (CIPN): A narrative review. Br. J. Anaesth. 2017, 119, 737–749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, D.; Zhao, F.; Brell, J.; Lewis, M.A.; Loprinzi, C.L.; Weiss, M.; Fisch, M.J. Neuropathic symptoms, quality of life, and clinician perception of patient care in medical oncology outpatients with colorectal, breast, lung, and prostate cancer. J. Cancer Surviv. 2015, 9, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Staff, N.P.; Grisold, A.; Grisold, W.; Windebank, A.J. Chemotherapy-induced peripheral neuropathy: A current review. Ann. Neurol. 2017, 81, 772–781. [Google Scholar] [CrossRef] [PubMed]
- Loprinzi, C.L.; Lacchetti, C.; Bleeker, J.; Cavaletti, G.; Chauhan, C.; Hertz, D.L.; Kelley, M.R.; Lavino, A.; Lustberg, M.B.; Paice, J.A. Prevention and management of chemotherapy-induced peripheral neuropathy in survivors of adult cancers: ASCO guideline update. J. Clin. Oncol. 2020, 38, 3325–3348. [Google Scholar] [CrossRef] [PubMed]
- Zajaczkowską, R.; Kocot-Kępska, M.; Leppert, W.; Wrzosek, A.; Mika, J.; Wordliczek, J. Mechanisms of chemotherapy-induced peripheral neuropathy. Int. J. Mol. Sci. 2019, 20, 1451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Omran, M.; Belcher, E.K.; Mohile, N.A.; Kesler, S.R.; Janelsins, M.C.; Hohmann, A.G.; Kleckner, I.R. Review of the Role of the Brain in Chemotherapy-Induced Peripheral Neuropathy. Front. Mol. Biosci. 2021, 8, 693133. [Google Scholar] [CrossRef]
- Kim, S.K.; Hayashi, H.; Ishikawa, T.; Shibata, K.; Shigetomi, E.; Shinozaki, Y.; Inada, H.; Roh, S.E.; Kim, S.J.; Lee, G.; et al. Cortical astrocytes rewire somatosensory cortical circuits for peripheral neuropathic pain. J. Clin. Investig. 2016, 126, 1983–1997. [Google Scholar] [CrossRef]
- Chung, G.; Shim, H.G.; Kim, C.Y.; Ryu, H.H.; Jang, D.C.; Kim, S.H.; Lee, J.; Kim, C.E.; Kim, Y.K.; Lee, Y.S.; et al. Persistent Activity of Metabotropic Glutamate Receptor 5 in the Periaqueductal Gray Constrains Emergence of Chronic Neuropathic Pain. Curr. Biol. 2020, 30, 4631–4642.e6. [Google Scholar] [CrossRef]
- Meacham, K.; Shepherd, A.; Mohapatra, D.P.; Haroutounian, S. Neuropathic Pain: Central vs. Peripheral Mechanisms. Curr. Pain Headache Rep. 2017, 21, 28. [Google Scholar] [CrossRef]
- Beijers, A.; Mols, F.; Dercksen, W.; Driessen, C.; Vreugdenhil, G. Chemotherapy-induced peripheral neuropathy and impact on quality of life 6 months after treatment with chemotherapy. J. Community Support. Oncol. 2014, 12, 401–406. [Google Scholar] [CrossRef]
- Selvy, M.; Pereira, B.; Kerckhove, N.; Gonneau, C.; Feydel, G.; Pétorin, C.; Vimal-Baguet, A.; Melnikov, S.; Kullab, S.; Hebbar, M.; et al. Long-Term Prevalence of Sensory Chemotherapy-Induced Peripheral Neuropathy for 5 Years after Adjuvant FOLFOX Chemotherapy to Treat Colorectal Cancer: A Multicenter Cross-Sectional Study. J. Clin. Med. 2020, 9, 2400. [Google Scholar] [CrossRef]
- Noh, H.; Yoon, S.W.; Park, B. A Systematic Review of Herbal Medicine for Chemotherapy Induced Peripheral Neuropathy. Evid.-Based Complement. Altern. Med. 2018, 2018, 6194184. [Google Scholar] [CrossRef]
- Li, Z.; Jin, H.; Yan, Q.; Sun, L.; Wasan, H.S.; Shen, M.; Ruan, S. The Method of Activating Blood and Dredging Collaterals for Reducing Chemotherapy-Induced Peripheral Neuropathy: A Systematic Review and Meta-Analysis. Evid.-Based Complement. Altern. Med. 2019, 2019, 1029626. [Google Scholar] [CrossRef]
- Hao, J.; Zhu, X.; Bensoussan, A. Effects of Nonpharmacological Interventions in Chemotherapy-Induced Peripheral Neuropathy: An Overview of Systematic Reviews and Meta-Analyses. Integr. Cancer Ther. 2020, 19, 1534735420945027. [Google Scholar] [CrossRef]
- Wang, S.-F.; Wu, M.-Y.; Cai, C.-Z.; Li, M.; Lu, J.-H. Autophagy modulators from traditional Chinese medicine: Mechanisms and therapeutic potentials for cancer and neurodegenerative diseases. J. Ethnopharmacol. 2016, 194, 861–876. [Google Scholar] [CrossRef]
- Xiang, Y.; Guo, Z.; Zhu, P.; Chen, J.; Huang, Y. Traditional Chinese medicine as a cancer treatment: Modern perspectives of ancient but advanced science. Cancer Med. 2019, 8, 1958–1975. [Google Scholar] [CrossRef]
- Zhang, Y.; Lou, Y.; Wang, J.; Yu, C.; Shen, W. Research Status and Molecular Mechanism of the Traditional Chinese Medicine and Antitumor Therapy Combined Strategy Based on Tumor Microenvironment. Front. Immunol. 2021, 11, 609705. [Google Scholar] [CrossRef]
- Park, J.; Jeong, D.; Song, M.; Kim, B. Recent Advances in Anti-Metastatic Approaches of Herbal Medicines in 5 Major Cancers: From Traditional Medicine to Modern Drug Discovery. Antioxidants 2021, 10, 527. [Google Scholar] [CrossRef]
- Kim, A.; Ha, J.; Kim, J.; Cho, Y.; Ahn, J.; Cheon, C.; Kim, S.H.; Ko, S.G.; Kim, B. Natural Products for Pancreatic Cancer Treatment: From Traditional Medicine to Modern Drug Discovery. Nutrients 2021, 13, 3801. [Google Scholar] [CrossRef]
- Colvin, L.A. Chemotherapy-induced peripheral neuropathy: Where are we now? Pain 2019, 160, S1–S10. [Google Scholar] [CrossRef]
- Seretny, M.; Currie, G.L.; Sena, E.S.; Ramnarine, S.; Grant, R.; Macleod, M.R.; Colvin, L.A.; Fallon, M. Incidence, prevalence, and predictors of chemotherapy-induced peripheral neuropathy: A systematic review and meta-analysis. Pain 2014, 155, 2461–2470. [Google Scholar] [CrossRef] [Green Version]
- Siegal, T.; Haim, N. Cisplatin-induced peripheral neuropathy. Frequent off-therapy deterioration, demyelinating syndromes, and muscle cramps. Cancer 1990, 66, 1117–1123. [Google Scholar] [CrossRef]
- Han, Y.; Smith, M.T. Pathobiology of cancer chemotherapy-induced peripheral neuropathy (CIPN). Front. Pharmacol. 2013, 4, 156. [Google Scholar] [CrossRef] [Green Version]
- Starobova, H.; Vetter, I. Pathophysiology of chemotherapy-induced peripheral neuropathy. Front. Mol. Neurosci. 2017, 10, 174. [Google Scholar] [CrossRef]
- Krauss, R.; Bosanac, T.; Devraj, R.; Engber, T.; Hughes, R.O. Axons Matter: The Promise of Treating Neurodegenerative Disorders by Targeting SARM1-Mediated Axonal Degeneration. Trends Pharmacol. Sci. 2020, 41, 281–293. [Google Scholar] [CrossRef] [Green Version]
- Canta, A.; Pozzi, E.; Carozzi, V.A. Mitochondrial dysfunction in chemotherapy-induced peripheral neuropathy (CIPN). Toxics 2015, 3, 198–223. [Google Scholar] [CrossRef] [Green Version]
- Yilmaz, E.; Watkins, S.C.; Gold, M.S. Paclitaxel-induced increase in mitochondrial volume mediates dysregulation of intracellular Ca2+ in putative nociceptive glabrous skin neurons from the rat. Cell Calcium 2017, 62, 16–28. [Google Scholar] [CrossRef] [Green Version]
- Rovini, A. Tubulin-VDAC interaction: Molecular basis for mitochondrial dysfunction in chemotherapy-induced peripheral neuropathy. Front. Physiol. 2019, 10, 671. [Google Scholar] [CrossRef]
- Genualdi, C.; Feinstein, S.C.; Wilson, L.; Jordan, M.A.; Stagg, N.J. Assessing the utility of in vitro microtubule assays for studying mechanisms of peripheral neuropathy with the microtubule inhibitor class of cancer chemotherapy. Chem. Biol. Interact. 2020, 315, 108906. [Google Scholar] [CrossRef]
- Pero, M.E.; Meregalli, C.; Qu, X.; Shin, G.J.E.; Kumar, A.; Shorey, M.; Rolls, M.M.; Tanji, K.; Brannagan, T.H.; Alberti, P.; et al. Pathogenic role of delta 2 tubulin in bortezomib-induced peripheral neuropathy. Proc. Natl. Acad. Sci. USA 2021, 118, e2012685118. [Google Scholar] [CrossRef] [PubMed]
- Chua, K.C.; El-Haj, N.; Priotti, J.; Kroetz, D.L. Mechanistic insights into the pathogenesis of microtubule-targeting agent-induced peripheral neuropathy from pharmacogenetic and functional studies. Basic Clin. Pharmacol. Toxicol. 2022, 130 (Suppl. 1), 60–74. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, J.C.; Muñoz, L.V.; Ehrlich, B.E. Modulating TRPV4 channels with paclitaxel and lithium. Cell Calcium 2020, 91, 102266. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Huang, J.; Benson, C.; Lankford, K.L.; Zhao, P.; Carrara, J.; Tan, A.M.; Kocsis, J.D.; Waxman, S.G.; Dib-Hajj, S.D. Sodium channel Nav1.6 in sensory neurons contributes to vincristine-induced allodynia. Brain 2020, 143, 2421–2436. [Google Scholar] [CrossRef]
- Brandolini, L.; d’Angelo, M.; Novelli, R.; Castelli, V.; Giorgio, C.; Sirico, A.; Cocchiaro, P.; D’Egidio, F.; Benedetti, E.; Cristiano, C.; et al. Paclitaxel binds and activates C5aR1: A new potential therapeutic target for the prevention of chemotherapy-induced peripheral neuropathy and hypersensitivity reactions. Cell Death Dis. 2022, 13, 500. [Google Scholar] [CrossRef]
- Illias, A.M.; Yu, K.-J.; Hwang, S.-H.; Solis, J.; Zhang, H.; Velasquez, J.F.; Cata, J.P.; Dougherty, P.M. Dorsal root ganglion toll-like receptor 4 signaling contributes to oxaliplatin-induced peripheral neuropathy. Pain 2022, 163, 923–935. [Google Scholar] [CrossRef]
- Domoto, R.; Sekiguchi, F.; Kamaguchi, R.; Iemura, M.; Yamanishi, H.; Tsubota, M.; Wang, D.; Nishibori, M.; Kawabata, A. Role of neuron-derived ATP in paclitaxel-induced HMGB1 release from macrophages and peripheral neuropathy. J. Pharmacol. Sci. 2022, 148, 156–161. [Google Scholar] [CrossRef]
- Sun, W.; Yang, S.; Wu, S.; Ba, X.; Xiong, D.; Xiao, L.; Hao, Y. Transcriptome analysis reveals dysregulation of inflammatory and neuronal function in dorsal root ganglion of paclitaxel-induced peripheral neuropathy rats. Mol. Pain 2022, 174480692211061. [Google Scholar] [CrossRef]
- Woller, S.A.; Choi, S.H.; An, E.J.; Low, H.; Schneider, D.A.; Ramachandran, R.; Kim, J.; Bae, Y.S.; Sviridov, D.; Corr, M.; et al. Inhibition of Neuroinflammation by AIBP: Spinal Effects upon Facilitated Pain States. Cell Rep. 2018, 23, 2667–2677. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, N.; Park, S.; Kim, S.K. Analgesic effects of medicinal plants and phytochemicals on chemotherapy-induced neuropathic pain through glial modulation. Pharmacol. Res. Perspect. 2021, 9, e00819. [Google Scholar] [CrossRef]
- Fumagalli, G.; Monza, L.; Cavaletti, G.; Rigolio, R.; Meregalli, C. Neuroinflammatory Process Involved in Different Preclinical Models of Chemotherapy-Induced Peripheral Neuropathy. Front. Immunol. 2021, 11, 626687. [Google Scholar] [CrossRef]
- Hald, A. Spinal astrogliosis in pain models: Cause and effects. Cell. Mol. Neurobiol. 2009, 29, 609–619. [Google Scholar] [CrossRef]
- Robinson, C.R.; Zhang, H.; Dougherty, P.M. Astrocytes, but not microglia, are activated in oxaliplatin and bortezomib-induced peripheral neuropathy in the rat. Neuroscience 2014, 274, 308–317. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Yoon, S.Y.; Zhang, H.; Dougherty, P.M. Evidence that spinal astrocytes but not microglia contribute to the pathogenesis of paclitaxel-induced painful neuropathy. J. Pain 2012, 13, 293–303. [Google Scholar] [CrossRef] [Green Version]
- Hu, L.Y.; Zhou, Y.; Cui, W.Q.; Hu, X.M.; Du, L.X.; Mi, W.L.; Chu, Y.X.; Wu, G.C.; Wang, Y.Q.; Mao-Ying, Q.L. Triggering receptor expressed on myeloid cells 2 (TREM2) dependent microglial activation promotes cisplatin-induced peripheral neuropathy in mice. Brain. Behav. Immun. 2018, 68, 132–145. [Google Scholar] [CrossRef]
- St. Germain, D.C.; O’Mara, A.M.; Robinson, J.L.; Torres, A.D.; Minasian, L.M. Chemotherapy-induced peripheral neuropathy: Identifying the research gaps and associated changes to clinical trial design. Cancer 2020, 126, 4602–4613. [Google Scholar] [CrossRef]
- Jacobs, S.S.; Fox, E.; Dennie, C.; Morgan, L.B.; McCully, C.L.; Balis, F.M. Plasma and cerebrospinal fluid pharmacokinetics of intravenous oxaliplatin, cisplatin, and carboplatin in nonhuman primates. Clin. Cancer Res. 2005, 11, 1669–1674. [Google Scholar] [CrossRef] [Green Version]
- Dorigo, O.; Turla, S.T.; Lebedeva, S.; Gjerset, R.A. Sensitization of rat glioblastoma multiforme to cisplatin in vivo following restoration of wild-type p53 function. J. Neurosurg. 1998, 88, 535–540. [Google Scholar] [CrossRef]
- Steiniger, S.C.J.; Kreuter, J.; Khalansky, A.S.; Skidan, I.N.; Bobruskin, A.I.; Smirnova, Z.S.; Severin, S.E.; Uhl, R.; Kock, M.; Geiger, K.D. Chemotherapy of glioblastoma in rats using doxorubicin-loaded nanoparticles. Int. J. Cancer 2004, 109, 759–767. [Google Scholar] [CrossRef]
- Gangloff, A.; Hsueh, W.-A.; Kesner, A.L.; Kiesewetter, D.O.; Pio, B.S.; Pegram, M.D.; Beryt, M.; Townsend, A.; Czernin, J.; Phelps, M.E. Estimation of paclitaxel biodistribution and uptake in human-derived xenografts in vivo with 18F-fluoropaclitaxel. J. Nucl. Med. 2005, 46, 1866–1871. [Google Scholar]
- Ongnok, B.; Chattipakorn, N.; Chattipakorn, S.C. Doxorubicin and cisplatin induced cognitive impairment: The possible mechanisms and interventions. Exp. Neurol. 2020, 324, 113118. [Google Scholar] [CrossRef]
- Branca, J.J.V.; Maresca, M.; Morucci, G.; Becatti, M.; Paternostro, F.; Gulisano, M.; Ghelardini, C.; Salvemini, D.; Mannelli, L.D.C.; Pacini, A. Oxaliplatin-induced blood brain barrier loosening: A new point of view on chemotherapy-induced neurotoxicity. Oncotarget 2018, 9, 23426–23438. [Google Scholar] [CrossRef] [Green Version]
- Ren, X.; Clair, D.K.S.; Butterfield, D.A. Dysregulation of cytokine mediated chemotherapy induced cognitive impairment. Pharmacol. Res. 2017, 117, 267–273. [Google Scholar] [CrossRef]
- Nguyen, L.D.; Ehrlich, B.E. Cellular mechanisms and treatments for chemobrain: Insight from aging and neurodegenerative diseases. EMBO Mol. Med. 2020, 12, e12075. [Google Scholar] [CrossRef]
- Boland, E.G.; Selvarajah, D.; Hunter, M.; Ezaydi, Y.; Tesfaye, S.; Ahmedzai, S.H.; Snowden, J.A.; Wilkinson, I.D. Central pain processing in chronic chemotherapy- induced peripheral neuropathy: A functional magnetic resonance imaging study. PLoS ONE 2014, 9, e96474. [Google Scholar] [CrossRef] [Green Version]
- Nudelman, K.N.H.; McDonald, B.C.; Wang, Y.; Smith, D.J.; West, J.D.; O’Neill, D.P.; Zanville, N.R.; Champion, V.L.; Schneider, B.P.; Saykin, A.J. Cerebral perfusion and gray matter changes associated with chemotherapy-induced peripheral neuropathy. J. Clin. Oncol. 2016, 34, 677–683. [Google Scholar] [CrossRef] [Green Version]
- Nagasaka, K.; Yamanaka, K.; Ogawa, S.; Takamatsu, H.; Higo, N. Brain activity changes in a macaque model of oxaliplatin-induced neuropathic cold hypersensitivity. Sci. Rep. 2017, 7, 4305. [Google Scholar] [CrossRef] [Green Version]
- Yeh, C.H.; Caswell, K.; Pandiri, S.; Sair, H.; Lukkahatai, N.; Campbell, C.M.; Stearns, V.; Van de Castle, B.; Perrin, N.; Smith, T.J.; et al. Dynamic Brain Activity Following Auricular Point Acupressure in Chemotherapy-Induced Neuropathy: A Pilot Longitudinal Functional Magnetic Resonance Imaging Study. Glob. Adv. Health Med. 2020, 9, 216495612090609. [Google Scholar] [CrossRef]
- Prinsloo, S.; Novy, D.; Driver, L.; Lyle, R.; Ramondetta, L.; Eng, C.; Lopez, G.; Li, Y.; Cohen, L. The Long-Term Impact of Neurofeedback on Symptom Burden and Interference in Patients With Chronic Chemotherapy-Induced Neuropathy: Analysis of a Randomized Controlled Trial. J. Pain Symptom Manag. 2018, 55, 1276–1285. [Google Scholar] [CrossRef] [Green Version]
- Vollmers, P.L.; Mundhenke, C.; Maass, N.; Bauerschlag, D.; Kratzenstein, S.; Röcken, C.; Schmidt, T. Evaluation of the effects of sensorimotor exercise on physical and psychological parameters in breast cancer patients undergoing neurotoxic chemotherapy. J. Cancer Res. Clin. Oncol. 2018, 144, 1785–1792. [Google Scholar] [CrossRef]
- Goto, Y.; Hosomi, K.; Shimokawa, T.; Shimizu, T.; Yoshino, K.; Kim, S.J.; Mano, T.; Kishima, H.; Saitoh, Y. Pilot study of repetitive transcranial magnetic stimulation in patients with chemotherapy-induced peripheral neuropathy. J. Clin. Neurosci. 2020, 73, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Gewandter, J.S.; Brell, J.; Cavaletti, G.; Dougherty, P.M.; Evans, S.; Howie, L.; McDermott, M.P.; O’Mara, A.; Smith, A.G.; Dastros-Pitei, D.; et al. Trial designs for chemotherapy-induced peripheral neuropathy prevention. Neurology 2018, 91, 403–413. [Google Scholar] [CrossRef] [PubMed]
- Sałat, K. Chemotherapy-induced peripheral neuropathy—Part 2: Focus on the prevention of oxaliplatin-induced neurotoxicity. Pharmacol. Rep. 2020, 72, 508–527. [Google Scholar]
- Ahn, B.-S.; Kim, S.-K.; Kim, H.N.; Lee, J.-H.; Lee, J.-H.; Hwang, D.S.; Bae, H.; Min, B.-I.; Kim, S.K. Gyejigachulbu-tang relieves oxaliplatin-induced neuropathic cold and mechanical hypersensitivity in rats via the suppression of spinal glial activation. Evid.-Based Complement. Altern. Med. 2014, 2014, 436482. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y.; Lee, J.H.; Kim, W.; Yoon, S.H.; Kim, S.K. Anti-allodynic effect of Buja in a rat model of oxaliplatin-induced peripheral neuropathy via spinal astrocytes and pro-inflammatory cytokines suppression. BMC Complement. Altern. Med. 2017, 17, 48. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.; Lee, J.H.; Kim, W.; Li, D.; Kim, Y.; Lee, K.; Kim, S.K. The suppressive effects of Cinnamomi Cortex and its phytocompound coumarin on oxaliplatin-induced neuropathic cold allodynia in rats. Molecules 2016, 21, 1253. [Google Scholar] [CrossRef] [Green Version]
- Chae, H.K.; Kim, W.; Kim, S.K. Phytochemicals of cinnamomi cortex: Cinnamic acid, but not cinnamaldehyde, attenuates oxaliplatin-induced cold and mechanical hypersensitivity in rats. Nutrients 2019, 11, 432. [Google Scholar] [CrossRef] [Green Version]
- Lee, G.; Kim, S.K. Therapeutic effects of phytochemicals and medicinal herbs on chemotherapy-induced peripheral neuropathy. Molecules 2016, 21, 1252. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, T.; Miyamoto, K.; Yokoyama, N.; Sugi, M.; Kagioka, A.; Kitao, Y.; Adachi, T.; Ohsawa, M.; Mizukami, H.; Makino, T. Processed aconite root and its active ingredient neoline may alleviate oxaliplatin-induced peripheral neuropathic pain. J. Ethnopharmacol. 2016, 186, 44–52. [Google Scholar] [CrossRef]
- Zhu, H.Q.; Xu, J.; Shen, K.F.; Pang, R.P.; Wei, X.H.; Liu, X.G. Bulleyaconitine A depresses neuropathic pain and potentiation at C-fiber synapses in spinal dorsal horn induced by paclitaxel in rats. Exp. Neurol. 2015, 273, 263–272. [Google Scholar] [CrossRef]
- Higuchi, H.; Yamamoto, S.; Ushio, S.; Kawashiri, T.; Egashira, N. Goshajinkigan reduces bortezomib-induced mechanical allodynia in rats: Possible involvement of kappa opioid receptor. J. Pharmacol. Sci. 2015, 129, 196–199. [Google Scholar] [CrossRef] [Green Version]
- Mannelli, L.D.C.; Zanardelli, M.; Bartolucci, G.; Karioti, A.; Bilia, A.R.; Vannacci, A.; Mugelli, A.; Ghelardini, C. In vitro evidence for the use of astragali radix extracts as adjuvant against oxaliplatin-induced neurotoxicity. Planta Med. 2015, 81, 1045–1055. [Google Scholar]
- Mannelli, L.D.C.; Pacini, A.; Micheli, L.; Femia, A.P.; Maresca, M.; Zanardelli, M.; Vannacci, A.; Gallo, E.; Bilia, A.R.; Caderni, G. Astragali radix: Could it be an adjuvant for oxaliplatin-induced neuropathy? Sci. Rep. 2017, 7, 42021. [Google Scholar] [CrossRef] [Green Version]
- Meng, J.; Qiu, S.; Zhang, L.; You, M.; Xing, H.; Zhu, J. Berberine Alleviate Cisplatin-Induced Peripheral Neuropathy by Modulating Inflammation Signal via TRPV1. Front. Pharmacol. 2022, 12, 774795. [Google Scholar] [CrossRef]
- Babu, A.; Prasanth, K.G.; Balaji, B. Effect of curcumin in mice model of vincristine-induced neuropathy. Pharm. Biol. 2015, 53, 838–848. [Google Scholar] [CrossRef]
- Agthong, S.; Kaewsema, A.; Charoensub, T. Curcumin ameliorates functional and structural abnormalities in cisplatin-induced neuropathy. Exp. Neurobiol. 2015, 24, 139–145. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Guan, Z.; Wang, X.; Sun, D.; Wang, D.; Li, Y.; Pei, B.; Ye, M.; Xu, J.; Yue, X. Curcumin alleviates oxaliplatin-induced peripheral neuropathic pain through inhibiting oxidative stress-mediated activation of NF-κB and mitigating inflammation. Biol. Pharm. Bull. 2020, 43, 348–355. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.H.; Zhang, L.; Zhou, Q.G.; Fang, Y.; Ge, W.H. (+)-Borneol attenuates oxaliplatin-induced neuropathic hyperalgesia in mice. Neuroreport 2016, 27, 160–165. [Google Scholar] [CrossRef]
- Cho, E.-S.; Yi, J.-M.; Park, J.-S.; Lee, Y.J.; Lim, C.J.; Bang, O.-S.; Kim, N.S. Aqueous extract of Lithospermi radix attenuates oxaliplatin-induced neurotoxicity in both in vitro and in vivo models. BMC Complement. Altern. Med. 2016, 16, 419. [Google Scholar] [CrossRef] [Green Version]
- Andoh, T.; Kobayashi, N.; Uta, D.; Kuraishi, Y. Prophylactic topical paeoniflorin prevents mechanical allodynia caused by paclitaxel in mice through adenosine A1 receptors. Phytomedicine 2017, 25, 1–7. [Google Scholar] [CrossRef]
- Toume, K.; Hou, Z.; Yu, H.; Kato, M.; Maesaka, M.; Bai, Y.; Hanazawa, S.; Ge, Y.; Andoh, T.; Komatsu, K. Search of anti-allodynic compounds from Plantaginis Semen, a crude drug ingredient of Kampo formula “Goshajinkigan”. J. Nat. Med. 2019, 73, 761–768. [Google Scholar] [CrossRef]
- Andoh, T.; Kato, M.; Kitamura, R.; Mizoguchi, S.; Uta, D.; Toume, K.; Komatsu, K.; Kuraishi, Y. Prophylactic administration of an extract from Plantaginis Semen and its major component aucubin inhibits mechanical allodynia caused by paclitaxel in mice. J. Tradit. Complement. Med. 2016, 6, 305–308. [Google Scholar] [CrossRef] [Green Version]
- Andoh, T.; Uta, D.; Kato, M.; Toume, K.; Komatsu, K.; Kuraishi, Y. Prophylactic administration of aucubin inhibits paclitaxel-induced mechanical allodynia via the inhibition of endoplasmic reticulum stress in peripheral Schwann cells. Biol. Pharm. Bull. 2017, 40, 473–478. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Toume, K.; Kurokawa, Y.; Andoh, T.; Komatsu, K. Iridoids isolated from Viticis Fructus inhibit paclitaxel-induced mechanical allodynia in mice. J. Nat. Med. 2020, 75, 48–55. [Google Scholar] [CrossRef]
- Gong, S.-S.; Li, Y.-X.; Zhang, M.-T.; Du, J.; Ma, P.-S.; Yao, W.-X.; Zhou, R.; Niu, Y.; Sun, T.; Yu, J.-Q. Neuroprotective effect of matrine in mouse model of vincristine-induced neuropathic pain. Neurochem. Res. 2016, 41, 3147–3159. [Google Scholar] [CrossRef]
- Dun, L.; Li, Y.; Xu, Y.; Zhou, R.; Ma, L.; Jin, S.; Du, J.; Sun, T.; Yu, J. Antinociceptive effect of matrine on vincristine-induced neuropathic pain model in mice. Neurol. Sci. 2014, 35, 815–821. [Google Scholar] [CrossRef]
- Yoon, S.-Y.Y.; Yeo, J.-H.H.; Han, S.-D.D.; Bong, D.-J.J.; Oh, B.; Roh, D.-H.H. Diluted bee venom injection reduces ipsilateral mechanical allodynia in oxaliplatin-induced neuropathic mice. Biol. Pharm. Bull. 2013, 36, 1787–1793. [Google Scholar] [CrossRef]
- Kim, W.; Kim, M.J.; Go, D.; Min, B.I.; Na, H.S.; Kim, S.K. Combined effects of bee venom acupuncture and morphine on Oxaliplatin-induced neuropathic pain in mice. Toxins 2016, 8, 33. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Lee, Y.; Kim, W.; Lee, K.; Bae, H.; Kim, S.K. Analgesic effects of bee venom derived phospholipase A2 in a mouse model of oxaliplatin-induced neuropathic pain. Toxins 2015, 7, 2422–2434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, D.; Yoo, J.H.; Kim, S.K. Long-Lasting and Additive Analgesic Effects of Combined Treatment of Bee Venom Acupuncture and Venlafaxine on Paclitaxel-Induced Allodynia in Mice. Toxins 2020, 12, 620. [Google Scholar] [CrossRef] [PubMed]
- Lim, B.S.; Moon, H.J.; Li, D.X.; Gil, M.; Min, J.K.; Lee, G.; Bae, H.; Kim, S.K.; Min, B.I. Effect of bee venom acupuncture on oxaliplatin-induced cold allodynia in rats. Evid.-Based Complement. Altern. Med. 2013, 2013, 369324. [Google Scholar] [CrossRef]
- Lee, J.H.; Li, D.X.; Yoon, H.; Go, D.; Quan, F.S.; Min, B.I.; Kim, S.K. Serotonergic mechanism of the relieving effect of bee venom acupuncture on oxaliplatin-induced neuropathic cold allodynia in rats. BMC Complement. Altern. Med. 2014, 14, 471. [Google Scholar] [CrossRef] [Green Version]
- Yeo, J.H.; Yoon, S.Y.; Kwon, S.K.; Kim, S.J.; Lee, J.H.; Beitz, A.J.; Roh, D.H. Repetitive acupuncture point treatment with diluted bee venom relieves mechanical allodynia and restores intraepidermal nerve fiber loss in oxaliplatin-induced neuropathic mice. J. Pain 2016, 17, 298–309. [Google Scholar] [CrossRef]
- Choi, S.; Chae, H.K.; Heo, H.; Hahm, D.-H.; Kim, W.; Kim, S.K. Analgesic effect of melittin on oxaliplatin-induced peripheral neuropathy in rats. Toxins 2019, 11, 396. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.; Jeon, C.; Lee, J.H.; Jang, J.U.; Quan, F.S.; Lee, K.; Kim, W.; Kim, S.K. Suppressive Effects of Bee Venom Acupuncture on Paclitaxel-Induced Neuropathic Pain in Rats: Mediation by Spinal α2-Adrenergic Receptor. Toxins 2017, 9, 351. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Chung, G.; Kim, S.K. The Involvement of Central Noradrenergic Pathway in the Analgesic Effect of Bee Venom Acupuncture on Vincristine-Induced Peripheral Neuropathy in Rats. Toxins 2020, 12, 775. [Google Scholar] [CrossRef]
- Park, B.-R.; Kim, J.-M.; Cho, C.-K.; Shin, S.-H.; Yoo, H.-S. Effect of Bee Venom Ointment Treatment for Chemotherapy-induced Peripheral Neuropathy: A Case Series. J. Haehwa Med. 2014, 22, 111–117. [Google Scholar]
- Yoon, J.; Jeon, J.H.; Lee, Y.W.; Cho, C.K.; Kwon, K.R.; Shin, J.E.; Sagar, S.; Wong, R.; Yoo, H.S. Sweet Bee Venom Pharmacopuncture for Chemotherapy-Induced Peripheral Neuropathy. JAMS J. Acupunct. Meridian Stud. 2012, 5, 156–165. [Google Scholar] [CrossRef]
- Park, J.W.; Jeon, J.H.; Yoon, J.; Jung, T.Y.; Kwon, K.R.; Cho, C.K.; Lee, Y.W.; Sagar, S.; Wong, R.; Yoo, H.S. Effects of sweet bee venom pharmacopuncture treatment for chemotherapy-induced peripheral neuropathy: A case series. Integr. Cancer Ther. 2012, 11, 166–171. [Google Scholar] [CrossRef] [Green Version]
- Song, S.Y.; Bae, K.; Shin, K.H.; Yoo, H.-S. A Case Series of Snake Venom Pharmacopuncture for Chemotherapy-Induced Peripheral Neuropathy: A Retrospective Observational Study. J. Pharmacopunct. 2017, 20, 280. [Google Scholar] [CrossRef]
- Yoon, S.Y.; Lee, J.Y.; Roh, D.H.; Oh, S.B. Pharmacopuncture With Scolopendra subspinipes Suppresses Mechanical Allodynia in Oxaliplatin-Induced Neuropathic Mice and Potentiates Clonidine-induced Anti-allodynia Without Hypotension or Motor Impairment. J. Pain 2018, 19, 1157–1168. [Google Scholar] [CrossRef]
- Hong, S.H.; Jung, Y. Effect of Korean Medicine Including Pharmacopuncture on Chemotherapy Induced Peripheral Neuropathy. J. Korean Tradit. Oncol. 2019, 24, 23–31. [Google Scholar]
- Yamada, T.; Kan, H.; Matsumoto, S.; Koizumi, M.; Sasaki, J.; Tani, A.; Yokoi, K.; Uchida, E. Reduction in oxaliplatin-related neurotoxicity by the administration of Keishikajutsubuto (TJ-18) and powdered processed aconite root. Gan To Kagaku Ryoho. 2012, 39, 1687. [Google Scholar]
- Zhang, P.; Lu, Y.; Yang, C.; Zhang, Q.; Qian, Y.; Suo, J.; Cheng, P.; Zhu, J. Based on Systematic Pharmacology: Molecular Mechanism of Siwei Jianbu Decoction in Preventing Oxaliplatin-Induced Peripheral Neuropathy. Neural Plast. 2020, 2020, 8880543. [Google Scholar] [CrossRef]
- Suo, J.; Wang, M.; Zhang, P.; Lu, Y.; Xu, R.; Zhang, L.; Qiu, S.; Zhang, Q.; Qian, Y.; Meng, J.; et al. Siwei Jianbu decoction improves painful paclitaxel-induced peripheral neuropathy in mouse model by modulating the NF-κB and MAPK signaling pathways. Regen. Med. Res. 2020, 8, 2. [Google Scholar] [CrossRef]
- Kitamura, R.; Andoh, T.; Fushimi, H.; Komatsu, K.; Shibahara, N.; Kuraishi, Y. Involvement of descending monoaminergic systems in antiallodynic effect of goshajinkigan in oxaliplatin-treated mice. J. Tradit. Med. 2013, 30, 183–189. [Google Scholar]
- Andoh, T.; Kitamura, R.; Fushimi, H.; Komatsu, K.; Shibahara, N.; Kuraishi, Y. Effects of goshajinkigan, hachimijiogan, and rokumigan on mechanical allodynia induced by Paclitaxel in mice. J. Tradit. Complement. Med. 2014, 4, 293–297. [Google Scholar] [CrossRef] [Green Version]
- Mizuno, K.; Kono, T.; Suzuki, Y.; Miyagi, C.; Omiya, Y.; Miyano, K.; Kase, Y.; Uezono, Y. Goshajinkigan, a traditional Japanese medicine, prevents oxaliplatin-induced acute peripheral neuropathy by suppressing functional alteration of TRP channels in rat. J. Pharmacol. Sci. 2014, 125, 91–98. [Google Scholar] [CrossRef] [Green Version]
- Kono, T.; Suzuki, Y.; Mizuno, K.; Miyagi, C.; Omiya, Y.; Sekine, H.; Mizuhara, Y.; Miyano, K.; Kase, Y.; Uezono, Y. Preventive effect of oral goshajinkigan on chronic oxaliplatin-induced hypoesthesia in rats. Sci. Rep. 2015, 5, 16078. [Google Scholar] [CrossRef] [Green Version]
- Mizuno, K.; Shibata, K.; Komatsu, R.; Omiya, Y.; Kase, Y.; Koizumi, S. An effective therapeutic approach for oxaliplatin-induced peripheral neuropathy using a combination therapy with goshajinkigan and bushi. Cancer Biol. Ther. 2016, 17, 1206–1212. [Google Scholar] [CrossRef] [Green Version]
- Hashimoto, K.; Sakuma, Y.; Kotani, J. Goshajinkigan improves paclitaxel-induced peripheral neuropathy in rats. J. Osaka Dent. Univ. 2006, 40, 47–52. [Google Scholar]
- Matsumura, Y.; Yokoyama, Y.; Hirakawa, H.; Shigeto, T.; Futagami, M.; Mizunuma, H. The prophylactic effects of a traditional Japanese medicine, goshajinkigan, on paclitaxel-induced peripheral neuropathy and its mechanism of action. Mol. Pain 2014, 10, 1744–8069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshida, N.; Hosokawa, T.; Ishikawa, T.; Yagi, N.; Kokura, S.; Naito, Y.; Nakanishi, M.; Kokuba, Y.; Otsuji, E.; Kuroboshi, H. Efficacy of goshajinkigan for oxaliplatin-induced peripheral neuropathy in colorectal cancer patients. J. Oncol. 2013, 2013, 139740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fukazawa, K.; Tsukagoshi, M.; Ozawa, D.; Ogata, K.; Kamiyama, Y.; Aihara, R. Preventive and inhibitory effects of goshajinkigan with respect to neurotoxicity induced by mFOLFOX6 in colorectal cancer therapy. Jpn. J. Pharm. Health Care Sci. 2011, 37, 625–630. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.H.; Park, H.L.; Lee, H.Y.; Cho, M.K.; Hong, M.N.; Han, C.W.; Choi, J.Y.; Park, S.H.; Kwon, J.N.; Lee, I. Case Report of Chemotherapy Induced Peripheral Neuropathy Treated with Korean Medicine. J. Physiol. Pathol. Korean Med. 2014, 28, 565–570. [Google Scholar] [CrossRef]
- Shindo, Y.; Tenma, K.; Imano, H.; Hibino, M.; Yoshino, K.; Nakamura, M. Reduction of oxaliplatin-related neurotoxicity by Gosha-jinki-gan. Gan To Kagaku Ryoho. 2008, 35, 863. [Google Scholar]
- Nishioka, M.; Shimada, M.; Kurita, N.; Iwata, T.; Morimoto, S.; Yoshikawa, K.; Higashijima, J.; Miyatani, T.; Kono, T. The Kampo medicine, Goshajinkigan, prevents neuropathy in patients treated by FOLFOX regimen. Int. J. Clin. Oncol. 2011, 16, 322–327. [Google Scholar] [CrossRef]
- Kaku, H.; Kumagai, S.; Onoue, H.; Takada, A.; Shoji, T.; Miura, F.; Yoshizaki, A.; Sato, S.; Kigawa, J.; Arai, T. Objective evaluation of the alleviating effects of Goshajinkigan on peripheral neuropathy induced by paclitaxel/carboplatin therapy: A multicenter collaborative study. Exp. Ther. Med. 2012, 3, 60–65. [Google Scholar] [CrossRef] [Green Version]
- Chiou, C.-T.; Wang, K.-C.; Yang, Y.-C.; Huang, C.-L.; Yang, S.-H.; Kuo, Y.-H.; Huang, N.-K. Liu Jun Zi Tang—A Potential, Multi-Herbal Complementary Therapy for Chemotherapy-Induced Neurotoxicity. Int. J. Mol. Sci. 2018, 19, 1258. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Kim, C.; Cho, C. Effects of Nerve Regeneration by Bogijetong-tang Treatment on Peripheral Nerves Damaged by Taxol and Crush Injury. J. Intern. Korean Med. 2013, 34, 384–404. [Google Scholar]
- Jeong, H.Y.; Kim, C.J.; Cho, C.S. Effects of YideungJetong-Tang on Peripheral Neuropathy Induced by Taxol and Compression Injury in the Rat Sciatic Nerve. J. Korean Med. 2012, 33, 133–146. [Google Scholar]
- An, Y.; Lee, Y.-N.; Baek, K.; Jang, W.-S. A Case Report of Chronic Chemotherapy-Induced Peripheral Neuropathy Treated by Korean Traditional Medicine. J. Intern. Korean Med. 2020, 41, 892–901. [Google Scholar] [CrossRef]
- Cheng, X.; Huo, J.; Wang, D.; Cai, X.; Sun, X.; Lu, W.; Yang, Y.; Hu, C.; Wang, X.; Cao, P. Herbal medicine AC591 prevents oxaliplatin-induced peripheral neuropathy in animal model and cancer patients. Front. Pharmacol. 2017, 8, 344. [Google Scholar] [CrossRef]
- Shen, J.; He, S.; Sun, X.; Hu, N.; Cai, Y. Clinical study on external bath of modified huangqi guizhi wuwu decoction for peripheral neurotoxicity induced by oxaliplatin. Chin. J. Inf. Tradit. Chin. Med. 2015, 22, 13–15. [Google Scholar]
- Li, Y.; Gui, H.; Huang, J.; Wu, X. Clinical study of Jiawei Huangqi Guizhi Wuwu Decoction in preventing and treating peripheral neuro-sensory toxicity caused by oxaliplatin. Chin. J. Integr. Med. 2006, 12, 19–23. [Google Scholar]
- Tatsumi, T.; Kishi, D.; Kogure, T. The efficacy of ogikeishigomotsuto on chronic cumulative sensory neuropathy induced by Oxaliplatin-Case report and Literature view. J. Tradit. Med. 2009, 26, 136–140. [Google Scholar]
- Hidaka, T.; Shima, T.; Nagira, K.; Ieki, M.; Nakamura, T.; Aono, Y.; Kuraishi, Y.; Arai, T.; Saito, S. Herbal medicine Shakuyaku-kanzo-to reduces paclitaxel-induced painful peripheral neuropathy in mice. Eur. J. Pain 2009, 13, 22–27. [Google Scholar] [CrossRef]
- Fujii, K.; Okamoto, S.; Saitoh, K.; Sasaki, N.; Takano, M.; Tanaka, S.; Kudoh, K.; Kita, T.; Tode, T.; Kikuchi, Y. The efficacy of Shakuyaku-Kanzo-to for peripheral nerve dysfunction in paclitaxel combination chemotherapy for epithelial ovarian carcinoma. Gan To Kagaku Ryoho 2004, 31, 1537–1540. [Google Scholar]
- Yamamoto, K. Effects of shakuyaku-kanzo-to on muscle pain from combination chemotherapy with paclitaxel and carboplatin. Gynecol Oncol. 2001, 81, 333–334. [Google Scholar] [CrossRef]
- Xie, M.X.; Zhu, H.Q.; Pang, R.P.; Wen, B.T.; Liu, X.G. Mechanisms for therapeutic effect of bulleyaconitine A on chronic pain. Mol. Pain 2018, 14, 1744806918797243. [Google Scholar] [CrossRef] [Green Version]
- Kimata, Y.; Ogawa, K.; Okamoto, H.; Chino, A.; Namiki, T. Efficacy of Japanese traditional (Kampo) medicine for treating chemotherapy-induced peripheral neuropathy: A retrospective case series study. World J. Clin. Cases 2016, 4, 310. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Li, F.; Li, Y.; Li, W.; Xu, J.; Du, H. A review of traditional and current methods used to potentially reduce toxicity of Aconitum roots in Traditional Chinese Medicine. J. Ethnopharmacol. 2017, 207, 237–250. [Google Scholar] [CrossRef] [PubMed]
- Chan, Y.T.; Wang, N.; Feng, Y. The toxicology and detoxification of Aconitum: Traditional and modern views. Chin. Med. 2021, 16, 61. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Li, O.; Tan, H.; Li, Y. Clinical observation of efficacy of Huangqi injection in prevention and treatment of neuroto-xicity induced by oxaliplatin-containing chemotherapy regimen. Advers. Drug React. J. 2009, 11, 249–252. [Google Scholar]
- Zhang, Y.; Lu, X. Clinical study of the protective effect of thioctic acid combined with Huangqi Oral Liquid on oxaliplatin-induced neurotoxicity. China J. Chin. Med. 2013, 28, 1617–1618. [Google Scholar]
- Deng, B.; Jia, L.; Cheng, Z. Radix astragali-based chinese herbal medicine for oxaliplatin-induced peripheral neuropathy: A systematic review and meta-analysis. Evid.-Based Complement. Altern. Med. 2016, 2016, 2421876. [Google Scholar] [CrossRef]
- Deng, B.; Jia, L.; Wan, D.; Wang, B.; Cheng, Z.; Deng, C. Efficacy of Wen-Luo-Tong on Peripheral Neuropathy Induced by Chemotherapy or Target Therapy: A Randomized, Double-Blinded, Placebo-Controlled Trial. Chin. J. Integr. Med. 2022, 28, 579–585. [Google Scholar] [CrossRef]
- Lee, K.; Ku, J.M.; Choi, Y.J.; Hwang, H.H.; Jeong, M.; Kim, Y.G.; Kim, M.J.; Ko, S.G. Herbal Prescription SH003 Alleviates Docetaxel-Induced Neuropathic Pain in C57BL/6 Mice. Evid.-Based. Complement. Altern. Med. 2021, 2021, 4120334. [Google Scholar] [CrossRef]
- Guo, Z.; Lou, Y.; Kong, M.; Luo, Q.; Liu, Z.; Wu, J. A systematic review of phytochemistry, pharmacology and pharmacokinetics on astragali radix: Implications for astragali radix as a personalized medicine. Int. J. Mol. Sci. 2019, 20, 1463. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Dong, B.; Xue, W.; Feng, Y.; Yang, C.; Liu, P.; Cao, J.; Zhu, C. Anticancer effect of radix astragali on cholangiocarcinoma in vitro and its mechanism via network pharmacology. Med. Sci. Monit. 2020, 26, e921162. [Google Scholar] [CrossRef]
- Okuno, K.; Garg, R.; Yuan, Y.-C.; Tokunaga, M.; Kinugasa, Y.; Goel, A. Berberine and Oligomeric Proanthocyanidins Exhibit Synergistic Efficacy Through Regulation of PI3K-Akt Signaling Pathway in Colorectal Cancer. Front. Oncol. 2022, 12, 855860. [Google Scholar] [CrossRef]
- Chen, H.; Ye, C.; Cai, B.; Zhang, F.; Wang, X.; Zhang, J.; Zhang, Z.; Guo, Y.; Yao, Q. Berberine inhibits intestinal carcinogenesis by suppressing intestinal pro-inflammatory genes and oncogenic factors through modulating gut microbiota. BMC Cancer 2022, 22, 566. [Google Scholar] [CrossRef]
- Jiang, X.; Jiang, Z.; Jiang, M.; Sun, Y. Berberine as a Potential Agent for the Treatment of Colorectal Cancer. Front. Med. 2022, 9, 886996. [Google Scholar] [CrossRef]
- Huang, C.; Sun, Y.; Liao, S.; Chen, Z.; Lin, H.; Shen, W. Suppression of Berberine and Probiotics (in vitro and in vivo) on the Growth of Colon Cancer With Modulation of Gut Microbiota and Butyrate Production. Front. Microbiol. 2022, 13, 869931. [Google Scholar] [CrossRef]
- Zhu, Y.; Xie, N.; Chai, Y.; Nie, Y.; Liu, K.; Liu, Y.; Yang, Y.; Su, J.; Zhang, C. Apoptosis Induction, a Sharp Edge of Berberine to Exert Anti-Cancer Effects, Focus on Breast, Lung, and Liver Cancer. Front. Pharmacol. 2022, 13, 803717. [Google Scholar] [CrossRef]
- Wu, Y.; Xu, J.; Liu, Y.; Zeng, Y.; Wu, G. A Review on Anti-Tumor Mechanisms of Coumarins. Front. Oncol. 2020, 10, 592853. [Google Scholar] [CrossRef]
- Al-Warhi, T.; Sabt, A.; Elkaeed, E.B.; Eldehna, W.M. Recent advancements of coumarin-based anticancer agents: An up-to-date review. Bioorg. Chem. 2020, 103, 104163. [Google Scholar] [CrossRef]
- Akkol, E.K.; Genç, Y.; Karpuz, B.; Sobarzo-Sánchez, E.; Capasso, R. Coumarins and coumarin-related compounds in pharmacotherapy of cancer. Cancers 2020, 12, 1959. [Google Scholar] [CrossRef]
- Ruwizhi, N.; Aderibigbe, B.A. Cinnamic acid derivatives and their biological efficacy. Int. J. Mol. Sci. 2020, 21, 5712. [Google Scholar] [CrossRef]
- Al Moundhri, M.S.; Al-Salam, S.; Al Mahrouqee, A.; Beegam, S.; Ali, B.H. The effect of curcumin on oxaliplatin and cisplatin neurotoxicity in rats: Some behavioral, biochemical, and histopathological studies. J. Med. Toxicol. 2013, 9, 25–33. [Google Scholar] [CrossRef] [Green Version]
- Giordano, A.; Tommonaro, G. Curcumin and cancer. Nutrients 2019, 11, 2376. [Google Scholar] [CrossRef] [Green Version]
- Rizeq, B.; Gupta, I.; Ilesanmi, J.; AlSafran, M.; Rahman, M.D.M.; Ouhtit, A. The power of phytochemicals combination in cancer chemoprevention. J. Cancer 2020, 11, 4521–4533. [Google Scholar] [CrossRef]
- Ashrafizadeh, M.; Zarrabi, A.; Hashemi, F.; Zabolian, A.; Saleki, H.; Bagherian, M.; Azami, N.; Bejandi, A.K.; Hushmandi, K.; Ang, H.L.; et al. Polychemotherapy with curcumin and doxorubicin via biological nanoplatforms: Enhancing antitumor activity. Pharmaceutics 2020, 12, 1084. [Google Scholar] [CrossRef]
- Gupta, N.; Verma, K.; Nalla, S.; Kulshreshtha, A.; Lall, R.; Prasad, S. Free Radicals as a Double-Edged Sword: The Cancer Preventive and Therapeutic Roles of Curcumin. Molecules 2020, 25, 5390. [Google Scholar] [CrossRef]
- Tan, B.L.; Norhaizan, M.E. Curcumin combination chemotherapy: The implication and efficacy in cancer. Molecules 2019, 24, 2527. [Google Scholar] [CrossRef] [Green Version]
- Grover, M.; Behl, T.; Sachdeva, M.; Bungao, S.; Aleya, L.; Setia, D. Focus on Multi-targeted Role of Curcumin: A Boon in Therapeutic Paradigm. Environ. Sci. Pollut. Res. 2021, 28, 18893–18907. [Google Scholar] [CrossRef]
- Bordoloi, D.; Roy, N.K.; Monisha, J.; Padmavathi, G.; Kunnumakkara, A.B. Multi-Targeted Agents in Cancer Cell Chemosensitization: What We Learnt from Curcumin Thus Far. Recent Pat. Anticancer. Drug Discov. 2015, 11, 67–97. [Google Scholar] [CrossRef]
- Kasi, P.D.; Tamilselvam, R.; Skalicka-Woźniak, K.; Nabavi, S.F.; Daglia, M.; Bishayee, A.; Pazoki-Toroudi, H.; Nabavi, S.M. Molecular targets of curcumin for cancer therapy: An updated review. Tumor Biol. 2016, 37, 13017–13028. [Google Scholar] [CrossRef]
- Panda, A.K.; Chakraborty, D.; Sarkar, I.; Khan, T.; Sa, G. New insights into therapeutic activity and anticancer properties of curcumin. J. Exp. Pharmacol. 2017, 9, 31–45. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.; Shen, Y.Y.; Li, J.; Lin, Y.H.; Luo, C.X.; Zhu, D.Y. (+)-Borneol alleviates mechanical hyperalgesia in models of chronic inflammatory and neuropathic pain in mice. Eur. J. Pharmacol. 2015, 757, 53–58. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, D.; Hu, J.; Jia, Q.; Xu, W.; Su, D.; Song, H.; Xu, Z.; Cui, J.; Zhou, M.; et al. A clinical and mechanistic study of topical borneol-induced analgesia. EMBO Mol. Med. 2017, 9, 802–815. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Wu, D.; Wu, J.; Ou, Y.; Mu, C.; Han, B.; Zhang, Q. Improved blood-brain barrier distribution: Effect of borneol on the brain pharmacokinetics of kaempferol in rats by in vivo microdialysis sampling. J. Ethnopharmacol. 2015, 162, 270–277. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.L.; Fu, B.M.; Zhang, Z.J. Borneol, a novel agent that improves central nervous system drug delivery by enhancing blood–brain barrier permeability. Drug Deliv. 2017, 24, 1037–1044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, T.; Zhang, A.; Lu, H.; Cheng, Q. The Role and Mechanism of Borneol to Open the Blood-Brain Barrier. Integr. Cancer Ther. 2018, 17, 806–812. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Q.; Chen, Z.X.; Xu, M.B.; Zhou, X.L.; Huang, Y.Y.; Zheng, G.Q.; Wang, Y. Borneol, a messenger agent, improves central nervous system drug delivery through enhancing blood–brain barrier permeability: A preclinical systematic review and meta-analysis. Drug Deliv. 2018, 25, 1617–1633. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.Y.; Li, Y.J.; Yang, L.; Hu, Y.Y.; Hu, X.B.; Tang, T.T.; Wang, J.M.; Liu, X.Y.; Xiang, D.X. Borneol and a-asarone as adjuvant agents for improving blood-brain barrier permeability of puerarin and tetramethylpyrazine by activating adenosine receptors. Drug Deliv. 2018, 25, 1858–1864. [Google Scholar] [CrossRef] [Green Version]
- Yin, Y.; Cao, L.; Ge, H.; Duanmu, W.; Tan, L.; Yuan, J.; Tunan, C.; Li, F.; Hu, R.; Gao, F.; et al. L-Borneol induces transient opening of the blood-brain barrier and enhances the therapeutic effect of cisplatin. Neuroreport 2017, 28, 506–513. [Google Scholar] [CrossRef]
- Meng, L.; Chu, X.; Xing, H.; Liu, X.; Xin, X.; Chen, L.; Jin, M.; Guan, Y.; Huang, W.; Gao, Z. Improving glioblastoma therapeutic outcomes via doxorubicin-loaded nanomicelles modified with borneol. Int. J. Pharm. 2019, 567, 118485. [Google Scholar] [CrossRef]
- Cao, W.; Li, Y.; Hou, Y.; Yang, M.; Fu, X.; Zhao, B.; Jiang, H.; Fu, X. Enhanced anticancer efficiency of doxorubicin against human glioma by natural borneol through triggering ROS-mediated signal. Biomed. Pharmacother. 2019, 118, 109261. [Google Scholar] [CrossRef]
- Lv, L.; Li, X.; Qian, W.; Li, S.; Jiang, Y.; Xiong, Y.; Xu, J.; Lv, W.; Liu, X.; Chen, Y.; et al. Enhanced Anti-Glioma Efficacy by Borneol Combined With CGKRK-Modified Paclitaxel Self-Assembled Redox-Sensitive Nanoparticles. Front. Pharmacol. 2020, 11, 558. [Google Scholar] [CrossRef]
- Liu, W.J.; Yin, Y.B.; Sun, J.Y.; Feng, S.; Ma, J.K.; Fu, X.Y.; Hou, Y.J.; Yang, M.F.; Sun, B.L.; Fan, C.D. Natural borneol is a novel chemosensitizer that enhances temozolomide-induced anticancer efficiency against human glioma by triggering mitochondrial dysfunction and reactive oxide species-mediated oxidative damage. OncoTargets Ther. 2018, 11, 5429–5439. [Google Scholar] [CrossRef] [Green Version]
- Boulos, J.C.; Rahama, M.; Hegazy, M.E.F.; Efferth, T. Shikonin derivatives for cancer prevention and therapy. Cancer Lett. 2019, 459, 248–267. [Google Scholar] [CrossRef]
- Zhao, Q.; Kretschmer, N.; Bauer, R.; Efferth, T. Shikonin and its derivatives inhibit the epidermal growth factor receptor signaling and synergistically kill glioblastoma cells in combination with erlotinib. Int. J. Cancer 2015, 137, 1446–1456. [Google Scholar] [CrossRef]
- Gupta, B.; Chakraborty, S.; Saha, S.; Chandel, S.G.; Baranwal, A.K.; Banerjee, M.; Chatterjee, M.; Chaudhury, A. Antinociceptive properties of shikonin: In vitro and in vivo studies. Can. J. Physiol. Pharmacol. 2016, 94, 788–796. [Google Scholar] [CrossRef]
- Guo, C.; He, J.; Song, X.; Tan, L.; Wang, M.; Jiang, P.; Li, Y.; Cao, Z.; Peng, C. Pharmacological properties and derivatives of shikonin—A review in recent years. Pharmacol. Res. 2019, 149, 104463. [Google Scholar] [CrossRef]
- Andújar, I.; Ríos, J.L.; Giner, R.M.; Recio, M.C. Pharmacological properties of shikonin—A review of literature since 2002. Planta Med. 2013, 79, 1685–1697. [Google Scholar]
- Schröder, S.; Beckmann, K.; Franconi, G.; Meyer-Hamme, G.; Friedemann, T.; Greten, H.J.; Rostock, M.; Efferth, T. Can Medical Herbs Stimulate Regeneration or Neuroprotection and Treat Neuropathic Pain in Chemotherapy-Induced Peripheral Neuropathy? Evid.-Based Complement. Altern. Med. 2013, 2013, 423713. [Google Scholar] [CrossRef] [Green Version]
- Feng, L.; Jia, X. Antioxidative and anti-inflammatory activities of paeoniflorin and oxypaeoniflora on AGEs-induced mesangial cell damage. Planta Med. 2013, 79, 1319–1323. [Google Scholar]
- Wang, C.; Yuan, J.; Wu, H.; Chang, Y.; Wang, Q.; Wu, Y.; Liu, L.; Wei, W. Paeoniflorin inhibits inflammatory responses in mice with allergic contact dermatitis by regulating the balance between inflammatory and anti-inflammatory cytokines. Inflamm. Res. 2013, 62, 1035–1044. [Google Scholar] [CrossRef]
- Chang, Y.; Zhang, L.; Wang, C.; Jia, X.-Y.; Wei, W. Paeoniflorin inhibits function of synoviocytes pretreated by rIL-1α and regulates EP4 receptor expression. J. Ethnopharmacol. 2011, 137, 1275–1282. [Google Scholar] [CrossRef]
- Wu, J.-J.; Sun, W.-Y.; Hu, S.-S.; Zhang, S.; Wei, W. A standardized extract from Paeonia lactiflora and Astragalus membranaceus induces apoptosis and inhibits the proliferation, migration and invasion of human hepatoma cell lines. Int. J. Oncol. 2013, 43, 1643–1651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, P.; Cheng, J.; Ma, S.; Zhou, J. Paeoniflorin attenuates chronic constriction injury-induced neuropathic pain by suppressing spinal NLRP3 inflammasome activation. Inflammopharmacology 2020, 28, 1495–1508. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Wang, L.; Wang, J.; Wang, C.; Yang, Z.; Wang, C.; Zhu, Y.; Zhang, J. Paeoniflorin and Albiflorin Attenuate Neuropathic Pain via MAPK Pathway in Chronic Constriction Injury Rats. Evid.-Based Complement. Altern. Med. 2016, 2016, 8082753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teramoto, H.; Yamauchi, T.; Terado, Y.; Odagiri, S.; Sasaki, S.; Higashiyama, K. Design and synthesis of a piperidinone scaffold as an analgesic through kappa-opioid receptor: Structure-activity relationship study of matrine alkaloids. Chem. Pharm. Bull. 2016, 64, 410–419. [Google Scholar] [CrossRef] [Green Version]
- Yin, L.L.; Zhu, X.Z. The involvement of central cholinergic system in (+)-matrine-induced antinociception in mice. Pharmacol. Biochem. Behav. 2005, 80, 419–425. [Google Scholar] [CrossRef]
- Sun, Y.Z.; You, R.L.; Wang, L.; Ren, J.S.; Wang, D.Y.; Su, S.J.; Xu, R.F. Compound matrine injection reduces morphine tolerance of the mice with lung cancer by inhibiting expression of multidrug resistance gene 1 and P-glycoprotein. Zhonghua Zhong Liu Za Zhi 2020, 42, 216–221. [Google Scholar] [CrossRef]
- Kianbakht, S.; Hajiaghaee, R.; Akhondzadeh, S. Efficacy and safety of Sophora alopecuroides var. alopecuroides seed extract for opioid detoxification: A randomized, double-blind, and placebo-controlled clinical trial. Phyther. Res. 2020, 34, 1108–1113. [Google Scholar] [CrossRef]
- Kianbakht, S.; Dabaghian, F.H. Sophora alopecuroides L. var. alopecuroides alleviates morphine withdrawal syndrome in mice: Involvement of alkaloid fraction and matrine. Iran. J. Basic Med. Sci. 2016, 19, 1090–1095. [Google Scholar]
- Ge, L.; Wang, Y.; Tian, J.; Mao, L.; Zhang, J.; Zhang, J.; Shen, X.; Yang, K. Network meta-analysis of Chinese herb injections combined with FOLFOX chemotherapy in the treatment of advanced colorectal cancer. J. Clin. Pharm. Ther. 2016, 41, 383–391. [Google Scholar] [CrossRef] [Green Version]
- Hu, G.; Cao, C.; Deng, Z.; Li, J.; Zhou, X.; Huang, Z.; Cen, C. Effects of matrine in combination with cisplatin on liver cancer. Oncol. Lett. 2021, 21, 1. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, L.; Sun, X.; Yang, Q.; Wan, L.; Guo, C. Matrine: A promising natural product with various pharmacological activities. Front. Pharmacol. 2020, 11, 588. [Google Scholar] [CrossRef]
- Kim, H.; Lee, G.; Park, S.; Chung, H.S.; Lee, H.; Kim, J.Y.; Nam, S.; Kim, S.K.; Bae, H. Bee venom mitigates cisplatin-induced nephrotoxicity by regulating CD4+CD25+Foxp3+ regulatory T cells in mice. Evid.-Based Complement. Altern. Med. 2013, 2013, 879845. [Google Scholar] [CrossRef] [Green Version]
- Woo, S.; Chung, G.; Bae, H.; Kim, S.K. Suppressive effects of bee venom-derived phospholipase a2 on mechanical allodynia in a rat model of neuropathic pain. Toxins 2019, 11, 477. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Kim, W.; Shin, D.; Jung, Y.; Bae, H.; Kim, S.K. Preventive effects of bee venom derived phospholipase A2 on oxaliplatin-induced neuropathic pain in mice. Toxins 2016, 8, 27. [Google Scholar] [CrossRef] [Green Version]
- Nakanishi, M.; Arimitsu, J.; Kageyama, M.; Otsuka, S.; Inoue, T.; Nishida, S.; Yoshikawa, H.; Kishida, Y. Efficacy of traditional Japanese herbal medicines—Keishikajutsubuto (TJ-18) and Bushi-matsu (TJ-3022)—Against postherpetic neuralgia aggravated by self-reported cold stimulation: A case series. J. Altern. Complement. Med. 2012, 18, 686–692. [Google Scholar] [CrossRef]
- Hoshino, N.; Ganeko, R.; Hida, K.; Sakai, Y. Goshajinkigan for reducing chemotherapy-induced peripheral neuropathy: A systematic review and meta-analysis. Int. J. Clin. Oncol. 2018, 23, 434–442. [Google Scholar] [CrossRef]
- Kuriyama, A.; Endo, K. Goshajinkigan for prevention of chemotherapy-induced peripheral neuropathy: A systematic review and meta-analysis. Support. Care Cancer 2018, 26, 1051–1059. [Google Scholar] [CrossRef]
- Cascella, M.; Muzio, M.R. Potential application of the Kampo medicine goshajinkigan for prevention of chemotherapy-induced peripheral neuropathy. J. Integr. Med. 2017, 15, 77–87. [Google Scholar] [CrossRef]
- Oki, E.; Emi, Y.; Kojima, H.; Higashijima, J.; Kato, T.; Miyake, Y.; Kon, M.; Ogata, Y.; Takahashi, K.; Ishida, H. Preventive effect of Goshajinkigan on peripheral neurotoxicity of FOLFOX therapy (GENIUS trial): A placebo-controlled, double-blind, randomized phase III study. Int. J. Clin. Oncol. 2015, 20, 767–775. [Google Scholar] [CrossRef]
- Gu, J.; Wei, G.; Ma, Y.; Zhang, J.; Ji, Y.; Li, L.; Yu, J.; Hu, C.; Huo, J. Exploring the Possible Mechanism and Drug Targets of Huang-Qi-Gui-Zhi-Wu-Wu Decoction for the Treatment of Chemotherapy-Induced Peripheral Neuropathy on Network Pharmacology. Evid.-Based Complement. Altern. Med. 2020, 2020, 2363262. [Google Scholar] [CrossRef]
Single Herbs and Phytochemicals | |||
---|---|---|---|
Herb (Related Constituent) | Pain/CIPN Measures | Dose (Route of Administration) | Subject Chemotherapeutic Agent |
Aconitum (Neoline, Bulleyaconitine A) | Mechanical, Cold | Processed aconite; 1 g/kg; 7 days; (p.o.) Water extract; 270 mg/kg; 7 days; (p.o.) Alkaloid fraction; 6 mg/kg; 7 days; (p.o.) Neoline 6 mg/kg; 7 days; (s.c.) | Mouse; Oxaliplatin [69] |
Processed aconite; 300 mg/kg; 5 days; (p.o.) | Rat; Oxaliplatin [65] | ||
Bulleyaconitine A; 0.1~0.8 mg/kg; 3 times a day; 7 days; (p.o.) | Rat; Paclitaxel [70] | ||
Processed aconite 30~100 mg/kg; (p.o.) | Rat Bortezomib [71] | ||
Astragalus | Mechanical, Heat | 300 mg/kg; (p.o.) | Rat; Oxaliplatin [72,73] |
Coptis (Berberine) | Mechanical, Heat | Berberine 60~120 mg/kg; daily in the first 2 weeks and every other day after 2 weeks; 4 weeks observation; (p.o.) | Mouse; Cisplatin [74] |
Cinnamomum (Coumarin, Cinnamic acid) | Mechanical, Cold | Cinnamomi cortex; 100~400 mg/kg; (p.o.) Coumarin; 10 mg/kg; (p.o.) Cinnamic acid; 10~40 mg/kg; (i.p.) | Rat; Oxaliplatin [66,67] |
Curcuma (Curcumin) | Mechanical, Heat, Cold, Chemical (Formalin) | 15~60 mg/kg; (p.o.) | Mouse; Vincristine [75] |
200 mg/kg; 5 weeks; (p.o.) | Rat; Cisplatin [76] | ||
12.5~50 mg/kg; 28 days; (p.o.) | Rat; Oxaliplatin [77] | ||
Dryobalanops (Borneol) | Mechanical, Cold | 15~60 μg/mouse; (i.t.) | Mouse; Oxaliplatin [78] |
Lithospermum (Shikonin) | Mechanical | Lithospermi radix; 250 mg/kg; 4 weeks; (p.o.) | Mouse; Oxaliplatin [79] |
Paeonia (Paeoniflorin) | Mechanical | 0.1~1.0%; twice/day; 13 days; (transdermal) | Mouse; Paclitaxel [80] |
Plantago (Aucubin, Pedicularis-lactone) | Mechanical | Plantaginis semen; 30~300 mg/kg; (p.o.) Aucubin; 15~100 mg/kg; (p.o.) Pedicularis-lactone; 15~100 mg/kg; (p.o.) Aucubin; 50 mg/kg; (i.p.) | Mouse; Paclitaxel [81,82,83,84] |
Sophora (Matrine) | Mechanical, Pressure, Heat, Cold | Matrine; 15~60 mg/kg; 7~11 days; (i.p.) | Mouse; Vincristine [85,86] |
Bee Venom Therapy and Pharmacopuncture Therapies | |||
Substance (Related Constituent) | Pain/CIPN Measures | Dose (Route of Administration) | Subject Chemotherapeutic Agent |
Bee venom (Melittin, Phospholipase A2) | Mechanical, Cold | BV; 0.1~2.5 mg/kg; (ST36; s.c.) Phospholipase A2; 0.2 mg/kg; 5 days; (i.p.) | Mouse; Oxaliplatin [87,88,89] |
BV; 1.0~2.5 mg/kg + venlafaxine 40~60 mg/kg; (ST36; s.c.) | Mouse; Paclitaxel [90] | ||
BV; 1.0 mg/kg; (GV3, LI11, or ST36; s.c.) BV; 0.1 mg/kg; 18 days; (ST36; s.c.) BV; 0.25 mg/kg; (GV3; s.c.) Melittin; 0.5 mg/kg; (ST36; s.c.) | Rat; Oxaliplatin [91,92,93,94] | ||
BV; 1.0 mg/kg; (ST36; s.c.) Melittin; 0.5 mg/kg; (ST36; s.c.) Phospholipase A2; 0.12 mg/kg; (ST36; s.c.) | Rat; Paclitaxel [95] | ||
BV; 1.0 mg/kg; (ST36, s.c.) | Rat; Vincristine [96] | ||
Self report; VAS, Questionnaire, WHO CIPN grade | BV ointment; 1~2 times/day; (transdermal) | Human; Paclitaxel, Oxaliplatin, Carboplatin, Neoplatin [97] | |
BV; 0.1 mL; 6 times; (GB39 and LV3 for lower extremities; LI4, SJ5, GB39, and LV3 for both upper and lower extremities; epidermal) | Human; Paclitaxel, Oxaliplatin, Cisplatin, Carboplatin [98] | ||
Melittin; 0.01 mg/acupoint; 3 times/week; (EX-UE9 and EX-LE10; epidermal) | Human; Paclitaxel, Carboplatin [99] | ||
Snake venom | Self report; NRS, CTCAE | 2.5 mg/acupoint; 4~8 times; (LI4 and TE3 for upper extremities; LR3 and GB41 for lower extremities; epidermal) | Human; Cisplatin [100] |
Scolopendra subspinipes | Mechanical | 0.5% solution; 20 ul; (ST36, s.c.) | Mouse; Oxaliplatin [101] |
Toxicodendron vernicifluum | Self report; VAS, CIPNAT | 1:1~3:2 mixture of dried resin of Toxicodendron vernicifluum (Rhus verniciflua stokes) and Cinnamomi cortex extracts; 0.2~0.5 mL/acupoint; 9 times; (multiple acupoints, epidermal) | Human; Cisplatin, Gemcitabine [102] |
Herbal Formulas | |||
Formulas (Alias) | Pain/CIPN Measures | Dose (Route of Administration) | Subject Chemotherapeutic Agent |
Gyeji ga Chul Bu Tang (Gui Zhi Jia Shu Fu Tang) (Keishi-ka-jutsu-bu-To) | Mechanical | 200~600 mg/kg; 5 days; (p.o.) | Rat; Oxaliplatin [64] |
Self report; DEB-NTC | 7.5 g/day + processed aconite 1~2 g; 2 weeks; (p.o.) | Human; Oxaliplatin [103] | |
Siwei Jianbu Tang | Mechanical, Heat, Cold | 5~10 g/kg; preemptive; (p.o.) | Mouse; Oxaliplatin [104] |
5~10 g/kg; preemptive; (p.o.) | Mouse; Paclitaxel [105] | ||
Ucha Shinki Hwan (Niu Che Shen Qi Wan) (Gosha-jinki-Gan) (Jeseng Singi Hwan) (Ji Sheng Shen Qi Wan) | Mechanical, Cold, Chemical (AITC, Menthol, Capsaicin) | 0.3~1.0 g/kg; (p.o.) | Mouse; Oxaliplatin [106] |
0.1~1.0 g/kg; (p.o.) | Mouse; Paclitaxel [107] | ||
0.3~1.0 g/kg; +processed aconite 0.1~0.3 g/kg; (p.o.) | Rat; Oxaliplatin [108,109,110] | ||
450 mg/day; 21 days; (p.o.) 150 mg/kg; 5 weeks; preemptive; (p.o.) | Rat; Paclitaxel [111,112] | ||
0.3~1.0 g/kg; (p.o.) | Rat; Bortezomib [71] | ||
Electrical measure, Self report; VAS, NRS, Questionnaire, DEB-NTC, CTCAE, NCI-CTCAE | 7.5 g/day; 14 days; (p.o.) | Human; Oxaliplatin [113,114,115,116,117] | |
7.5 g/day; 6 weeks; (p.o.) | Human; Paclitaxel, Carboplatin [118] | ||
Yukgunja Tang (Liu Jun Zi Tang) (Rikkunshi-To) | Mechanical | 0.1~1.0 mg/kg; 6 days; preemptive; (p.o.) | Mouse; Paclitaxel |
Heat | 0.1 mg/mL; 5 days/week; 3 weeks; preemptive; (p.o.) | Mouse; Cisplatin [119] | |
Bogi Jetong Tang | Nerve regeneration | 400 mg/kg; 7 days; (p.o.) | Rat; Paclitaxel [120] |
Yideung Jetong Tang | Nerve regeneration | 400 mg/kg; 5 days; (p.o.) | Rat; Paclitaxel [121] |
Ohjeok San | Self report; NRS, Questionnaire | Formula; 23.56 g; 3 times/day; 27 days; (p.o.) | Human; Bortezomib [122] |
Hwanggi Gyeji Omul Tang (Huang Qi Gui Zhi Wu Wu Tang) (Ogi-keishi-gomotsu-To) | Mechanical, Heat, Cold | 5.0~20.0 g/kg; 4 weeks; (p.o.) | Rat; Oxaliplatin [123] |
Self report; WHO CIPN grade, DEB-NTC, NCI-CTCAE | Modified formula; 3 times/week; 14 days; (External bath) Modified formula; twice/day; 21 days; (p.o.) Dose unknown; 4 weeks; (p.o.) | Human; Oxaliplatin [124,125,126] | |
Jakyak Gamcho Tang (Shao Yao Gan Cao Tang) (Shakuyaku-kanzo-To) | Mechanical | 1.75 mg/day; 5 days; preemptive; (p.o.) | Mouse; Paclitaxel [127] |
Self report | 7.5 g/day; 7~8 days; preemptive; (p.o.) | Human; Paclitaxel, Carboplatin [128,129] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chung, G.; Kim, S.K. Therapeutics for Chemotherapy-Induced Peripheral Neuropathy: Approaches with Natural Compounds from Traditional Eastern Medicine. Pharmaceutics 2022, 14, 1407. https://doi.org/10.3390/pharmaceutics14071407
Chung G, Kim SK. Therapeutics for Chemotherapy-Induced Peripheral Neuropathy: Approaches with Natural Compounds from Traditional Eastern Medicine. Pharmaceutics. 2022; 14(7):1407. https://doi.org/10.3390/pharmaceutics14071407
Chicago/Turabian StyleChung, Geehoon, and Sun Kwang Kim. 2022. "Therapeutics for Chemotherapy-Induced Peripheral Neuropathy: Approaches with Natural Compounds from Traditional Eastern Medicine" Pharmaceutics 14, no. 7: 1407. https://doi.org/10.3390/pharmaceutics14071407
APA StyleChung, G., & Kim, S. K. (2022). Therapeutics for Chemotherapy-Induced Peripheral Neuropathy: Approaches with Natural Compounds from Traditional Eastern Medicine. Pharmaceutics, 14(7), 1407. https://doi.org/10.3390/pharmaceutics14071407