Automated GMP Production and Preclinical Evaluation of [68Ga]Ga-TEoS-DAZA and [68Ga]Ga-TMoS-DAZA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Identification of Decomposition Products of TEoS-DAZA
2.2. Radiolabeling of TEoS-DAZA and TMoS-DAZA
- The initial automated SPE cartridge conditioning with ethanol (originally placed onto valve 15) and water (valve 14) was deleted from the program. Instead, prior to synthesis, the C18 (light) SPE cartridge provided with the cassette was conditioned manually by slowly passing through 5 mL of ethanol (70%) and, subsequently, 5 mL of water (ultrapure grade).
- The labeling temperature in the reactor was set to 25 °C.
- Following the loading of the reactor content onto the SPE cartridge and the washing and drying of the cartridge, an additional elution step with 0.7 mL ethanol (40% v/v for [68Ga]Ga-TEoS-DAZA and 30% v/v for [68Ga]Ga-TMoS-DAZA) was included in the program. The ethanol was placed in a 3 mL Omnifix Luer Lock syringe (B. Braun), which was put onto valve 15.
- The system dispensing unit eluted up to three 68Ga/68Ge generators placed in parallel via valves 7 and 8, using 5 mL of hydrochloric acid (0.1 M) per generator. The average starting activities were 1.8 ± 0.6 GBq.
- The eluate collected in the dispensing unit was slowly pushed over the cation exchange cartridge (PS-H+) provided from the reagent kit, via valves 8, 7, 6 and 1 into the waste. The cartridge was washed with 5 mL of water (valve 14) and dried via the mass flow controller (valve 11) with nitrogen.
- A total of 1.5 mL of 5 M sodium chloride solution (valve 7, provided in the reagent kit) was aspirated into the dispensing unit and slowly pushed over the cartridge via valve 2, thus transferring the 68Ga eluate into the reaction vessel (prefilled with 3 mL HEPES (1.5 M) from the reagent kit)
- The module allowed the reaction mixture to label for 10 min at 25 °C.
- The dispensing unit aspirated, subsequently passed the reaction mixture over the SPE cartridge via valves 4 and 5 and washed the cartridge twice with 10 mL of water (valve 14). The cartridge was dried via the mass flow controller (valve 11) with nitrogen.
- A total of 0.7 mL of ethanol (40% or 30% v/v, respectively) from valve 15 was aspirated and passed slowly over the SPE cartridge into the waste via valve 1.
- A total of 2 mL of ethanol (50% v/v) was aspirated from the vial (valve 9), which was provided along with the reagent kit, and was slowly passed over the SPE cartridge into the product vial (valve 3) via a cannula equipped with a 0.22 μm sterile filter provided in the reagent kit.
- A total of 15 mL of PBS buffer solution (valve 13) was aspirated by the dispensing unit and transferred into the product vial (valve 3).
2.3. Radiolabeling of DEoS-DAZA and In Vitro Stability Determination
2.4. Quality Control
2.5. Octanol–Water–Partition Coefficient
2.6. Biodistribution Studies and In Ovo PET Imaging
3. Results
3.1. Precursor Stability during Radiolabeling
3.2. Optimized, GMP-Compliant, Fully Automated Synthesis of [68Ga]Ga-TEoS-DAZA and [68Ga]Ga-TMoS-DAZA
3.3. Quality Control
3.4. Biodistribution Studies and logP
3.5. PET Imaging
4. Discussion
5. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Greiser, J.; Kühnel, C.; Görls, H.; Weigand, W.; Freesmeyer, M. N,1,4-Tri (4-alkoxy-2-hydroxybenzyl)-DAZA: Efficient one-pot synthesis and labelling with 68 Ga for PET liver imaging in ovo. Dalton Trans. 2018, 47, 9000–9007. [Google Scholar] [CrossRef] [PubMed]
- Martiniova, L.; Palatis, L.D.; Etchebehere, E.; Ravizzini, G. Gallium-68 in medical imaging. Curr. Radiopharm. 2016, 9, 187–207. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.R.; Pomper, M.G. Clinical applications of Gallium-68. Appl. Radiat. Isot. 2013, 76, 2–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Velikyan, I. Continued rapid growth in 68Ga applications: Update 2013 to June 2014. J. Label. Compd. Radiopharm. 2015, 58, 99–121. [Google Scholar] [CrossRef] [PubMed]
- Rahmim, A.; Zaidi, H. PET versus SPECT: Strengths, limitations and challenges. Nucl. Med. Commun. 2008, 29, 193–207. [Google Scholar] [CrossRef] [Green Version]
- Rahmim, A.; Tang, J.; Zaidi, H. Four-dimensional (4D) image reconstruction strategies in dynamic PET: Beyond conventional independent frame reconstruction. Med. Phys. 2009, 36, 3654–3670. [Google Scholar] [CrossRef]
- Asrani, S.K.; Devarbhavi, H.; Eaton, J.; Kamath, P.S. Burden of liver diseases in the world. J. Hepatol. 2019, 70, 151–171. [Google Scholar] [CrossRef]
- Christ, B.; Collatz, M.; Dahmen, U.; Herrmann, K.H.; Höpfl, S.; König, M.; Lambers, L.; Marz, M.; Meyer, D.; Radde, N.; et al. Hepatectomy-Induced Alterations in Hepatic Perfusion and Function-Toward Multi-Scale Computational Modeling for a Better Prediction of Post-hepatectomy Liver Function. Front. Physiol. 2021, 2058. [Google Scholar] [CrossRef]
- Wang, A.; Kuriata, O.; Xu, F.; Nietzsche, S.; Gremse, F.; Dirsch, O.; Settmacher, U.; Dahmen, U. A survival model of in vivo partial liver lobe decellularization towards in vivo liver engineering. Tissue Eng. Part C Methods 2020, 26, 402–417. [Google Scholar] [CrossRef]
- Olthof, P.B.; Coelen, R.J.; Bennink, R.J.; Heger, M.; Lam, M.F.; Besselink, M.G.; Busch, O.R.; van Lienden, K.; van Gulik, T.M. 99mTc-mebrofenin hepatobiliary scintigraphy predicts liver failure following major liver resection for perihilar cholangiocarcinoma. HPB 2017, 19, 850–858. [Google Scholar] [CrossRef]
- Le Fur, M.; Caravan, P. The biological fate of gadolinium-based MRI contrast agents: A call to action for bioinorganic chemists. Metallomics 2019, 11, 240–254. [Google Scholar] [CrossRef] [PubMed]
- Ghadimi, M.; Sapra, A. Magnetic Resonance Imaging (MRI), Contraindications. In Treasure Island; StatPearls Publishing: Tampa, FL, USA, 2020. [Google Scholar]
- Dill, T. Contraindications to magnetic resonance imaging. Heart 2008, 94, 943–948. [Google Scholar] [CrossRef] [PubMed]
- Greiser, J.; Weigand, W.; Freesmeyer, M. Metal-Based Complexes as Pharmaceuticals for Molecular Imaging of the Liver. Pharmaceuticals 2019, 12, 137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keiding, S.; Sørensen, M.; Frisch, K.; Gormsen, L.C.; Munk, O.L. Quantitative PET of liver functions. Am. J. Nucl. Med. Mol. Imag. 2018, 8, 73–85. [Google Scholar]
- Jia, L.; Jiang, D.; Hu, P.; Li, X.; Shi, H.; Cheng, D.; Zhang, L. Synthesis and evaluation of 18F-labeled bile acid compound: A potential PET imaging agent for FXR-related diseases. Nucl. Med. Biol. 2014, 41, 495–500. [Google Scholar] [CrossRef]
- Testa, A.; Dall’Angelo, S.; Mingarelli, M.; Augello, A.; Schweiger, L.; Welch, A.; Elmore, C.S.; Sharma, P.; Zanda, M. Design, synthesis, in vitro characterization and preliminary imaging studies on fluorinated bile acid derivatives as PET tracers to study hepatic transporters. Bioorg. Med. Chem. 2017, 25, 963–976. [Google Scholar] [CrossRef] [Green Version]
- Testa, A.; Zanda, M.; Elmore, C.S.; Sharma, P. PET tracers to study clinically relevant hepatic transporters. Mol. Pharm. 2015, 12, 2203–2216. [Google Scholar] [CrossRef]
- Sørensen, M.; Munk, O.; Ørntoft, N.; Frisch, K.; Andersen, K.; Mortensen, F.; Alstrup, A.; Ott, P.; Hofmann, A.; Keiding, S. Hepatobiliary secretion kinetics of conjugated bile acids measured in pigs by 11C-cholylsarcosine PET. J. Nucl. Med. 2016, 57, 961–966. [Google Scholar] [CrossRef] [Green Version]
- Horsager, J.; Munk, O.; Sørensen, M. Metabolic liver function measured in vivo by dynamic 18F-FDGal PET/CT without arterial blood sampling. EJNMMI Res. 2015, 5, 32. [Google Scholar] [CrossRef] [Green Version]
- Bak-Fredslund, K.; Eriksen, P.; Munk, O.; Villadsen, G.; Keiding, S.; Sørensen, M. Metabolic liver function in humans measured by 2-[18F]fluoro-2-deoxy-D-galactose PET/CT-reproducibility and clinical potential. EJNMMI Res. 2017, 7, 71. [Google Scholar] [CrossRef] [Green Version]
- Schacht, A.; Sørensen, M.; Munk, O.; Frisch, K. Radiosynthesis of N-11C-methyl-taurine-conjugated bile acids and biodistribution studies in pigs by PET/CT. J. Nucl. Med. 2016, 57, 628–633. [Google Scholar] [CrossRef] [PubMed]
- Haubner, R.; Schmid, A.M.; Maurer, A.; Rangger, C.; Roig, L.G.; Pichler, B.J.; Virgolini, I.J. [68Ga]NOTA-galactosyl human serum albumin: A tracer for liver function imaging with improved stability. Mol. Imag. Biol. 2017, 19, 723–730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, H.-M.; Chan, C.-H.; Chen, J.-H.; Chien, C.-Y.; Wang, P.-Y.; Juan, W.-C.; Yang, C.-H.; Hsia, H.-T.; Wang, M.-H.; Lin, W.-J. Development of single vial kits for preparation of 68Ga-labelled hexavalent lactoside for PET imaging of asialoglycoprotein receptor. J. Label. Compd. Radiopharm. 2018, 61, 885–894. [Google Scholar] [CrossRef]
- Schuhmacher, J.; Maier-Borst, W.; Wellman, H.N. Liver and kidney imaging with gallium-68-labeled dihydroxyanthraquinones. J. Nucl. Med. 1980, 21, 983–987. [Google Scholar] [PubMed]
- Kumar, B.; Miller, T.R.; Siegel, B.A.; Mathias, C.J.; Markham, J.; Ehrhardt, G.J.; Welch, M.J. Positron tomographic imaging of the liver: 68Ga iron hydroxide colloid. Am. J. Roentgenol. 1981, 136, 685–690. [Google Scholar] [CrossRef]
- Freesmeyer, M.; Greiser, J.; Winkens, T.; Gühne, F.; Kühnel, C.; Rauchfuß, F.; Tautenhahn, H.-M.; Drescher, R. Dynamic PET/CT with the Hepatobiliary Tracer [68Ga] Ga-Tmos-DAZA for Characterization of a Hepatic Tumor. Diagnostics 2021, 11, 660. [Google Scholar] [CrossRef]
- Freesmeyer, M.; Drescher, R.; Kühnel, C.; Gühne, F.; Greiser, J. Hepatobiliary Excretion PET/CT With 68Ga-TAoS-DAZA to Evaluate Bile Duct Patency. Clin. Nucl. Med. 2022, 47, 59–60. [Google Scholar] [CrossRef]
- Freesmeyer, M.; Kuehnel, C.; Opfermann, T.; Niksch, T.; Wiegand, S.; Stolz, R.; Huonker, R.; Witte, O.W.; Winkens, T. The use of ostrich eggs for in ovo research—Making preclinical imaging research affordable and available. J. Nucl. Med. 2018, 59, 1901–1906. [Google Scholar] [CrossRef]
- Disselhorst, J.A.; Brom, M.; Laverman, P.; Slump, C.H.; Boerman, O.C.; Oyen, W.J.; Gotthardt, M.; Visser, E.P. Image-quality assessment for several positron emitters using the NEMA NU 4-2008 standards in the Siemens Inveon small-animal PET scanner. J. Nucl. Med. 2010, 51, 610–617. [Google Scholar] [CrossRef] [Green Version]
- Freesmeyer, M.; Hermeyer, H.; Kuehnel, C.; Perkas, O.; Greiser, J.; Witte, O.W.; Winkens, T. In-ovo imaging using ostrich eggs: Biomagnetism for detection of cardiac signals and embryonal motion. Exp. Biol. Med. 2022, 247, 996–1004. [Google Scholar] [CrossRef]
- Winkens, T.; Christl, A.; Kuehnel, C.; Ndum, F.; Seifert, P.; Greiser, J.; Freesmeyer, M. In-ovo imaging using ostrich eggs—Evaluation of physiological embryonal development on computed tomography. Acta Zool. 2021, 103, 492–502. [Google Scholar] [CrossRef]
- Haller, S.; Ametamey, S.M.; Schibli, R.; Muller, C. Investigation of the chick embryo as a potential alternative to the mouse for evaluation of radiopharmaceuticals. Nucl. Med. Biol. 2015, 42, 226–233. [Google Scholar] [CrossRef]
- Mueller, D.; Klette, I.; Baum, R.P.; Gottschaldt, M.; Schultz, M.K.; Breeman, W.A.P. Simplified NaCl Based 68Ga Concentration and Labeling Procedure for Rapid Synthesis of 68Ga Radiopharmaceuticals in High Radiochemical Purity. Bioconjugate Chem. 2012, 23, 1712–1717. [Google Scholar] [CrossRef] [PubMed]
- European Directorate for the Quality of Medicines (EDQM). European Pharmacopeia 7.7 (01/2013:2482 Gallium (68Ga) Edotreotide injection). Eur. Pharm. 2011, 23, 310–313. [Google Scholar]
- United States Department of Agriculture. Animal Welfare Act and Animal Welfare Regulations. 2013. Available online: https://www.aphis.usda.gov/animal_welfare/downloads/bluebook-ac-awa.pdf (accessed on 5 April 2022).
- Europäisches Parlament und Rat. Richtlinie 2010/63/EU zum Schutz der für Wissenschaftliche Zwecke Verwendeten Tiere. 2010. Available online: https://eur-lex.europa.eu/legal-content/DE/TXT/HTML/?uri=LEGISSUM:sa0027 (accessed on 5 April 2022).
- Bundesministerium der Justiz und für Verbraucherschutz. Tierschutzgesetz. 2016. Available online: https://www.gesetze-im-internet.de/tierschg/BJNR012770972.htmL (accessed on 5 April 2022).
- Nelson, B.J.; Andersson, J.D.; Wuest, F.; Spreckelmeyer, S. Good practices for 68Ga radiopharmaceutical production. EJNMMI Radiopharm. Chem. 2022, 7, 27. [Google Scholar] [CrossRef] [PubMed]
- Migliari, S.; Sammartano, A.; Boss, M.; Gotthardt, M.; Scarlattei, M.; Baldari, G.; Silva, C.; Bonadonna, R.C.; Ruffini, L. Development and Validation of an Analytical HPLC Method to Assess Chemical and Radiochemical Purity of [68Ga] Ga-NODAGA-Exendin-4 Produced by a Fully Automated Method. Molecules 2022, 27, 543. [Google Scholar] [CrossRef]
- Brom, M.; Franssen, G.M.; Joosten, L.; Gotthardt, M.; Boerman, O.C. The effect of purification of Ga-68-labeled exendin on in vivo distribution. EJNMMI Res. 2016, 6, 65. [Google Scholar] [CrossRef] [Green Version]
- Larenkov, A.; Maruk, A. Radiochemical purity of 68Ga-BCA-peptides: Separation of all 68Ga species with a single ITLC strip. World Acad. Sci. Eng. Technol. Int. J. Chem. Mol. Nucl. Mater. Metall. Eng 2016, 10, 1120–1127. [Google Scholar]
- Nunn, A.D.; Loberg, M.D.; Conley, R.A. A structure-distribution-relationship approach leading to the development of Tc-99m mebrofenin: An improved cholescintigraphic agent. J. Nucl. Med. 1983, 24, 423–430. [Google Scholar]
- Najmi, A.A.; Bischoff, R.; Permentier, H.P. N-Dealkylation of Amines. Molecules 2022, 27, 3293. [Google Scholar] [CrossRef]
Product Specifications | [68Ga]Ga-TEoS-DAZA | [68Ga]Ga-TMoS-DAZA | ||
---|---|---|---|---|
Yield | 828 ± 285 MBq | 752 ± 224 MBq | ||
Specific Activity | 6.9 ± 2.3 MBq/µg | 6.3 ± 1.9 MBq/µg | ||
Volume | 15 ± 0.9 mL | |||
Quality Control | Method | Acceptance Criteria | Result | |
Appearance | Visual inspection | Clear, colorless solution | Complies | |
pH | Potentiometric Determination 1 | 6–8 | 7.6 ± 0.1 | 7.5 ± 0.1 |
Ethanol content | Osmolality measurement | ≤10% (v/v) | 5.1 ± 1.1% | 5.1 ± 0.9% |
HEPES content | TLC 1 | ≤200 µg/15 mL, intensity of test solution spot similar or less than reference solution | Complies | |
Radionuclide identity | Half-life 1 | 62–74 min | 68.2 ± 0.6 min | 68.3 ± 0.4 min |
Radionuclide identity | Gamma-ray Spectrometry 1 | 511 keV and 1077 keV | Complies | |
Content of 68Ge (radionuclide purity) | ≤0.001% | 1 × 10−5 ± 0.3 × 10−5 | 1 × 10−5 ± 0.3 × 10−5 | |
Content of free 68Ga | Radio HPLC 1 | ≤1.0% | 0.2 ± 0.3% | 0.3 ± 0.2% |
Activity at the bottom of the TLC plate | Radio TLC 1, test for 68Ga colloid | ≤5.0% | 3.2 ± 1.4% | 1.5 ± 0.6% |
Content of [68Ga]-DEoS-DAZA or [68Ga]-DMoS-DAZA, respectively | Radio HPLC | ≤3.0% | 1.9 ± 0.9% | 1.3 ± 0.6% |
Bacterial endotoxins | LAL test 1 | ≤175 IU/V | 0.6 ± 0.2 EU/mL | 0.5 ± 0.0 EU/mL |
Sterility | Sterility testing 1 | Sterile | Complies |
logP | |
---|---|
[68Ga]Ga-TEoS-DAZA | 1.6 ± 0.1 |
[68Ga]Ga-TMoS-DAZA | 0.9 ± 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Greiser, J.; Winkens, T.; Perkas, O.; Kuehnel, C.; Weigand, W.; Freesmeyer, M. Automated GMP Production and Preclinical Evaluation of [68Ga]Ga-TEoS-DAZA and [68Ga]Ga-TMoS-DAZA. Pharmaceutics 2022, 14, 2695. https://doi.org/10.3390/pharmaceutics14122695
Greiser J, Winkens T, Perkas O, Kuehnel C, Weigand W, Freesmeyer M. Automated GMP Production and Preclinical Evaluation of [68Ga]Ga-TEoS-DAZA and [68Ga]Ga-TMoS-DAZA. Pharmaceutics. 2022; 14(12):2695. https://doi.org/10.3390/pharmaceutics14122695
Chicago/Turabian StyleGreiser, Julia, Thomas Winkens, Olga Perkas, Christian Kuehnel, Wolfgang Weigand, and Martin Freesmeyer. 2022. "Automated GMP Production and Preclinical Evaluation of [68Ga]Ga-TEoS-DAZA and [68Ga]Ga-TMoS-DAZA" Pharmaceutics 14, no. 12: 2695. https://doi.org/10.3390/pharmaceutics14122695