Influence of Hydrophobic Side-Chain Length in Amphiphilic Gradient Copoly(2-oxazoline)s on the Therapeutics Loading, Stability, Cellular Uptake and Pharmacokinetics of Nano-Formulation with Curcumin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Curcumin-Loaded POx NPs
2.3. Dynamic Light Scattering (DLS)
2.4. Calculation of Curcumin Loading Capacity and Encapsulation Efficiency
2.5. Transmission Electron Microscopy (TEM) and Cryogenic Transmission Electron Microscopy (Cryo–TEM)
2.6. UV-Vis Absorbance and Steady-State Fluorescence Spectroscopy
2.7. Cell Culture
2.8. Confocal Fluorescence Imaging
2.9. Flow Cytometry
2.10. MTT-Assay
2.11. CAM Model Preparation
2.12. Curcumin Fluorescence Biodistribution in CAM
2.13. CAM Tissue Histology
3. Results and Discussion
3.1. Effect of Hydrophobic Side-Chain Length on Size, Morphology, and Therapeutics Loading
3.2. Effect of Hydrophobic Side-Chain Length on the Stability of Nano-Formulations
3.3. Spectroscopic Properties of Curcumin-Loaded POx NPs
3.4. Effect of Hydrophobic Side-Chain Length on the Cytotoxicity and Cellular Uptake of Curcumin-Loaded POx NPs
3.5. Pharmacokinetics of Curcumin-Loaded Pox NPs in Quail CAM
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cabral, H.; Kataoka, K. Progress of drug-loaded polymeric micelles into clinical studies. J. Control. Release 2014, 190, 465–476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kedar, U.; Phutane, P.; Shidhaye, S.; Kadam, V. Advances in polymeric micelles for drug delivery and tumor targeting. Nanomedicine 2010, 6, 714–729. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, Y.; Li, S. Polymeric micelles: Nanocarriers for cancer-targeted drug delivery. AAPS PharmSciTech 2014, 4, 862–871. [Google Scholar] [CrossRef] [Green Version]
- Begines, B.; Ortiz, T.; Pérez-Aranda, M.; Martínez, G.; Merinero, M.; Argüelles Arias, F.; Alcudia, A. Polymeric nanoparticles for drug delivery: Recent developments and future prospects. Nanomaterials 2020, 10, 1403. [Google Scholar] [CrossRef] [PubMed]
- Chali, S.P.; Ravoo, B.J. Polymer nanocontainers for intracellular delivery. Angew. Chem. Int. Ed. 2019, 59, 2962–2972. [Google Scholar] [CrossRef] [PubMed]
- Kataoka, K.; Harada, A.; Nagasaki, Y. Block copolymer micelles for drug delivery: Design, characterization and biological significance. Adv. Drug Deliv. Rev. 2001, 47, 113–131. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, Z.; Shah, A.; Siddiq, M.; Kraatz, H.B. Polymeric micelles as drug delivery vehicles. RSC Adv. 2014, 4, 17028–17038. [Google Scholar] [CrossRef]
- Szafraniec, J.; Btazejczyk, A.; Kus, E.; Janik, M.; Zajac, G.; Wietrzyk, J.; Chlopicki, S.; Zapotoczny, S. Robust oil-core nanocapsules with hyaluronate-based shells as promising nanovehicles for lipophilic compounds. Nanoscale 2017, 9, 18867–18880. [Google Scholar] [CrossRef] [PubMed]
- Szafraniec-szczesny, J.; Janik-Hazuka, M.; Odrobinska, J.; Zapotoczny, S. Polymer capsules with hydrophobic liquid cores as functional nanocarriers. Polymer 2020, 12, 1999. [Google Scholar] [CrossRef] [PubMed]
- Davis, K.A.; Matyjaszewski, K. Statistical, Gradient, Block and Graft Copolymers by Controlled/Living Radical Polymerizations; Springer: Berlin, Germany, 2012. [Google Scholar]
- Alam, M.M.; Jack, K.S.; Hill, D.J.T.; Whittaker, A.K.; Peng, H. Gradient copolymers—Preparation, properties and practice. Eur. Polym. J. 2019, 116, 394–414. [Google Scholar] [CrossRef]
- Rabyk, M.; Destephen, A.; Lapp, A.; King, S.; Noirez, L.; Billon, L.; Hruby, M.; Borisov, O.; Stepanek, P.; Deniau, E. Interplay of thermosensitivity and pH sensitivity of amphiphilic block–gradient copolymers of dimethylaminoethyl acrylate and styrene. Macromolecules 2018, 51, 5219–5233. [Google Scholar] [CrossRef]
- Yañez-Macias, R.; Kulai, I.; Ulbrich, J.; Yildirim, T.; Sungur, P.; Hoeppener, S.; Guerrero-Santos, R.; Schubert, U.S.; Destarac, M.; Guerrero-Sanchez, C. Thermosensitive spontaneous gradient copolymers with block-and gradient-like features. Polym. Chem. 2017, 8, 5023–5032. [Google Scholar] [CrossRef]
- Zheng, C. Gradient copolymer micelles: An introduction to structures as well as structural transitions. Soft Matter 2019, 15, 5357–5370. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.L.H.; Kim, J.; Roth, C.B.; Torkelson, J.M. Comparison of critical micelle concentrations of gradient copolymer and block copolymer in homopolymer: Novel characterization by intrinsic fluorescence. Macromolecules 2007, 40, 5631–5633. [Google Scholar] [CrossRef]
- Kravchenko, V.S.; Potemkin, I.I. Micelles of gradient vs diblock copolymers: Difference in the internal structure and properties. J. Phys. Chem. B 2016, 120, 12211–12217. [Google Scholar] [CrossRef] [PubMed]
- Hoogenboom, R. Poly(2-oxazoline)s: Alive and kicking. Macromol. Chem. Phys. 2007, 208, 18–25. [Google Scholar] [CrossRef]
- Hoogenboom, R. Poly(2-oxazoline)s: A polymer class with numerous potential applications. Angew. Chem. Int. Ed. Engl. 2009, 48, 7978–7994. [Google Scholar] [CrossRef]
- Knop, K.; Hoogenboom, R.; Fischer, D.; Schubert, U.S. Poly(Ethylene Glycol) in drug delivery: Pros and cons as well as potential alternatives. Angew. Chem. Int. Ed. Engl. 2010, 49, 6288–6308. [Google Scholar] [CrossRef] [PubMed]
- Luxenhofer, R.; Han, Y.; Schulz, A.; Tong, J.; He, Z.; Kabanov, A.V.; Jordan, R. Poly(2-oxazoline)s as polymer therapeutics. Macromol. Rapid Commun. 2012, 33, 1613–1631. [Google Scholar] [CrossRef] [Green Version]
- De la Rosa, V.R. Poly(2-oxazoline)s as materials for biomedical applications. J. Mater. Sci. Mater. Med. 2014, 25, 1211–1225. [Google Scholar] [CrossRef]
- Lorson, T.; Lübtow, M.M.; Wegener, E.; Haider, M.S.; Borova, S.; Nahm, D.; Jordan, R.; Sokolski-Papkov, M.; Kabanov, A.V.; Luxenhofer, R. Poly(2-Oxazoline)s based biomaterials: A comprehensive and critical update. Biomaterials 2018, 178, 204–280. [Google Scholar] [CrossRef]
- Sedlacek, O.; Hoogenboom, R. Drug delivery systems based on poly(2-oxazoline)s and poly(2-oxazine)s. Adv. Ther. 2020, 3, 1900168. [Google Scholar] [CrossRef] [Green Version]
- Zahoranová, A.; Luxenhofer, R. Poly(2-oxazoline)- and poly(2-oxazine)-based self-assemblies, polyplexes, and drug nanoformulations-an update. Adv. Healthc. Mater. 2021, 10, 202001382. [Google Scholar] [CrossRef] [PubMed]
- Luef, K.P.; Hoogenboom, R.; Schubert, U.S.; Wiesbrock, F. Microwave-assisted cationic ring-opening polymerization of 2-oxazolines. Adv. Polym. Sci. 2015, 274, 183–208. [Google Scholar]
- Varanaraja, Z.; Kim, J.; Becer, C.R. Poly(2-oxazine)s: A comprehensive overview of the polymer structures, physical properties and applications. Eur. Polym. J. 2021, 147, 110299. [Google Scholar] [CrossRef]
- Filippov, S.K.; Verbraeken, B.; Konarev, P.V.; Svergun, D.I.; Angelov, B.; Vishnevetskaya, N.S.; Papadakis, C.M.; Rogers, S.; Radulescu, A.; Courtin, T.; et al. Block and gradient copoly(2-oxazoline) micelles: Strikingly different on the inside. J. Phys. Chem. Lett. 2017, 8, 3800–3804. [Google Scholar] [CrossRef] [Green Version]
- Luxenhofer, R.; Schulz, A.; Roques, C.; Li, S.; Bronich, T.K.; Batrakova, E.V.; Jordan, R.; Kabanov, A.V. Doubly amphiphilic poly(2-oxazoline)s as high-capacity delivery systems for hydrophobic drugs. Biomaterials 2010, 31, 4972–4979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Z.; Schulz, A.; Wan, X.; Seitz, J.; Bludau, H.; Alakhova, D.Y.; Darr, D.B.; Perou, C.M.; Jordan, R.; Ojima, I.; et al. Poly(2-oxazoline) based micelles with high capacity for 3rd generation taxoids: Preparation, in vitro and in vivo evaluation. J. Control. Release 2015, 208, 67–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Z.; Wan, X.; Schulz, A.; Bludau, H.; Dobrovolskaia, M.A.; Stern, S.T.; Montgomery, S.A.; Yuan, H.; Li, Z.; Alakhova, D.; et al. A high capacity polymeric micelle of paclitaxel: Implication of high dose drug therapy to safety and in vivo anti-cancer activity. Biomaterials 2016, 101, 296–309. [Google Scholar] [CrossRef] [Green Version]
- Milonaki, Y.; Kaditi, E.; Pispas, S.; Demetzos, C. Amphiphilic gradient copolymers of 2-methyl- and 2-phenyl-2-oxazoline: Self-organization in aqueous media and drug encapsulation. J. Polym. Sci. Part A Polym. Chem. 2012, 50, 1226–1237. [Google Scholar] [CrossRef]
- Chroni, A.; Mavromoustakos, T.; Pispas, S. Poly(2-oxazoline)-based amphiphilic gradient copolymers as nanocarriers for losartan: Insights into drug-polymer interactions. Macromol 2021, 1, 177–200. [Google Scholar] [CrossRef]
- Loukotová, L.; Švec, P.; Groborz, O.; Heizer, T.; Benes, H.; Raabová, H.; Belinová, T.; Herynek, V.; Hrubý, M. Direct comparison of analogous amphiphilic gradient and block polyoxazolines. Macromolecules 2021, 54, 8182–8194. [Google Scholar] [CrossRef]
- Babuka, D.; Kolouchova, K.; Loukotova, L.; Sedlacek, O.; Groborz, O.; Skarkova, A.; Zhigunov, A.; Pavlova, E.; Hoogenboom, R.; Hruby, M.; et al. Self-assembly, drug encapsulation, and cellular uptake of block and gradient copolymers of 2-methyl-2-oxazine and 2-n-propyl/butyl-2-oxazoline. Macromolecules 2021, 54, 10667–10681. [Google Scholar] [CrossRef]
- Huntošová, V.; Datta, S.; Lenkavská, L.; Máčajová, M.; Bilčík, B.; Kundeková, B.; Čavarga, I.; Kronek, J.; Jutková, A.; Miškovský, P.; et al. Alkyl chain length in poly(2-oxazoline)-based amphiphilic gradient copolymers regulates the delivery of hydrophobic molecules: A case of the biodistribution and the photodynamic activity of the photosensitizer hypericin. Biomacromolecules 2021, 22, 4199–4216. [Google Scholar] [CrossRef]
- Datta, S.; Jutková, A.; Šrámková, P.; Lenkavská, L.; Huntošová, V.; Chorvát, D.; Miškovský, P.; Jancura, D.; Kronek, J. Unravelling the excellent chemical stability and bioavailability of solvent responsive curcumin-loaded 2-ethyl-2-oxazoline-grad-2-(4-dodecyloxyphenyl)-2-oxazoline copolymer nanoparticles for drug delivery. Biomacromolecules 2018, 19, 2459–2471. [Google Scholar] [CrossRef]
- Goel, A.; Kunnumakkara, A.B.; Aggarwal, B.B. Curcumin as “curecumin”: From kitchen to clinic. Biochem. Pharmacol. 2008, 75, 787–809. [Google Scholar] [CrossRef] [Green Version]
- Esatbeyoglu, T.; Huebbe, P.; Ernst, I.M.A.; Chin, D.; Wagner, A.E.; Rimbach, G. Curcumin from molecule to biological function. Angew. Chem. Int. Ed. 2012, 51, 5308–5332. [Google Scholar] [CrossRef]
- Li, Y.Y.; Zhang, T. Targeting cancer stem cells by curcumin and clinical applications. Cancer Lett. 2014, 346, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.G.; Kunnumakkara, A.B.; Nair, A.; Merritt, W.M.; Han, L.Y.; Armaiz-Pena, G.N.; Kamat, A.A.; Spannuth, W.A.; Gershenson, D.M.; Lutgendorf, S.K.; et al. Curcumin inhibits tumor growth and angiogenesis in ovarian carcinoma by targeting the nuclear factor-kappa B pathway. Clin. Cancer Res. 2007, 13, 3423–3430. [Google Scholar] [CrossRef] [Green Version]
- Nelson, K.M.; Dahlin, J.L.; Bisson, J.; Graham, J.; Pauli, G.F.; Walters, M.A. The essential medicinal chemistry of curcumin. J. Med. Chem. 2017, 60, 1620–1637. [Google Scholar] [CrossRef]
- Lubtow, M.M.; Hahn, L.; Haider, M.S.; Luxenhofer, R. Drug specificity, synergy and antagonism in ultrahigh capacity poly(2-oxazoline)/poly(2-oxazine) based formulations. J. Am. Chem. Soc. 2017, 139, 10980–10983. [Google Scholar] [CrossRef] [PubMed]
- Hahn, L.; Lubtow, M.M.; Lorson, T.; Schmitt, F.; Appelt-Menzel, A.; Schobert, R.; Luxenhofer, R. Investigating the influence of aromatic moieties on the formulation of hydrophobic natural products and drugs in poly(2-oxazoline)-based amphiphiles. Biomacromolecules 2018, 19, 3119–3128. [Google Scholar] [CrossRef] [PubMed]
- Raveendran, R.; Mullen, K.M.; Wellard, R.M.; Sharma, C.P.; Hoogenboom, R.; Dargaville, T.R. Poly(2-oxazoline) block copolymer nanoparticles for curcumin loading and delivery to cancer cells. Eur. Polym. J. 2017, 93, 682–694. [Google Scholar] [CrossRef]
- Gonçalves, C.; Gomez, J.P.; Même, W.; Rasolonjatovo, B.; Gosset, D.; Nedellec, S.; Hulin, P.; Huin, C.; Le Gall, T.; Montier, T.; et al. Curcumin/poly(2-methyl-2-oxazoline-b-tetrahydrofuran-b-2-methyl-2-oxazoline) formulation: An improved penetration and biological effect of curcumin in F508del-CFTR cell lines. Eur. J. Pharm. Biopharm. 2017, 117, 168–181. [Google Scholar] [CrossRef]
- Ayache, J.; Beaunier, L.; Boumendil, J.; Ehret, G.; Laub, D. Sample Preparation Handbook for Transmission Electron Microscopy Techniques; Springer: New York, NY, USA, 2010; pp. 1–338. [Google Scholar]
- Maeda, H. Vascular permeability in cancer and infection as related to macromolecular drug delivery, with emphasis on the EPR effect for tumor-selective drug targeting. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2012, 88, 53–71. [Google Scholar] [CrossRef] [Green Version]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH image to image J: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Lim, C.; Ramsey, J.D.; Hwang, D.; Teixeira, S.C.M.; Poon, C.D.; Strauss, J.D.; Rosen, E.P.; Sokolsky-Papkov, M.; Kabanov, A.V. Drug-dependent morphological transitions in spherical and worm-like polymeric micelles define stability and pharmacological performance of micellar drugs. Small 2022, 18, 2103552. [Google Scholar] [CrossRef]
- Sedlacek, O.; Bardoula, V.; Vuorimaa-Laukkanen, E.; Gedda, L.; Edwards, K.; Radulescu, A.; Mun, G.A.; Guo, Y.; Zhou, J.; Zhang, H.; et al. Influence of chain length of gradient and block copoly(2-oxazoline)s on self-assembly and drug encapsulation. Small 2022, 18, e2106251. [Google Scholar] [CrossRef] [PubMed]
- Glassner, M.; Vergaelen, M.; Hoogenboom, R. Poly(2-oxazoline)s: A comprehensive overview of polymer structures and their physical properties. Polym. Int. 2018, 67, 32–45. [Google Scholar] [CrossRef]
- Owen, S.C.; Chan, D.P.Y.; Shoichet, M.S. Polymeric micelle stability. Nano Today 2012, 7, 53–65. [Google Scholar] [CrossRef]
- Sakai-Kato, K.; Nishiyama, N.; Kozaki, M.; Nakanishi, T.; Matsuda, Y.; Hirano, M.; Hanada, H.; Hisada, S.; Onodera, H.; Harashima, H.; et al. General considerations regarding the in vitro and in vivo properties of block copolymer micelle products and their evaluation. J. Control. Release 2015, 28, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Owen, S.C.; Shoichet, M.S. Stability of self-assembled polymeric micelles in serum. Macromolecules 2011, 44, 6002–6008. [Google Scholar] [CrossRef]
- Sun, X.; Wang, G.; Zhang, H.; Hu, S.; Liu, X.; Tang, J.; Shen, Y. The Blood clearance kinetics and pathway of polymeric micelles in cancer drug delivery. ACS Nano 2018, 12, 6179–6192. [Google Scholar] [CrossRef]
- Swider, E.; Maharjan, S.; Houkes, K.; van Riessen, N.K.; Figdor, C.; Srinivas, M.; Tagit, O. Förster resonance energy transfer-based stability assessment of PLGA nanoparticles in vitro and in vivo. ACS Appl. Bio Mater. 2019, 18, 1131–1140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morton, S.W.; Zhao, X.; Quadir, M.A.; Hammond, P.T. FRET-enabled biological characterization of polymeric micelles. Biomaterials 2014, 35, 3489–3496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.; Kim, S.; He, W.; Wang, H.; Low, P.S.; Park, K.; Cheng, J.X. Fast release of lipophilic agents from circulating PEG-PDLLA micelles revealed by in vivo Forster resonance energy transfer imaging. Langmuir 2008, 24, 5213–5217. [Google Scholar] [CrossRef]
- Zhao, Y.; Fay, F.; Hak, S.; Manuel Perez-Aguilar, J.; SanchezGaytan, B.L.; Goode, B.; Duivenvoorden, R.; de Lange Davies, C.; Bjørkøy, A.; Weinstein, H.; et al. Augmenting drug-carrier compatibility improves tumour nanotherapy efficacy. Nat. Commun. 2016, 7, 11221. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.; Liu, Y.; Teng, J.; Zhao, C.X. FRET ratiometric nanoprobes for nanoparticle monitoring. Biosensors 2021, 12, 505. [Google Scholar] [CrossRef]
- Li, Y.P.; Budamagunta, M.S.; Luo, J.T.; Xiao, W.W.; Voss, J.C.; Lam, K.S. Probing of the assembly structure and dynamics within nanoparticles during interaction with blood proteins. ACS Nano 2012, 6, 9485–9495. [Google Scholar] [CrossRef] [Green Version]
- Priyadarsini, K.I. Photophysics, Photochemistry and photobiology of curcumin: Studies from organic solutions, bio-mimetics and living cells. J. Photochem. Photobiol. C 2009, 10, 81–95. [Google Scholar] [CrossRef]
- Chignell, C.F.; Bilski, P.; Reszka, K.J.; Motten, A.G.; Sik, R.H.; Dahl, T.A. Spectral and photochemical properties of curcumin. Photochem. Photobiol. 1994, 59, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Rainey, N.; Motte, L.; Aggarwal, B.B.; Petit, P.X. Curcumin hormesis mediates a cross-talk between autophagy and cell death. Cell Death Dis. 2015, 6, e2003. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.M.; Yang, C.H.; Wang, W.W.; Liu, J.J.; Liu, Q.; Huang, F.; Chu, L.P.; Gao, H.L.; Li, C.; Kong, D.L.; et al. Co-delivery of doxorubicin and curcumin by pH-sensitive prodrug nanoparticle for combination therapy of cancer. Sci. Rep. 2016, 6, 21225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fonseca, B.B.; da Silva, M.V.; de Morais Ribeiro, L.N. The chicken embryo as an in vivo experimental model for drug testing: Advantages and limitations. Lab Anim. 2021, 50, 138–139. [Google Scholar] [CrossRef] [PubMed]
- Victorelli, F.D.; Cardoso, V.M.O.; Ferreira, N.N.; Calixto, G.M.F.; Fontana, C.R.; Baltazar, F.; Gremião, M.P.D.; Chorilli, M. Chick embryo chorioallantoic membrane as a suitable in vivo model to evaluate drug delivery systems for cancer treatment: A review. Eur. J. Pharm. Biopharm. 2020, 153, 273–284. [Google Scholar] [CrossRef]
- Vu, B.T.; Shahin, S.A.; Croissant, J.; Fatieiev, Y.; Matsumoto, K.; Le-Hoang Doan, T.; Yik, T.; Simargi, S.; Conteras, A.; Ratliff, L.; et al. Chick chorioallantoic membrane assay as an in vivo model to study the effect of nanoparticle-based anticancer drugs in ovarian cancer. Sci. Rep. 2018, 8, 8524. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Wang, S.; Feng, Y.; Zhang, J.; Du, Y.; Zhang, J.; Ongeval, C.V.; Ni, Y.; Li, Y. Utilisation of chick embryo chorioallantoic membrane as a model platform for imaging-navigated biomedical research. Cells 2021, 10, 463. [Google Scholar] [CrossRef]
- Vargas, A.; Zeisser-Labouèbe, M.; Lange, N.; Gurny, R.; Delie, F. The chick embryo and its chorioallantoic membrane (CAM) for the in vivo evaluation of drug delivery systems. Adv. Drug Deliv. Rev. 2007, 59, 1162–1176. [Google Scholar] [CrossRef]
Copolymer | (EtOx)88-grad-(MeOPhOx)12 | (EtOx)88-grad-(EtOPhOx)12 | (EtOx)88-grad-(HexOPhOx)12 | (EtOx)88-grad-(DOPhOx)12 |
---|---|---|---|---|
Mn [g mol−1] | 11,600 | 11,800 | 16,500 | 12,600 |
Đ | 1.32 | 1.42 | 1.19 | 1.26 |
Copolymer | Solubilized Aqueous Curcumin Concentration (mg/mL) | Size, Dh (nm) | PDI |
---|---|---|---|
(EtOx)88-grad-(MeOPhOx)12 | 0.008 | (21 ± 1) | (0.30 ± 0.02) |
(EtOx)88-grad-(EtOPhOx)12 | 0.006 | (24 ± 0.86) | (0.35 ± 0.05) |
(EtOx)88-grad-(HexOPhOx)12 | 0.023 | (36 ± 1) | (0.26 ± 0.03) |
(EtOx)88-grad-(DOPhOx)12 | 0.021 | (45 ± 2) | (0.18 ± 0.02) |
Polymeric NPs | Absorption Maximum (nm) | Fluorescence Maximum (nm) | Fluorescence Quantum Yield |
---|---|---|---|
(EtOx)-grad-(MeOPhOx) | 436 | 530 | 0.010 |
(EtOx)-grad-(EtOPhOx) | 435 | 522 | 0.011 |
(EtOx)-grad-(HexOPhOx) | 432 | 510 | 0.029 |
(EtOx)-grad-(DOPhOx) [36] | 430 | 503 | 0.040 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Datta, S.; Huntošová, V.; Jutková, A.; Seliga, R.; Kronek, J.; Tomkova, A.; Lenkavská, L.; Máčajová, M.; Bilčík, B.; Kundeková, B.; et al. Influence of Hydrophobic Side-Chain Length in Amphiphilic Gradient Copoly(2-oxazoline)s on the Therapeutics Loading, Stability, Cellular Uptake and Pharmacokinetics of Nano-Formulation with Curcumin. Pharmaceutics 2022, 14, 2576. https://doi.org/10.3390/pharmaceutics14122576
Datta S, Huntošová V, Jutková A, Seliga R, Kronek J, Tomkova A, Lenkavská L, Máčajová M, Bilčík B, Kundeková B, et al. Influence of Hydrophobic Side-Chain Length in Amphiphilic Gradient Copoly(2-oxazoline)s on the Therapeutics Loading, Stability, Cellular Uptake and Pharmacokinetics of Nano-Formulation with Curcumin. Pharmaceutics. 2022; 14(12):2576. https://doi.org/10.3390/pharmaceutics14122576
Chicago/Turabian StyleDatta, Shubhashis, Veronika Huntošová, Annamária Jutková, Róbert Seliga, Juraj Kronek, Adriána Tomkova, Lenka Lenkavská, Mariana Máčajová, Boris Bilčík, Barbora Kundeková, and et al. 2022. "Influence of Hydrophobic Side-Chain Length in Amphiphilic Gradient Copoly(2-oxazoline)s on the Therapeutics Loading, Stability, Cellular Uptake and Pharmacokinetics of Nano-Formulation with Curcumin" Pharmaceutics 14, no. 12: 2576. https://doi.org/10.3390/pharmaceutics14122576
APA StyleDatta, S., Huntošová, V., Jutková, A., Seliga, R., Kronek, J., Tomkova, A., Lenkavská, L., Máčajová, M., Bilčík, B., Kundeková, B., Čavarga, I., Pavlova, E., Šlouf, M., Miškovský, P., & Jancura, D. (2022). Influence of Hydrophobic Side-Chain Length in Amphiphilic Gradient Copoly(2-oxazoline)s on the Therapeutics Loading, Stability, Cellular Uptake and Pharmacokinetics of Nano-Formulation with Curcumin. Pharmaceutics, 14(12), 2576. https://doi.org/10.3390/pharmaceutics14122576