Hydrophilic Natural Polylysine as Drug Nanocarrier for Preparation of Helical Delivery System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Cell Lines and Animals
2.3. Preparation of Drug Loaded PLL, and PEG-PLL Nanoparticles (NPs)
2.4. The Diameter and Morphology of Drug-Loaded NPs
2.5. Measurement of Drug-Loading Content (DLC)
2.6. Circular Dichroism (CD) Spectra Analysis
2.7. X-ray Diffraction (XRD) Analysis
2.8. Stability Study of NPs
2.9. In Vitro Drug Release Profiles
2.10. Cytotoxicity Assay
2.11. Study of Anti-Tumor Efficacy
2.12. Statistical Analysis
3. Results and Discussion
3.1. Preparation of Methotrexate-Loaded Nanoparticles (MTX-Loaded NPs)
3.2. Characterization of NPs
3.3. CD Study
3.4. X-ray Powder Diffraction (XRD) Study
3.5. The Stability of NPs
3.6. Study on Drug Release Kinetics In Vitro
3.7. Cytotoxicity Assay
3.8. Anti-Tumor Efficacy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singaraju, M.; Palaian, S.; Shankar, P.R.; Shrestha, S. Safety Profile and Toxicity Amelioration Strategies of Common Adverse Effects Associated with Anticancer Medications. J. Pharm. Res. Int. 2020, 32, 18–30. [Google Scholar] [CrossRef]
- Basak, D.; Arrighi, S.; Darwiche, Y.; Deb, S. Comparison of Anticancer Drug Toxicities: Paradigm Shift in Adverse Effect Profile. Life 2022, 12, 48. [Google Scholar] [CrossRef] [PubMed]
- Alven, S.; Nqoro, X.; Buyana, B.; Aderibigbe, B.A. Polymer-Drug Conjugate, a Potential Therapeutic to Combat Breast and Lung Cancer. Pharmaceutics 2020, 12, 406. [Google Scholar] [CrossRef] [PubMed]
- Shin, G.R.; Kim, H.E.; Kim, J.H.; Choi, S.; Kim, M.S. Advances in Injectable in Situ-Forming Hydrogels for Intratumoral Treatment. Pharmaceutics 2021, 13, 1953. [Google Scholar] [CrossRef] [PubMed]
- Ahuja, R.; Panwar, N.; Meena, J.; Singh, M.; Sarkar, D.P.; Panda, A.K. Natural Products and Polymeric Nanocarriers for Cancer Treatment: A Review. Environ. Chem. Lett. 2020, 18, 2021–2030. [Google Scholar] [CrossRef]
- Xie, X.; He, D.; Wu, Y.; Wang, T.; Zhong, C.; Zhang, J. Catanionic Hybrid Lipid Nanovesicles for Improved Bioavailability and Efficacy of Chemotherapeutic Drugs. Methods Mol. Biol. 2021, 2211, 57–68. [Google Scholar] [CrossRef]
- Housman, G.; Byler, S.; Heerboth, S.; Lapinska, K.; Longacre, M.; Snyder, N.; Sarkar, S. Drug Resistance in Cancer: An Overview. Cancers 2014, 6, 1769–1792. [Google Scholar] [CrossRef] [Green Version]
- Robles-Flores, M. Fighting Cancer Resistance: An Overview. Methods Mol. Biol. 2021, 2174, 3–12. [Google Scholar] [CrossRef]
- Nikolaou, M.; Pavlopoulou, A.; Georgakilas, A.G.; Kyrodimos, E. The Challenge of Drug Resistance in Cancer Treatment: A Current Overview. Clin. Exp. Metastasis 2018, 35, 309–318. [Google Scholar] [CrossRef]
- Frank, L.A.; Contri, R.V.; Beck, R.C.R.; Pohlmann, A.R.; Guterres, S.S. Improving Drug Biological Effects by Encapsulation into Polymeric Nanocapsules. Wiley Interdiscip. Rev.-Nanomed. Nanobiotechnol. 2015, 7, 623–639. [Google Scholar] [CrossRef]
- Masood, F. Polymeric Nanoparticles for Targeted Drug Delivery System for Cancer Therapy. Mater. Sci. Eng. C-Mater. Biol. Appl. 2016, 60, 569–578. [Google Scholar] [CrossRef]
- Ulery, B.D.; Nair, L.S.; Laurencin, C.T. Biomedical Applications of Biodegradable Polymers. J. Polym. Sci. B Polym. Phys. 2011, 49, 832–864. [Google Scholar] [CrossRef] [Green Version]
- Idrees, H.; Zaidi, S.Z.J.; Sabir, A.; Khan, R.U.; Zhang, X.; Hassan, S.-u. A Review of Biodegradable Natural Polymer-Based Nanoparticles for Drug Delivery Applications. Nanomaterials 2020, 10, 1970. [Google Scholar] [CrossRef]
- Doppalapudi, S.; Jain, A.; Khan, W.; Domb, A.J. Biodegradable Polymers-an Overview. Polym. Adv. Technol. 2014, 25, 427–435. [Google Scholar] [CrossRef]
- Vilar, G.; Tulla-Puche, J.; Albericio, F. Polymers and Drug Delivery Systems. Curr. Drug Del. 2012, 9, 367–394. [Google Scholar] [CrossRef]
- Gagliardi, A.; Giuliano, E.; Venkateswararao, E.; Fresta, M.; Bulotta, S.; Awasthi, V.; Cosco, D. Biodegradable Polymeric Nanoparticles for Drug Delivery to Solid Tumors. Front. Pharmacol. 2021, 12, 601626. [Google Scholar] [CrossRef]
- Goonoo, N.; Bhaw-Luximon, A.; Jhurry, D. Biodegradable Polymer Blends: Miscibility, Physicochemical Properties and Biological Response of Scaffolds. Polym. Int. 2015, 64, 1289–1302. [Google Scholar] [CrossRef]
- Tong, R.; Cheng, J. Anticancer Polymeric Nanomedicines. Polym. Rev. 2007, 47, 345–381. [Google Scholar] [CrossRef]
- Hou, Y.; Lu, H. Protein Pepylation: A New Paradigm of Protein-Polymer Conjugation. Bioconj. Chem. 2019, 30, 1604–1616. [Google Scholar] [CrossRef]
- Cheng, Y. Poly(Ethylene Glycol)-Polypeptide Copolymer Micelles for Therapeutic Agent Delivery. Curr. Pharm. Biotechnol. 2016, 17, 212–226. [Google Scholar] [CrossRef]
- Osada, K.; Kataoka, K. Drug and Gene Delivery Based on Supramolecular Assembly of Peg-Polypeptidehybrid Block Copolymers. In Peptide Hybrid Polymers; Klok, H.-A., Schlaad, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 113–153. [Google Scholar]
- MacEwan, S.R.; Chilkoti, A. Applications of Elastin-Like Polypeptides in Drug Delivery. J. Control. Release 2014, 190, 314–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chilkoti, A.; Dreher, M.R.; Meyer, D.E. Design of Thermally Responsive, Recombinant Polypeptide Carriers for Targeted Drug Delivery. Adv. Drug Del. Rev. 2002, 54, 1093–1111. [Google Scholar] [CrossRef]
- Massodi, I.; Bidwell, G.L.; Raucher, D. Evaluation of Cell Penetrating Peptides Fused to Elastin-Like Polypeptide for Drug Delivery. J. Control. Release 2005, 108, 396–408. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Li, Y.; Xie, M.-B. Silk Fibroin-Based Nanoparticles for Drug Delivery. Int. J. Mol. Sci. 2015, 16, 4880–4903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frandsen, J.L.; Ghandehari, H. Recombinant Protein-Based Polymers for Advanced Drug Delivery. Chem. Soc. Rev. 2012, 41, 2696–2706. [Google Scholar] [CrossRef]
- An, B.; Lin, Y.-S.; Brodsky, B. Collagen Interactions: Drug Design and Delivery. Adv. Drug Del. Rev. 2016, 97, 69–84. [Google Scholar] [CrossRef]
- Jonker, A.M.; Loewik, D.W.P.M.; van Hest, J.C.M. Peptide- and Protein-Based Hydrogels. Chem. Mater. 2012, 24, 759–773. [Google Scholar] [CrossRef]
- Chen, Y.J.; Deng, Q.W.; Wang, L.; Guo, X.C.; Yang, J.Y.; Li, T.; Xu, Z.; Lee, H.C.; Zhao, Y.J. Gala Peptide Improves the Potency of Nanobody-Drug Conjugates by Lipid-Induced Helix Formation. Chem. Commun. 2021, 57, 1434–1437. [Google Scholar] [CrossRef]
- Gupta, B.; Levchenko, T.S.; Torchilin, V.P. Intracellular Delivery of Large Molecules and Small Particles by Cell-Penetrating Proteins and Peptides. Adv. Drug Del. Rev. 2005, 57, 637–651. [Google Scholar] [CrossRef]
- Ma, G.; Lin, W.; Yuan, Z.; Wu, J.; Qian, H.; Xu, L.; Chen, S. Development of Ionic Strength/Ph/Enzyme Triple-Responsive Zwitterionic Hydrogel of the Mixed L-Glutamic Acid and L-Lysine Polypeptide for Site-Specific Drug Delivery. J. Mater. Chem. B 2017, 5, 935–943. [Google Scholar] [CrossRef]
- Lin, W.; Ma, G.; Yuan, Z.; Qian, H.; Xu, L.; Sidransky, E.; Chen, S. Development of Zwitterionic Polypeptide Nanoformulation with High Doxorubicin Loading Content for Targeted Drug Delivery. Langmuir 2019, 35, 1273–1283. [Google Scholar] [CrossRef]
- Suk, J.S.; Xu, Q.; Kim, N.; Hanes, J.; Ensign, L.M. Pegylation as a Strategy for Improving Nanoparticle-Based Drug and Gene Delivery. Adv. Drug Del. Rev. 2016, 99, 28–51. [Google Scholar] [CrossRef] [Green Version]
- Shi, D.; Beasock, D.; Fessler, A.; Szebeni, J.; Ljubimova, J.Y.; Afonin, K.A.; Dobrovolskaia, M.A. To Pegylate or Not to Pegylate: Immunological Properties of Nanomedicine’s Most Popular Component, Polyethylene Glycol and Its Alternatives. Adv. Drug Del. Rev. 2022, 180, 114079. [Google Scholar] [CrossRef]
- Gulati, N.M.; Stewart, P.L.; Steinmetz, N.F. Bioinspired Shielding Strategies for Nanoparticle Drug Delivery Applications. Mol. Pharm. 2018, 15, 2900–2909. [Google Scholar] [CrossRef]
- Quadir, M.A.; Morton, S.W.; Deng, Z.J.; Shopsowitz, K.E.; Murphy, R.P.; Epps, T.H., 3rd; Hammond, P.T. Peg-Polypeptide Block Copolymers as Ph-Responsive Endosome-Solubilizing Drug Nanocarriers. Mol. Pharm. 2014, 11, 2420–2430. [Google Scholar] [CrossRef]
- John, J.V.; Johnson, R.P.; Heo, M.S.; Moon, B.K.; Byeon, S.J.; Kim, I. Polymer-Block-Polypeptides and Polymer-Conjugated Hybrid Materials as Stimuli-Responsive Nanocarriers for Biomedical Applications. J. Biomed. Nanotechnol. 2015, 11, 1–39. [Google Scholar] [CrossRef]
- Ding, J.; Chen, J.; Li, D.; Xiao, C.; Zhang, J.; He, C.; Zhuang, X.; Chen, X. Biocompatible Reduction-Responsive Polypeptide Micelles as Nanocarriers for Enhanced Chemotherapy Efficacy in Vitro. J. Mater. Chem. B 2013, 1, 69–81. [Google Scholar] [CrossRef]
- Deng, C.; Wu, J.; Cheng, R.; Meng, F.; Klok, H.A.; Zhong, Z. Functional Polypeptide and Hybrid Materials: Precision Synthesis Via A-Amino Acid N-Carboxyanhydride Polymerization and Emerging Biomedical Applications. Prog. Polym. Sci. 2014, 39, 330–364. [Google Scholar] [CrossRef]
- Bacsa, B.; Horváti, K.; Bõsze, S.; Andreae, F.; Kappe, C.O. Solid-Phase Synthesis of Difficult Peptide Sequences at Elevated Temperatures: A Critical Comparison of Microwave and Conventional Heating Technologies. J. Org. Chem 2008, 73, 7532–7542. [Google Scholar] [CrossRef]
- Kricheldorf, H.R. Polypeptides and 100 Years of Chemistry of Alpha-Amino Acid N-Carboxyanhydrides. Angew. Chem. Int. Ed. Engl. 2006, 45, 5752–5784. [Google Scholar] [CrossRef]
- Guo, Y.; Shen, Y.; Yu, B.; Ding, L.; Meng, Z.; Wang, X.; Han, M.; Dong, Z.; Wang, X. Hydrophilic Poly(Glutamic Acid)-Based Nanodrug Delivery System: Structural Influence and Antitumor Efficacy. Polymers 2022, 14, 2242. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Zhao, S.; Qiu, H.; Wang, T.; Zhao, Y.; Han, M.; Dong, Z.; Wang, X. Shape of Nanoparticles as a Design Parameter to Improve Docetaxel Antitumor Efficacy. Bioconj. Chem. 2018, 29, 1302–1311. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Zhao, Y.; Wang, T.; Li, R.; Han, M.; Dong, Z.; Zhu, C.; Wang, X. Hydroxycamptothecin Nanorods Prepared by Fluorescently Labeled Oligoethylene Glycols (Oeg) Codendrimer: Antitumor Efficacy in Vitro and in Vivo. Bioconj. Chem. 2017, 28, 390–399. [Google Scholar] [CrossRef] [PubMed]
- Truong, N.P.; Whittaker, M.R.; Mak, C.W.; Davis, T.P. The Importance of Nanoparticle Shape in Cancer Drug Delivery. Expert Opin. Drug Deliv. 2015, 12, 129–142. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zhang, X.; Hao, X.; Jie, J.; Tian, B.; Zhang, X. Shape Design of High Drug Payload Nanoparticles for More Effective Cancer Therapy. Chem. Commun. 2013, 49, 10989–10991. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, T.; Qiu, H.; Han, M.; Dong, Z.; Wang, X.; Wang, Y. Hydroxycamptothecin Nanoparticles Based on Poly/Oligo (Ethylene Glycol): Architecture Effects of Nanocarriers on Antitumor Efficacy. Eur. J. Pharm. Biopharm. 2019, 134, 178–184. [Google Scholar] [CrossRef]
- Guo, Y.; Zhao, Y.; Han, M.; Hao, C.; Wang, X. Codendrimer (Pag) from Polyamidoamine (Pamam) and Oligoethylene Glycols (Oeg) Dendron: Evaluation as Drug Carrier. J. Mater. Chem. B 2013, 1, 6078–6084. [Google Scholar] [CrossRef]
- Ahmadi Tehrani, A.; Omranpoor, M.M.; Vatanara, A.; Seyedabadi, M.; Ramezani, V. Formation of Nanosuspensions in Bottom-up Approach: Theories and Optimization. DARU J. Pharm. Sci. 2019, 12, 451–473. [Google Scholar] [CrossRef]
- Meng, L.; Mohammad, A.; Rajesh, D.; Ecevit, B. Nanomilling of Drugs for Bioavailability Enhancement: A Holistic Formulation-Process Perspective. Pharmaceutics 2016, 8, 17. [Google Scholar] [CrossRef] [Green Version]
- Roya, Y.; Krasimir, V.; Spomenka, S. Nanosuspension Technologies for Delivery of Poorly Soluble Drugs. J. Nanomater. 2015, 2015, 216375. [Google Scholar] [CrossRef]
- Zhang, Z.; Murayama, T.; Sadakane, M.; Ariga, H.; Yasuda, N.; Sakaguchi, N.; Asakura, K.; Ueda, W. Ultrathin Inorganic Molecular Nanowire Based on Polyoxometalates. Nat. Commun 2015, 6, 7731. [Google Scholar] [CrossRef] [Green Version]
- Chiou, J.S.; Tatara, T.; Sawamura, S.; Kaminoh, Y.; Kamaya, H.; Shibata, A.; Ueda, I. The Alpha-Helix to Beta-Sheet Transition in Poly(L-Lysine): Effects of Anesthetics and High Pressure. Biochim. Biophys. Acta 1992, 1119, 211–217. [Google Scholar] [CrossRef]
- Dzwolak, W.; Muraki, T.; Kato, M.; Taniguchi, Y. Chain-Length Dependence of Alpha-Helix to Beta-Sheet Transition in Polylysine: Model of Protein Aggregation Studied by Temperature-Tuned Ftir Spectroscopy. Biopolymers 2004, 73, 463–469. [Google Scholar] [CrossRef]
- Smirnovas, V.; Winter, R.; Funck, T.; Dzwolak, W. Thermodynamic Properties Underlying the Alpha-Helix-to-Beta-Sheet Transition, Aggregation, and Amyloidogenesis of Polylysine as Probed by Calorimetry, Densimetry, and Ultrasound Velocimetry. J. Phys. Chem. B 2005, 109, 19043–19045. [Google Scholar] [CrossRef]
- Neradovic, D.; Soga, O.; Van Nostrum, C.F.; Hennink, W.E. The Effect of the Processing and Formulation Parameters on the Size of Nanoparticles Based on Block Copolymers of Poly(Ethylene Glycol) and Poly(N-Isopropylacrylamide) with and without Hydrolytically Sensitive Groups. Biomaterials 2004, 25, 2409–2418. [Google Scholar] [CrossRef]
- Xia, X.-X.; Wang, M.; Lin, Y.; Xu, Q.; Kaplan, D.L. Hydrophobic Drug-Triggered Self-Assembly of Nanoparticles from Silk-Elastin-Like Protein Polymers for Drug Delivery. Biomacromolecules 2014, 15, 908–914. [Google Scholar] [CrossRef]
- Huang, X.; Teng, X.; Chen, D.; Tang, F.; He, J. The Effect of the Shape of Mesoporous Silica Nanoparticles on Cellular Uptake and Cell Function. Biomaterials 2010, 31, 438–448. [Google Scholar] [CrossRef]
- Bhattacharyya, J.; Weitzhandler, I.; Ho, S.B.; McDaniel, J.R.; Li, X.; Tang, L.; Liu, J.; Dewhirst, M.; Chilkoti, A. Encapsulating a Hydrophilic Chemotherapeutic into Rod-Like Nanoparticles of a Genetically Encoded Asymmetric Triblock Polypeptide Improves Its Efficacy. Adv. Funct. Mater. 2017, 27. [Google Scholar] [CrossRef]
- Rajasekar, A.; Devasena, T.; Suresh, S.; Senthil, B.; Sivaramakrishnan, R.; Pugazhendhi, A. Curcumin Nanospheres and Nanorods: Synthesis, Characterization and Anticancer Activity. Process. Biochem. 2022, 112, 248–253. [Google Scholar] [CrossRef]
- Greenfield, N.J. Methods to Estimate the Conformation of Proteins and Polypeptides from Circular Dichroism Data. Anal. Biochem 1996, 235, 1–10. [Google Scholar] [CrossRef]
- Greenfield, N.J. Applications of Circular Dichroism in Protein and Peptide Analysis. Trac-Trends Anal. Chem. 1999, 18, 236–244. [Google Scholar] [CrossRef]
- Dzwolak, W.; Smirnovas, V. A Conformational Alpha-Helix to Beta-Sheet Transition Accompanies Racemic Self-Assembly of Polylysine: An Ft-Ir Spectroscopic Study. Biophys. Chem. 2005, 115, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Gade, J.; Jain, B.; Rawat, R.; Sharma, P.P.; Gupta, P. An Effective Nanoparticles for Drug Delivery System. In Proceedings of the 1st International Conference on Computations in Materials and Applied Engineering (CMAE), Uttarakhand, India, 1–2 May 2021; pp. A1–A7. [Google Scholar]
- Agrawal, Y.O.; Mahajan, U.B.; Mahajan, H.S.; Ojha, S. Methotrexate-Loaded Nanostructured Lipid Carrier Gel Alleviates Imiquimod-Induced Psoriasis by Moderating Inflammation: Formulation, Optimization, Characterization, in-Vitro and in-Vivo Studies. Int. J. Nanomed. 2020, 15, 4763–4778. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, A.R.; Molina, E.F.; Mesquita, P.d.C.; Cardozo Fonseca, J.L.; Rossanezi, G.; Fernandes-Pedrosa, M.d.F.; de Oliveira, A.G.; da Silva-Junior, A.A. Structural and Thermal Properties of Spray-Dried Methotrexate-Loaded Biodegradable Microparticles. J. Therm. Anal. Calorim. 2013, 112, 555–565. [Google Scholar] [CrossRef]
- Singh, Y.; Meher, J.G.; Raval, K.; Khan, F.A.; Chaurasia, M.; Jain, N.K.; Chourasia, M.K. Nanoemulsion: Concepts, Development and Applications in Drug Delivery. J. Control. Release 2017, 252, 28–49. [Google Scholar] [CrossRef]
- Kinnear, C.; Moore, T.L.; Rodriguez-Lorenzo, L.; Rothen-Rutishauser, B.; Petri-Fink, A. Form Follows Function: Nanoparticle Shape and Its Implications for Nanomedicine. Chem Rev. 2017, 117, 11476–11521. [Google Scholar] [CrossRef]
- Hamilton, R.F.; Wu, N.; Porter, D.; Buford, M.; Wolfarth, M.; Holian, A. Particle Length-Dependent Titanium Dioxide Nanomaterials Toxicity and Bioactivity. Part. Fibre Toxicol. 2009, 6, 35. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.; Li, J.; Gu, P.; Fan, X. The Application of Nanoparticles in Cancer Immunotherapy: Targeting Tumor Microenvironment. Bioact. Mater. 2021, 6, 1973–1987. [Google Scholar] [CrossRef]
- Toy, R.; Peiris, P.M.; Ghaghada, K.B.; Karathanasis, E. Shaping Cancer Nanomedicine: The Effect of Particle Shape on the in Vivo Journey of Nanoparticles. Nanomedicine 2014, 9, 121–134. [Google Scholar] [CrossRef]
Samples | DLS Results a | DLC (%) e | ||
---|---|---|---|---|
Dh (nm) b | PDI c | ζ (mV) d | ||
PLL | 880.5 | 0.69 | 26.6 | - |
PEG-PLL | 435.6 | 0.49 | 21.4 | - |
PLL/MTX | 113.7 | 0.23 | 33.3 | 58.9% |
PEG-PLL/MTX | 201.3 | 0.18 | 37.7 | 47.3% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, B.; Wang, X.; Ding, L.; Han, M.; Guo, Y. Hydrophilic Natural Polylysine as Drug Nanocarrier for Preparation of Helical Delivery System. Pharmaceutics 2022, 14, 2512. https://doi.org/10.3390/pharmaceutics14112512
Yu B, Wang X, Ding L, Han M, Guo Y. Hydrophilic Natural Polylysine as Drug Nanocarrier for Preparation of Helical Delivery System. Pharmaceutics. 2022; 14(11):2512. https://doi.org/10.3390/pharmaceutics14112512
Chicago/Turabian StyleYu, Bo, Xiangtao Wang, Lijuan Ding, Meihua Han, and Yifei Guo. 2022. "Hydrophilic Natural Polylysine as Drug Nanocarrier for Preparation of Helical Delivery System" Pharmaceutics 14, no. 11: 2512. https://doi.org/10.3390/pharmaceutics14112512
APA StyleYu, B., Wang, X., Ding, L., Han, M., & Guo, Y. (2022). Hydrophilic Natural Polylysine as Drug Nanocarrier for Preparation of Helical Delivery System. Pharmaceutics, 14(11), 2512. https://doi.org/10.3390/pharmaceutics14112512