Immobilization of Metronidazole on Mesoporous Silica Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Metronidazole Immobilized on Mesoporous Material
2.3. Low-Temperature Nitrogen Adsorption/Desorption
2.4. X-ray Photoelectron Spectroscopy
2.5. Scanning Electron Microscopy (SEM)
2.6. X-ray Diffraction Analysis
2.7. Thermogravimetric and Differential Scanning Calorimetric (TG-DSC) Test
2.8. Size Distribution
2.9. Study of Metronidazole Release from a Drug Delivery System Containing Silica
3. Results
3.1. Physicochemical Characterization of MTZ Immobilized on MSMs
3.1.1. Nitrogen Physisorption Analysis
3.1.2. Surface Characterization
3.1.3. Size Distribution
3.1.4. SEM Studies
3.1.5. XRD Measurements
3.1.6. Thermal Analysis
3.2. In Vitro Release of MTZ from MSM
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DDS | Drug delivery system |
MSM | Mesoporous silica material |
MTZ | Metronidazole |
SBA-15 | Santa Barbara Amorphous |
SED | Secondary electron detector |
SEM | Scanning electron microscopy |
Sy | Syloid®®72FP |
SM | Metronidazole on SBA-15 mesoporous silica |
SSA | Specific surface area |
SyM | Metronidazole on Syloid mesoporous silica |
TG-DSC | Thermogravimetric and differential scanning calorimetry |
US | Ultrasound, ultrasonic |
XPS | X-ray photoelectron spectroscopy |
XRD | X-ray diffraction |
References
- Cosar, C.; Julou, L. [The activity of 1-(2-hydroxyethyl)-2-methyl-5-nitroimidazole (R. P. 8823) against experimental Trichomonas vaginalis infections]—PubMed. Ann. Inst. Pasteur. 1959, 96, 238–241. [Google Scholar]
- Essential drugs: WHO model list (revised December 1999). WHO Drug Inf. 1999, 13, 249–262.
- Nitzan, O.; Elias, M.; Peretz, A.; Saliba, W. Role of antibiotics for treatment of inflammatory bowel disease. World J. Gastroenterol. 2016, 22, 1078–1087. [Google Scholar] [CrossRef] [PubMed]
- Mallikarjuna Rao, C.; Ghosh, A.; Raghothama, C.; Bairy, K. Does metronidazole reduce lipid peroxidation in burn injuries to promote healing? Burns 2002, 28, 427–429. [Google Scholar] [CrossRef]
- Miyachi, Y.; Imamura, S.; Niwa, Y. Anti-oxidant action of metronidazole: A possible mechanism of action in rosacea. Br. J. Dermatol. 1986, 114, 231–234. [Google Scholar] [CrossRef]
- Miyachi, Y. Potential antioxidant mechanism of action for metronidazole: Implications for rosacea management. Adv. Ther. 2001 186 2001, 18, 237–243. [Google Scholar] [CrossRef]
- Szentmihályi, K.; Süle, K.; Egresi, A.; Blázovics, A.; May, Z. Metronidazole does not show direct antioxidant activity in in vitro global systems. Heliyon 2021, 7, e06902. [Google Scholar] [CrossRef]
- Aronson, I.K.; Rumsfield, J.A.; West, D.P.; Alexander, J.; Fischer, J.H.; Paloucek, F.P. Evaluation of Topical Metronidazole Gel in Acne Rosacea. Ann. Pharmacother. 2017, 21, 346–351. [Google Scholar] [CrossRef]
- Hoffmann, C.; Focke, N.; Franke, G.; Zschiesche, M.; Siegmund, W. Comparative bioavailability of metronidazole formulations (Vagimid) after oral and vaginal administration. Int. J. Clin. Pharmacol. Ther. 1995, 33, 232–239. [Google Scholar]
- Di Martino, P.; Censi, R.; Malaj, L.; Capsoni, D.; Massarotti, V.; Martelli, S. Influence of solvent and crystallization method on the crystal habit of metronidazole. Cryst. Res. Technol. 2007, 42, 800–806. [Google Scholar] [CrossRef]
- Tally, F.P.; Sutter, V.L.; Finegold, S.M. Treatment of Anaerobic Infections with Metronidazole. Antimicrob. Agents Chemother. 1975, 7, 672–675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barnhorst, J.; Foster, J.A.; Chern, K.C.; Meisler, D.M. The Efficacy of Topical Metronidazole in the Treatment of Ocular Rosacea. Ophthalmology 1996, 103, 1880–1883. [Google Scholar] [CrossRef]
- Bhadoriya, S.S.; Mangal, A.; Madoriya, N.; Dixit, P.; Bhadoriya, S.S. Bioavailability and bioactivity enhancement of herbal drugs by “Nanotechnology”: A review. J. Curr. Pharm. Res. 2011, 8, 1–7. [Google Scholar]
- Nohynek, G.J.; Dufour, E.K.; Roberts, M.S. Nanotechnology, Cosmetics and the Skin: Is There a Health Risk? Skin Pharmacol. Physiol. 2008, 21, 136–149. [Google Scholar] [CrossRef]
- Szentmihályi, K.; Móricz, K.; Gigler, G.; May, Z.; Bódis, E.; Tóth, J.; Bakonyi, M.; Klébert, S.; Feczkó, T.; Károly, Z. Ointment containing spray freeze-dried metronidazole effective against rosacea. J. Drug Deliv. Sci. Technol. 2022, 74, 103559. [Google Scholar] [CrossRef]
- Chaabane, D.; Yakdhane, A.; Vatai, G.; Koris, A.; Nath, A. Microencapsulation of Olive Oil: A Comprehensive Review. Period. Polytech. Chem. Eng. 2022, 66, 354–366. [Google Scholar] [CrossRef]
- Vandana, K.R.; Prasanna Raju, Y.; Harini Chowdary, V.; Sushma, M.; Vijay Kumar, N. An overview on in situ micronization technique—An emerging novel concept in advanced drug delivery. Saudi Pharm. J. SPJ 2014, 22, 283. [Google Scholar] [CrossRef] [Green Version]
- Vemula, V.R.; Lagishetty, V.; Lingala, S. Solubility enhancement techniques. Int. J. Pharm. Sci. Rev. Res. 2010, 5, 41–51. [Google Scholar]
- Wanning, S.; Süverkrüp, R.; Lamprecht, A. Pharmaceutical spray freeze drying. Int. J. Pharm. 2015, 488, 136–153. [Google Scholar] [CrossRef]
- Szentmihályi, K.; May, Z.; Bódis, E.; Tóth, J.; Trif, L.; Klébert, S.; Feczkó, T.; Károly, Z. Morphology transformation of thermosensitive metronidazol by spray freeze-drying. J. Therm. Anal. Calorim. 2022, 147, 11777–11786. [Google Scholar] [CrossRef]
- Ajiz, H.A.; Albar, A.A.; Widiyastuti, W.; Nurtono, T.; Setyawan, H.; Joni, I.M. High Surface Area Silica Particles Using Anionic Surfactant Template Prepared by One-step Spray Drying System for Dye Removal Application. Period. Polytech. Chem. Eng. 2022, 66, 585–595. [Google Scholar] [CrossRef]
- Rasenack, N.; Steckel, H.; Müller, B.W. Preparation of microcrystals by in situ micronization. Powder Technol. 2004, 143–144, 291–296. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, J.; Zhi, Z.; Jiang, T.; Wang, S. Facile synthesis of 3D cubic mesoporous silica microspheres with a controllable pore size and their application for improved delivery of a water-insoluble drug. J. Colloid Interface Sci. 2011, 363, 410–417. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Jiang, H.; Jiang, T.; Zhi, Z.; Wu, C.; Sun, C.; Zhang, J.; Wang, S. Inclusion of celecoxib into fibrous ordered mesoporous carbon for enhanced oral bioavailability and reduced gastric irritancy. Eur. J. Pharm. Sci. 2012, 45, 639–647. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, T.; Zhang, Q.; Wang, S. Inclusion of telmisartan in mesocellular foam nanoparticles: Drug loading and release property. Eur. J. Pharm. Biopharm. 2010, 76, 17–23. [Google Scholar] [CrossRef]
- Hong, E.J.; Choi, D.G.; Shim, M.S. Targeted and effective photodynamic therapy for cancer using functionalized nanomaterials. Acta Pharm. Sin. B 2016, 6, 297–307. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wang, J.; Bai, X.; Jiang, T.; Zhang, Q.; Wang, S. Mesoporous silica nanoparticles for increasing the oral bioavailability and permeation of poorly water soluble drugs. Mol. Pharm. 2012, 9, 505–513. [Google Scholar] [CrossRef]
- Van Speybroeck, M.; Mellaerts, R.; Mols, R.; Thi, T.D.; Martens, J.A.; Van Humbeeck, J.; Annaert, P.; Van den Mooter, G.; Augustijns, P. Enhanced absorption of the poorly soluble drug fenofibrate by tuning its release rate from ordered mesoporous silica. Eur. J. Pharm. Sci. 2010, 41, 623–630. [Google Scholar] [CrossRef]
- Kiekens, F.; Eelen, S.; Verheyden, L.; Daems, T.; Martens, J.; van den Mooter, G. Use of Ordered Mesoporous Silica to Enhance the Oral Bioavailability of Ezetimibe in Dogs. J. Pharm. Sci. 2012, 101, 1136–1144. [Google Scholar] [CrossRef]
- Edwards, D.A.; Hanes, J.; Caponetti, G.; Hrkach, J.; Ben-Jebria, A.; Eskew, M.L.; Mintzes, J.; Deaver, D.; Lotan, N.; Langer, R. Large porous particles for pulmonary drug delivery. Science 1997, 276, 1868–1871. [Google Scholar] [CrossRef] [Green Version]
- Poursina, N.; Vatanara, A.; Rouini, M.R.; Gilani, K.; Rouholamini Najafabadi, A. Systemic delivery of parathyroid hormone (1–34) using spray freeze-dried inhalable particles. Pharm. Dev. Technol. 2015, 22, 733–739. [Google Scholar] [CrossRef] [PubMed]
- Waters, L.J.; Hanrahan, J.P.; Tobin, J.M.; Finch, C.V.; Parkes, G.M.B.; Ahmad, S.A.; Mohammad, F.; Saleem, M. Enhancing the dissolution of phenylbutazone using Syloid®® based mesoporous silicas for oral equine applications. J. Pharm. Anal. 2018, 8, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Sliwinska-Bartkowiak, M.; Dudziak, G.; Sikorski, R.; Gras, R.; Radhakrishnan, R.; Gubbins, K.E. Melting/freezing behavior of a fluid confined in porous glasses and MCM-41: Dielectric spectroscopy and molecular simulation. J. Chem. Phys. 2000, 114, 950. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q.; Wang, T.; Wang, J.; Zheng, L.; Jiang, T.; Cheng, G.; Wang, S. Fabrication of mesoporous hydroxycarbonate apatite for oral delivery of poorly water-soluble drug carvedilol. J. Non. Cryst. Solids 2012, 358, 229–235. [Google Scholar] [CrossRef]
- Yunessnia lehi, A.; Shagholani, H.; Nikpay, A.; Ghorbani, M.; Soleimani lashkenari, M.; Soltani, M. Synthesis and modification of crystalline SBA-15 nanowhiskers as a pH-sensitive metronidazole nanocarrier system. Int. J. Pharm. 2019, 555, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Wang, K.; Jiang, M.; Wan, L. Interactions between mesocellular foam silica carriers and model drugs constructed by central composite design. Colloids Surfaces B Biointerfaces 2019, 180, 221–228. [Google Scholar] [CrossRef]
- Chamorro-Petronacci, C.M.; Torres, B.S.; Guerrero-Nieves, R.; Pérez-Sayáns, M.; Carvalho-de Abreu Fantini, M.; Cides-da-Silva, L.C.; Magariños, B.; Rivas-Mundiña, B. Efficacy of Ciprofloxacin, Metronidazole and Minocycline in Ordered Mesoporous Silica against Enterococcus faecalis for Dental Pulp Revascularization: An In-Vitro Study. Materials 2022, 15, 2266. [Google Scholar] [CrossRef]
- Czarnobaj, K.; Prokopowicz, M.; Sawicki, W. Formulation and In Vitro Characterization of Bioactive Mesoporous Silica with Doxorubicin and Metronidazole Intended for Bone Treatment and Regeneration. AAPS PharmSciTech 2017, 18, 3163–3171. [Google Scholar] [CrossRef] [Green Version]
- Altememy, D.; Jafari, M.; Naeini, K.M.; Alsamarrai, S.; Khosravian, P. In-vitro Evaluation of Metronidazole loaded Mesoporous Silica Nanoparticles Against Trichomonas Vaginalis. Int. J. Pharm. Res. 2020, 12, 2773–2780. [Google Scholar] [CrossRef]
- Czarnobaj, K.; Prokopowicz, M.; Greber, K. Use of Materials Based on Polymeric Silica as Bone-Targeted Drug Delivery Systems for Metronidazole. Int. J. Mol. Sci. 2019, 20, 1311. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Wang, X.; Li, L.; Liu, Y. Anti-Inflammatory and Repairing Effects of Mesoporous Silica-Loaded Metronidazole Composite Hydrogel on Human Dental Pulp Cells. J. Healthc. Eng. 2022, 2022, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Szegedi, Á.; Popova, M.; Lázár, K.; Klébert, S.; Drotár, E. Impact of silica structure of copper and iron-containing SBA-15 and SBA-16 materials on toluene oxidation. Microporous Mesoporous Mater. 2013, 177, 97–104. [Google Scholar] [CrossRef] [Green Version]
- Azaïs, T.; Tourné-Péteilh, C.; Aussenac, F.; Baccile, N.; Coelho, C.; Devoisselle, J.-M.; Babonneau, F. Solid-State NMR Study of Ibuprofen Confined in MCM-41 Material. Chem. Mater. 2006, 18, 6382–6390. [Google Scholar] [CrossRef]
- Fernández-Núñez, M.; Zorrilla, D.; Montes, A.; Mosquera, M.J. Ibuprofen Loading in Surfactant-Templated Silica: Role of the Solvent According to the Polarizable Continuum Model. J. Phys. Chem. A 2009, 113, 11367–11375. [Google Scholar] [CrossRef]
- Aleanizy, F.S.; Alqahtani, F.; Al Gohary, O.; El Tahir, E.; Al Shalabi, R. Determination and characterization of metronidazole–kaolin interaction. Saudi Pharm. J. 2015, 23, 167–176. [Google Scholar] [CrossRef]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Mohai, M. XPS MultiQuant: Multimodel XPS quantification software. Surf. Interface Anal. 2004, 36, 828–832. [Google Scholar] [CrossRef]
- Evans, S.; Pritchard, R.G.; Thomas, J.M. Relative differential subshell photoionisation cross-sections (MgKα) from lithium to uranium. J. Electron Spectros. Relat. Phenomena 1978, 14, 341–358. [Google Scholar] [CrossRef]
- Reilman, R.F.; Msezane, A.; Manson, S.T. Relative intensities in photoelectron spectroscopy of atoms and molecules. J. Electron Spectros. Relat. Phenomena 1976, 8, 389–394. [Google Scholar] [CrossRef]
- Mohai, M.; Bertóti, I. Correction for surface contaminations in XPS: a practical approach. In Proceedings of the ECASIA 95; Mathieu, H.J., Reihl, B., Briggs, D., Eds.; John Willey & Sons: Chichester, UK, 1996; pp. 675–678. [Google Scholar]
- Maleki, A.; Kettiger, H.; Schoubben, A.; Rosenholm, J.M.; Ambrogi, V.; Hamidi, M. Mesoporous silica materials: From physico-chemical properties to enhanced dissolution of poorly water-soluble drugs. J. Control. Release 2017, 262, 329–347. [Google Scholar] [CrossRef]
- Horcajada, P.; Rámila, A.; Pérez-Pariente, J.; Vallet-Regí, M. Influence of pore size of MCM-41 matrices on drug delivery rate. Microporous Mesoporous Mater. 2004, 68, 105–109. [Google Scholar] [CrossRef]
- Song, S.-W.; Hidajat, K.; Kawi, S. Functionalized SBA-15 Materials as Carriers for Controlled Drug Delivery: Influence of Surface Properties on Matrix−Drug Interactions. Langmuir 2005, 21, 9568–9575. [Google Scholar] [CrossRef] [PubMed]
- Zhuravlev, L.T. Concentration of hydroxyl groups on the surface of amorphous silicas. Langmuir 1987, 3, 316–318. [Google Scholar] [CrossRef]
- Zhuravlev, L.T. The surface chemistry of amorphous silica. Zhuravlev model. Colloids Surfaces A Physicochem. Eng. Asp. 2000, 173, 1–38. [Google Scholar] [CrossRef] [Green Version]
- Sun, T.; Dong, Z.; Wang, J.; Huang, F.-H.; Zheng, M.-M. Ultrasound-Assisted Interfacial Immobilization of Lipase on Hollow Mesoporous Silica Spheres in a Pickering Emulsion System: A Hyperactive and Sustainable Biocatalyst. ACS Sustain. Chem. Eng. 2020, 8, 17280–17290. [Google Scholar] [CrossRef]
- Charnay, C.; Bégu, S.; Tourné-Péteilh, C.; Nicole, L.; Lerner, D.A.; Devoisselle, J.M. Inclusion of ibuprofen in mesoporous templated silica: Drug loading and release property. Eur. J. Pharm. Biopharm. 2004, 57, 533–540. [Google Scholar] [CrossRef]
- Fisher, K.A.; Huddersman, K.D.; Taylor, M.J. Comparison of Micro- and Mesoporous Inorganic Materials in the Uptake and Release of the Drug Model Fluorescein and Its Analogues. Chem.—A Eur. J. 2003, 9, 5873–5878. [Google Scholar] [CrossRef]
- Rosenholm, J.M.; Lindén, M. Towards establishing structure–activity relationships for mesoporous silica in drug delivery applications. J. Control. Release 2008, 128, 157–164. [Google Scholar] [CrossRef]
- Salonen, J.; Kaukonen, A.M.; Hirvonen, J.; Lehto, V.P. Mesoporous Silicon in Drug Delivery Applications. J. Pharm. Sci. 2008, 97, 632–653. [Google Scholar] [CrossRef]
- Van Speybroeck, M.; Barillaro, V.; Thi, T.D.; Mellaerts, R.; Martens, J.; Van Humbeeck, J.; Vermant, J.; Annaert, P.; Van Den Mooter, G.; Augustijns, P. Ordered Mesoporous Silica Material SBA-15: A Broad-Spectrum Formulation Platform for Poorly Soluble Drugs. J. Pharm. Sci. 2009, 98, 2648–2658. [Google Scholar] [CrossRef]
- Nadarassan, D.; Loni, A.; Canham, L.T.; Scoutaris, N.; Trivedi, V.; Douroumis, D. Ultrahigh nanostructured drug payloads from degradable mesoporous silicon aerocrystals. Int. J. Pharm. 2021, 607, 120840. [Google Scholar] [CrossRef] [PubMed]
- Dwyer, L.M.; Michaelis, V.K.; O’Mahony, M.; Griffin, R.G.; Myerson, A.S. Confined crystallization of fenofibrate in nanoporous silica. CrystEngComm 2015, 17, 7922–7929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sliwinska-Bartkowiak, M.; Dudziak, G.; Gras, R.; Sikorski, R.; Radhakrishnan, R.; Gubbins, K.E. Freezing behavior in porous glasses and MCM-41. Colloids Surfaces A Physicochem. Eng. Asp. 2001, 187–188, 523–529. [Google Scholar] [CrossRef]
- Wang, C.F.; Mäkilä, E.M.; Kaasalainen, M.H.; Hagström, M.V.; Salonen, J.J.; Hirvonen, J.T.; Santos, H.A. Dual-drug delivery by porous silicon nanoparticles for improved cellular uptake, sustained release, and combination therapy. Acta Biomater. 2015, 16, 206–214. [Google Scholar] [CrossRef] [PubMed]
- Kinnari, P.; Mäkilä, E.; Heikkilä, T.; Salonen, J.; Hirvonen, J.; Santos, H.A. Comparison of mesoporous silicon and non-ordered mesoporous silica materials as drug carriers for itraconazole. Int. J. Pharm. 2011, 414, 148–156. [Google Scholar] [CrossRef]
- Doadrio, A.L.; Sousa, E.M.B.; Doadrio, J.C.; Pérez Pariente, J.; Izquierdo-Barba, I.; Vallet-Regí, M. Mesoporous SBA-15 HPLC evaluation for controlled gentamicin drug delivery. J. Control. Release 2004, 97, 125–132. [Google Scholar] [CrossRef]
- Mellaerts, R.; Aerts, C.A.; Van Humbeeck, J.; Augustijns, P.; Van Den Mooter, G.; Martens, J.A. Enhanced release of itraconazole from ordered mesoporous SBA-15 silica materials. Chem. Commun. 2007, 1375–1377. [Google Scholar] [CrossRef]
- Zhao, W.; Chen, H.; Li, Y.; Li, A.; Lang, M.; Shi, J. Uniform Rattle-type Hollow Magnetic Mesoporous Spheres as Drug Delivery Carriers and their Sustained-Release Property. Adv. Funct. Mater. 2008, 18, 2780–2788. [Google Scholar] [CrossRef]
- Xu, W.; Riikonen, J.; Lehto, V.P. Mesoporous systems for poorly soluble drugs. Int. J. Pharm. 2013, 453, 181–197. [Google Scholar] [CrossRef]
Sample | Type of MSM | MTZ Solvent | Ratio of MTZ to MSM | Method Applied | MTZ Content (%) | ||||
---|---|---|---|---|---|---|---|---|---|
IWI | Stir. | US | Time (h) | Filt. | |||||
SyM1 | Syloid | W | 1:33 | x | 3.1 | ||||
SyM2 | W | 1:2 | x | 2.5 | 49.9 | ||||
SyM3 | W | 1:2 | x | 2.5 | x | 8.0 | |||
SM1 | SBA | W | 1:20 | x | 4.7 | ||||
SM2 | W | 1:2 | x | 2.5 | 50.8 | ||||
SM3 | W | 1:2 | x | 2.5 | x | 8.4 | |||
SM4 | W | 1:1 | x | 24 | x | 15.6 | |||
SM5 | W | 2:1 | x | 24 | x | 18.0 | |||
SM6 | E | 4:1 | x | 72 | x | 73.3 | |||
SM7 | E | 4:1 | x | 72 | x | 74.0 |
Sample | Vtot (cm3 g−1) | PD (nm) | Vmeso (cm3 g−1) | SSA (m2 g−1) |
---|---|---|---|---|
Syloid | 1.13 | 11.3 | 1.1 | 368 |
SyM1 | 1.0 | 11.3 | 1.0 | 315 |
SyM2 | 0.6 | 10.2 | 0.6 | 198 |
SyM3 | 1.1 | 11.0 | 1.1 | 336 |
SBA-15 | 1.1 | 5.95 | 0.94 | 882 |
SM1 | 0.91 | 5.95 | 0.85 | 636 |
SM2 | 0.35 | 5.0 | 0.35 | 203 |
SM3 | 0.89 | 5.9 | 0.84 | 593 |
SM4 | 0.71 | 5.4 | 0.70 | 451 |
SM5 | 0.67 | 5.4 | 0.66 | 428 |
SM6 | 0.22 | 5 | 0.21 | 126 |
SM7 | 0.14 | 5 | 0.14 | 82 |
Sample | Covered Total Pore Volume (%) | Covered Specific Surface Area (%) |
---|---|---|
SyM1 | 15 | 14 |
SyM2 | 47 | 46 |
SyM3 | 3 | 9 |
SM1 | 17 | 28 |
SM2 | 68 | 77 |
SM3 | 19 | 33 |
SM4 | 36 | 49 |
SM5 | 39 | 51 |
SM6 | 80 | 86 |
SM7 | 87 | 91 |
Sample | O | N | C | Si | Equivalent Layer Thickness |
---|---|---|---|---|---|
Syloid * | 67.3 | 32.7 | |||
SyM1 | 63.1 | 1.3 | 4.5 | 31.1 | 0.00 |
SyM2 | 47.0 | 10.0 | 21.9 | 21.1 | 0.79 |
SyM3 | 62.4 | 1.8 | 5.8 | 30.0 | 0.03 |
SM1 | 63.2 | 1.3 | 8.0 | 27.5 | 0.08 |
SM2 | 45.7 | 11.1 | 25.8 | 17.5 | 1.00 |
SM3 | 62.2 | 2.4 | 7.8 | 27.6 | 0.09 |
SM4 | 61.2 | 2.2 | 8.5 | 28.0 | 0.11 |
SM5 | 60.3 | 2.5 | 9.3 | 27.9 | 0.14 |
SM6 | 43.6 | 12.0 | 27.8 | 16.6 | 1.15 |
SM7 | 39.3 | 13.8 | 32.3 | 14.6 | 1.50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szentmihályi, K.; Klébert, S.; May, Z.; Bódis, E.; Mohai, M.; Trif, L.; Feczkó, T.; Károly, Z. Immobilization of Metronidazole on Mesoporous Silica Materials. Pharmaceutics 2022, 14, 2332. https://doi.org/10.3390/pharmaceutics14112332
Szentmihályi K, Klébert S, May Z, Bódis E, Mohai M, Trif L, Feczkó T, Károly Z. Immobilization of Metronidazole on Mesoporous Silica Materials. Pharmaceutics. 2022; 14(11):2332. https://doi.org/10.3390/pharmaceutics14112332
Chicago/Turabian StyleSzentmihályi, Klára, Szilvia Klébert, Zoltán May, Eszter Bódis, Miklós Mohai, László Trif, Tivadar Feczkó, and Zoltán Károly. 2022. "Immobilization of Metronidazole on Mesoporous Silica Materials" Pharmaceutics 14, no. 11: 2332. https://doi.org/10.3390/pharmaceutics14112332
APA StyleSzentmihályi, K., Klébert, S., May, Z., Bódis, E., Mohai, M., Trif, L., Feczkó, T., & Károly, Z. (2022). Immobilization of Metronidazole on Mesoporous Silica Materials. Pharmaceutics, 14(11), 2332. https://doi.org/10.3390/pharmaceutics14112332