Brachytherapy Approach Using 177Lu Conjugated Gold Nanostars and Evaluation of Biodistribution, Tumor Retention, Dosimetry and Therapeutic Efficacy in Head and Neck Tumor Model
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation and Characterization of 177Lu-Labeled pAuNS (177Lu-DTPA-pAuNS)
2.2. Cell Lines
2.3. Human HNSCC Tumor-Bearing Animal Model
2.4. Analysis of Biodistribution of 177Lu-DTPA and 177Lu-DTPA-pAuNS
2.5. MicroSPECT Imaging of 177Lu-DTPA-pAuNS in Tumor-Bearing Mice
2.6. Evaluation of Therapeutic Efficacy of 177Lu-DTPA-pAuNS in Tumor-Bearing Mice
2.7. Evaluation of Therapeutic Efficacy of pAuNS-Mediated Optothermal Therapy
2.8. Dosimetric Evaluation of 177Lu-DTPA-pAuNS Absorbed Radiation Dose In Vivo
2.9. Hematoxylin and Eosin (H&E) Staining
2.10. Statistical Analysis
3. Results
3.1. Design of 177Lu Conjugated pAuNS for the Treatment of HNSCC In Vivo
3.2. Analysis of 177Lu-DTPA-pAuNS Biodistribution in an Orthotopic HNSCC Tumor Model
3.3. MicroSPECT/CT for Evaluation of Intratumoral Injection in HNSCC Tumor
3.4. Evaluation of Therapeutic Efficacy of 177Lu-DTPA-pAuNS and 177Lu-DTPA in Tumor-Bearing Mice
3.5. Increase of Survival Rate of HNSCC Tumor-Bearing Mice by 177Lu-DTPA-pAuNS
3.6. Estimation of Dosimetry in Human Organs by the Treatment of 177Lu-DTPA-pAuNS
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pulte, D.; Brenner, H. Changes in survival in head and neck cancers in the late 20th and early 21st century: A period analysis. Oncologist 2010, 15, 994–1001. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.H.; Wu, C.C.; Yuan, K.S.; Wu, A.T.H.; Wu, S.Y. Locoregionally recurrent head and neck squamous cell carcinoma: Incidence, survival, prognostic factors, and treatment outcomes. Oncotarget 2017, 8, 55600–55612. [Google Scholar] [CrossRef] [PubMed]
- Garavello, W.; Ciardo, A.; Spreafico, R.; Gaini, R.M. Risk factors for distant metastases in head and neck squamous cell carcinoma. Arch. Otolaryngol. Head Neck Surg. 2006, 132, 762–766. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.H.; Lan, H.Y.; Huang, C.H.; Tai, S.K.; Tzeng, C.H.; Kao, S.Y.; Wu, K.J.; Hung, M.C.; Yang, M.H. RAC1 activation mediates Twist1-induced cancer cell migration. Nat. Cell Biol. 2012, 14, 366–374. [Google Scholar] [CrossRef]
- Jimenez, L.; Jayakar, S.K.; Ow, T.J.; Segall, J.E. Mechanisms of Invasion in Head and Neck Cancer. Arch. Pathol. Lab. Med. 2015, 139, 1334–1348. [Google Scholar] [CrossRef]
- van der Heijden, M.; Essers, P.B.M.; Verhagen, C.V.M.; Willems, S.M.; Sanders, J.; de Roest, R.H.; Vossen, D.M.; Leemans, C.R.; Verheij, M.; Brakenhoff, R.H.; et al. Epithelial-to-mesenchymal transition is a prognostic marker for patient outcome in advanced stage HNSCC patients treated with chemoradiotherapy. Radiother. Oncol. 2020, 147, 186–194. [Google Scholar] [CrossRef]
- Chang, C.Y.; Chen, C.C.; Lin, L.T.; Chang, C.H.; Chen, L.C.; Wang, H.E.; Lee, T.W.; Lee, Y.J. PEGylated liposome-encapsulated rhenium-188 radiopharmaceutical inhibits proliferation and epithelial-mesenchymal transition of human head and neck cancer cells in vivo with repeated therapy. Cell Death Discov. 2018, 4, 100. [Google Scholar] [CrossRef]
- Ma, Y.; Zhao, G.; Qi, J.; Sun, P.; Liu, C.; Qu, P.; Chan, K.K.L. Neoadjuvant brachytherapy and chemotherapy followed by radical surgery for stage IB2 and IIA cervical cancer: A retrospective comparison with chemoirradiation. Mol. Clin. Oncol. 2018, 8, 617–622. [Google Scholar] [CrossRef]
- Sgouros, G.; Bodei, L.; McDevitt, M.R.; Nedrow, J.R. Radiopharmaceutical therapy in cancer: Clinical advances and challenges. Nat. Rev. Drug Discov. 2020, 19, 589–608. [Google Scholar] [CrossRef]
- Ritter, M.; Teudt, I.U.; Meyer, J.E.; Schroder, U.; Kovacs, G.; Wollenberg, B. Second-line treatment of recurrent HNSCC: Tumor debulking in combination with high-dose-rate brachytherapy and a simultaneous cetuximab-paclitaxel protocol. Radiat Oncol. 2016, 11, 6. [Google Scholar] [CrossRef]
- Bhalavat, R.; Pareek, V.; Chandra, M.; Nellore, L.; George, K.; Borade, D.; Kalariya, K.; Moosa, Z.; Srivastava, A.; Reddy, N.; et al. High-dose-rate interstitial brachytherapy in recurrent head and neck cancer: An effective salvage option. J. Contemp. Brachyther. 2018, 10, 425–430. [Google Scholar] [CrossRef]
- Herrero Alvarez, N.; Bauer, D.; Hernandez-Gil, J.; Lewis, J.S. Recent Advances in Radiometals for Combined Imaging and Therapy in Cancer. ChemMedChem 2021, 16, 2909–2941. [Google Scholar] [CrossRef]
- Kumar, A.; Ballal, S.; Yadav, M.P.; ArunRaj, S.T.; Haresh, K.P.; Gupta, S.; Damle, N.A.; Garg, A.; Tripathi, M.; Bal, C. 177Lu-/68Ga-PSMA Theranostics in Recurrent Glioblastoma Multiforme: Proof of Concept. Clin. Nucl. Med. 2020, 45, e512–e513. [Google Scholar] [CrossRef]
- Das, T.; Banerjee, S. Theranostic Applications of Lutetium-177 in Radionuclide Therapy. Curr. Radiopharm. 2016, 9, 94–101. [Google Scholar] [CrossRef]
- Dash, A.; Pillai, M.R.; Knapp, F.F., Jr. Production of (177)Lu for Targeted Radionuclide Therapy: Available Options. Nucl. Med. Mol. Imaging 2015, 49, 85–107. [Google Scholar] [CrossRef]
- Muller, C.; van der Meulen, N.P.; Benesova, M.; Schibli, R. Therapeutic Radiometals Beyond (177)Lu and (90)Y: Production and Application of Promising alpha-Particle, beta(-)-Particle, and Auger Electron Emitters. J. Nucl. Med. 2017, 58, 91S–96S. [Google Scholar] [CrossRef]
- Khoury, C.G.; Vo-Dinh, T. Gold Nanostars For Surface-Enhanced Raman Scattering: Synthesis, Characterization and Optimization. J. Phys. Chem. C Nanomater. Interfaces 2008, 2008, 18849–18859. [Google Scholar] [CrossRef]
- Tian, F.; Conde, J.; Bao, C.; Chen, Y.; Curtin, J.; Cui, D. Gold nanostars for efficient in vitro and in vivo real-time SERS detection and drug delivery via plasmonic-tunable Raman/FTIR imaging. Biomaterials 2016, 106, 87–97. [Google Scholar] [CrossRef]
- Chen, H.; Kou, X.; Yang, Z.; Ni, W.; Wang, J. Shape- and size-dependent refractive index sensitivity of gold nanoparticles. Langmuir 2008, 24, 5233–5237. [Google Scholar] [CrossRef]
- Hao, F.; Nehl, C.L.; Hafner, J.H.; Nordlander, P. Plasmon resonances of a gold nanostar. Nano Lett. 2007, 7, 729–732. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Zarei, M.; Hashemi, S.A.; Ramakrishna, S.; Chiang, W.H.; Lai, C.W.; Gholami, A. Gold nanostars-diagnosis, bioimaging and biomedical applications. Drug Metab. Rev. 2020, 52, 299–318. [Google Scholar] [CrossRef]
- Liu, Y.; Yuan, H.; Fales, A.M.; Register, J.K.; Vo-Dinh, T. Multifunctional gold nanostars for molecular imaging and cancer therapy. Front. Chem 2015, 3, 51. [Google Scholar] [CrossRef]
- Kim, C.; Song, H.M.; Cai, X.; Yao, J.; Wei, A.; Wang, L.V. In vivo photoacoustic mapping of lymphatic systems with plasmon-resonant nanostars. J. Mater. Chem. 2011, 21, 2841–2844. [Google Scholar] [CrossRef]
- Li, C.; Zhang, Y.; Wan, Y.; Wang, J.; Lin, J.; Li, Z.; Huang, P. STING-activating drug delivery systems: Design strategies and biomedical applications. Chin. Chem. Lett. 2021, 32, 1615–1625. [Google Scholar] [CrossRef]
- Gherman, A.M.M.; Boca, S.; Vulpoi, A.; Cristea, M.V.; Farcau, C.; Tosa, V. Plasmonic photothermal heating of gold nanostars in a real-size container: Multiscale modelling and experimental study. Nanotechnology 2020, 31, 125701. [Google Scholar] [CrossRef]
- Chen, C.C.; Chang, D.Y.; Li, J.J.; Chan, H.W.; Chen, J.T.; Chang, C.H.; Liu, R.S.; Chang, C.A.; Chen, C.L.; Wang, H.E. Investigation of biodistribution and tissue penetration of PEGylated gold nanostars and their application for photothermal cancer treatment in tumor-bearing mice. J. Mater. Chem B 2020, 8, 65–77. [Google Scholar] [CrossRef]
- Hernandez-Montoto, A.; Gorbe, M.; Llopis-Lorente, A.; Terres, J.M.; Montes, R.; Cao-Milan, R.; Diaz de Grenu, B.; Alfonso, M.; Orzaez, M.; Marcos, M.D.; et al. A NIR light-triggered drug delivery system using core-shell gold nanostars-mesoporous silica nanoparticles based on multiphoton absorption photo-dissociation of 2-nitrobenzyl PEG. Chem. Commun. 2019, 55, 9039–9042. [Google Scholar] [CrossRef]
- Yook, S.; Cai, Z.; Lu, Y.; Winnik, M.A.; Pignol, J.P.; Reilly, R.M. Intratumorally Injected 177Lu-Labeled Gold Nanoparticles: Gold Nanoseed Brachytherapy with Application for Neoadjuvant Treatment of Locally Advanced Breast Cancer. J. Nucl. Med. 2016, 57, 936–942. [Google Scholar] [CrossRef]
- Smith, G.L.; Jiang, J.; Buchholz, T.A.; Xu, Y.; Hoffman, K.E.; Giordano, S.H.; Hunt, K.K.; Smith, B.D. Benefit of adjuvant brachytherapy versus external beam radiation for early breast cancer: Impact of patient stratification on breast preservation. Int. J. Radiat. Oncol. Biol. Phys. 2014, 88, 274–284. [Google Scholar] [CrossRef][Green Version]
- Chen, M.; Huang, X.; Lai, J.; Ma, L.; Chen, T. Substituent-regulated highly X-ray sensitive Os(VI) nitrido complex for low-toxicity radiotherapy. Chin. Chem. Lett. 2021, 32, 158–161. [Google Scholar] [CrossRef]
- Ma, H.; Wu, Y.; Zhang, W.; Zhang, H.; Miao, Z.; Zhuang, C. Radiosensitization of human pancreatic cancer by piperlongumine analogues. Chin. Chem. Lett. 2021, 32, 1197–1201. [Google Scholar] [CrossRef]
- Lee, N.; Hoffman, R.; Phillips, T.L.; Xia, P.; Quivey, J.M.; Weinberg, V.; Hsu, I.C. Managing nasopharyngeal carcinoma with intracavitary brachytherapy: One institution’s 45-year experience. Brachytherapy 2002, 1, 74–82. [Google Scholar] [CrossRef]
- Yamazaki, H.; Yoshida, K.; Yoshioka, Y.; Shimizutani, K.; Furukawa, S.; Koizumi, M.; Ogawa, K. High dose rate brachytherapy for oral cancer. J. Radiat Res. 2013, 54, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Almeida, J.P.; Chen, A.L.; Foster, A.; Drezek, R. In vivo biodistribution of nanoparticles. Nanomedicine 2011, 6, 815–835. [Google Scholar] [CrossRef]
- Long, W.; Wang, J.; Xu, F.; Wu, H.; Mu, X.; Wang, J.; Sun, Y.; Zhang, X.-D. Catalytic PtPd bimetal nanocrystals with high-index facets for radiation injury repair. Chin. Chem. Lett. 2020, 31, 269–274. [Google Scholar] [CrossRef]
- Begg, A.C. Predicting recurrence after radiotherapy in head and neck cancer. Semin. Radiat. Oncol. 2012, 22, 108–118. [Google Scholar] [CrossRef]
- Lin, L.T.; Chang, C.Y.; Chang, C.H.; Wang, H.E.; Chiou, S.H.; Liu, R.S.; Lee, T.W.; Lee, Y.J. Involvement of let-7 microRNA for the therapeutic effects of Rhenium-188-embedded liposomal nanoparticles on orthotopic human head and neck cancer model. Oncotarget 2016, 7, 65782–65796. [Google Scholar] [CrossRef]
- Lin, B.Z.; Wan, S.Y.; Lin, M.Y.; Chang, C.H.; Chen, T.W.; Yang, M.H.; Lee, Y.J. Involvement of Differentially Expressed microRNAs in the PEGylated Liposome Encapsulated (188)Rhenium-Mediated Suppression of Orthotopic Hypopharyngeal Tumor. Molecules 2020, 25, 3609. [Google Scholar] [CrossRef]
Organ b | 4 h | 24 h | 48 h | 72 h |
---|---|---|---|---|
Blood | 5.43 ± 3.78 | 0.16 ± 0.03 | 0.21 ± 0.07 | 0.15 ± 0.02 |
Heart | 1.14 ± 0.65 | 0.27 ± 0.13 | 0.23 ± 0.05 | 0.17 ± 0.09 |
Lung | 2.59 ± 0.95 | 0.81 ± 0.44 | 0.62 ± 0.33 | 0.54 ± 0.27 |
Liver | 8.91 ± 4.50 | 17.68 ± 6.47 | 10.43 ± 4.01 | 7.85 ± 5.02 |
Stomach | 0.59 ± 0.10 | 0.36 ± 0.07 | 0.39 ± 0.10 | 0.31 ± 0.02 |
Small int. | 0.81 ± 0.25 | 0.61 ± 0.29 | 0.74 ± 0.38 | 0.24 ± 0.03 |
Large int. | 0.51 ± 0.17 | 0.20 ± 0.06 | 0.25 ± 0.09 | 0.15 ± 0.07 |
Spleen | 5.99 ± 1.34 | 8.49 ± 2.74 | 4.85 ± 2.77 | 2.53 ± 2.11 |
Pancreas | 0.65 ± 0.25 | 0.12 ± 0.05 | 0.13 ± 0.04 | 0.14 ± 0.03 |
Kidney | 8.97 ± 1.79 | 7.04 ± 2.07 | 4.31 ± 0.79 | 4.23 ± 1.56 |
Bone | 0.65 ± 0.09 | 0.88 ± 0.06 | 1.74 ± 0.41 | 2.20 ± 0.89 |
Muscle | 0.28 ± 0.14 | 0.07 ± 0.10 | 0.10 ± 0.05 | 0.04 ± 0.05 |
Tumor | 125.09 ± 27.26 | 120.08 ± 51.32 | 35.62 ± 6.85 | 61.44 ± 14.81 |
BM | 2.12 ± 1.35 | 0.55 ± 1.01 | 2.15 ± 0.86 | 0.00 ± 0.00 |
Brain | 0.16 ± 0.08 | 0.02 ± 0.03 | 0.02 ± 0.01 | 0.03 ± 0.04 |
Urine | 183.23 ± 81.08 | 11.41 ± 10.71 | 2.04 ± 1.10 | 2.49 ± 2.87 |
T/M | 377.17 ± 154.53 | 1667.36 ± 1827.93 | 354.16 ± 152.19 | 1499.10 ± 279.39 |
T/B | 23.02 ± 41.25 | 747.62 ± 879.15 | 169.42 ± 71.88 | 416.33 ± 110.57 |
Target Organ b | Absorbed Dose (mSv/MBq) |
---|---|
Adrenals | 4.92 × 10−3 |
Brain | 2.34 × 10−3 |
Breasts | 1.50 × 10−3 |
Gallbladder Wall | 7.43 × 10−3 |
LLI Wall | 5.06 × 10−3 |
Small Intestine | 5.62 × 10−3 |
Stomach Wall | 7.17 × 10−3 |
ULI Wall | 2.52 × 10−3 |
Heart Wall | 2.22 × 10−2 |
Kidneys | 1.35 × 10−1 |
Liver | 3.29 × 10−1 |
Lungs | 2.61 × 10−2 |
Muscle | 3.53 × 10−3 |
Ovaries | 1.48 × 10−3 |
Pancreas | 1.18 × 10−2 |
Red Marrow | 2.13 × 10−3 |
Skin | 1.25 × 10−3 |
Spleen | 1.38 × 10−1 |
Testes | 9.93 × 10−4 |
Thymus | 1.64 × 10−3 |
Thyroid | 1.22 × 10−3 |
Urinary Bladder Wall | 1.14 × 10−3 |
Uterus | 1.38 × 10−3 |
Tumor (0.5 g) c | 3.55 × 100 |
Total Body | 1.69 × 10−2 |
Effective Dose | 2.51 × 10−2 |
Target Organ b | Absorbed Dose (mSv/MBq) |
---|---|
Adrenals | 9.06 × 10−2 |
Brain | 3.86 × 10−3 |
Breasts | 7.09 × 10−2 |
Gallbladder Wall | 1.08 × 10−1 |
LLI Wall | 7.77 × 10−2 |
Small Intestine | 8.76 × 10−2 |
Stomach Wall | 8.14 × 10−2 |
ULI Wall | 8.02 × 10−2 |
Heart Wall | 2.14 × 10−2 |
Kidneys | 1.60 × 10−1 |
Liver | 1.97 × 100 |
Lungs | 6.37 × 10−2 |
Muscle | 1.14 × 10−2 |
Ovaries | 7.40 × 10−2 |
Pancreas | 5.01 × 10−2 |
Red Marrow | 5.71 × 10−2 |
Skin | 6.83 × 10−2 |
Spleen | 1.37 × 100 |
Testes | 6.95 × 10−2 |
Thymus | 7.19 × 10−2 |
Thyroid | 7.03 × 10−2 |
Urinary Bladder Wall | 7.23 × 10−2 |
Uterus | 7.43 × 10−2 |
Tumor (0.5 g) c | 3.82 × 10−2 |
Total Body | 1.31 × 10−1 |
Effective Dose | 1.71 × 10−1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, M.-Y.; Hsieh, H.-H.; Chen, J.-C.; Chen, C.-L.; Sheu, N.-C.; Huang, W.-S.; Ho, S.-Y.; Chen, T.-W.; Lee, Y.-J.; Wu, C.-Y. Brachytherapy Approach Using 177Lu Conjugated Gold Nanostars and Evaluation of Biodistribution, Tumor Retention, Dosimetry and Therapeutic Efficacy in Head and Neck Tumor Model. Pharmaceutics 2021, 13, 1903. https://doi.org/10.3390/pharmaceutics13111903
Lin M-Y, Hsieh H-H, Chen J-C, Chen C-L, Sheu N-C, Huang W-S, Ho S-Y, Chen T-W, Lee Y-J, Wu C-Y. Brachytherapy Approach Using 177Lu Conjugated Gold Nanostars and Evaluation of Biodistribution, Tumor Retention, Dosimetry and Therapeutic Efficacy in Head and Neck Tumor Model. Pharmaceutics. 2021; 13(11):1903. https://doi.org/10.3390/pharmaceutics13111903
Chicago/Turabian StyleLin, Min-Ying, Hsin-Hua Hsieh, Jyh-Cheng Chen, Chuan-Lin Chen, Nin-Chu Sheu, Wen-Sheng Huang, Shinn-Ying Ho, Ting-Wen Chen, Yi-Jang Lee, and Chun-Yi Wu. 2021. "Brachytherapy Approach Using 177Lu Conjugated Gold Nanostars and Evaluation of Biodistribution, Tumor Retention, Dosimetry and Therapeutic Efficacy in Head and Neck Tumor Model" Pharmaceutics 13, no. 11: 1903. https://doi.org/10.3390/pharmaceutics13111903
APA StyleLin, M.-Y., Hsieh, H.-H., Chen, J.-C., Chen, C.-L., Sheu, N.-C., Huang, W.-S., Ho, S.-Y., Chen, T.-W., Lee, Y.-J., & Wu, C.-Y. (2021). Brachytherapy Approach Using 177Lu Conjugated Gold Nanostars and Evaluation of Biodistribution, Tumor Retention, Dosimetry and Therapeutic Efficacy in Head and Neck Tumor Model. Pharmaceutics, 13(11), 1903. https://doi.org/10.3390/pharmaceutics13111903