Photodynamic Therapy Targeting Macrophages Using IRDye700DX-Liposomes Decreases Experimental Arthritis Development
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Liposome Preparation and Characterization
2.3. In Vitro Photodynamic Therapy
2.4. Collagen-Induced Arthritis
2.5. Biodistribution
2.6. Microscopic Scoring of Inflammation
2.7. In Vivo Photodynamic Therapy
2.8. Statistical Analysis
3. Results
3.1. Fluorescence and Absorption of IRDye700DX-Loaded Liposomes Is Similar to Free IRDye700DX
3.2. PDT Using 700DX-Liposomes Induces Cell Death in a Light Dose Dependent Manner
3.3. Liposomal Accumulation in the Arthritic Joint Is Not Negatively Affected by Loading with IRDye700DX
3.4. PDT Using 700DX-Loaded Liposomes Ameliorates Arthritis Progression
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Silman, A.J.; Pearson, J.E. Epidemiology and genetics of rheumatoid arthritis. Arthritis Res. 2002, 4 (Suppl. 3), S265–S272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smolen, J.S.; Aletaha, D.; McInnes, I.B. Rheumatoid arthritis. Lancet 2016, 388, 2023–2038. [Google Scholar] [CrossRef]
- Buch, M.H. Defining refractory rheumatoid arthritis. Ann. Rheum. Dis. 2018, 77, 966–969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mosser, D.M.; Hamidzadeh, K.; Goncalves, R. Macrophages and the maintenance of homeostasis. Cell Mol. Immunol. 2020, 18, 579–587. [Google Scholar] [CrossRef] [PubMed]
- Kinne, R.W.; Brauer, R.; Stuhlmuller, B.; Palombo-Kinne, E.; Burmester, G.R. Macrophages in rheumatoid arthritis. Arthritis Res. 2000, 2, 189–202. [Google Scholar] [CrossRef] [Green Version]
- Udalova, I.A.; Mantovani, A.; Feldmann, M. Macrophage heterogeneity in the context of rheumatoid arthritis. Nat. Rev. Rheumatol. 2016, 12, 472–485. [Google Scholar] [CrossRef]
- Lam, J.; Takeshita, S.; Barker, J.E.; Kanagawa, O.; Ross, F.P.; Teitelbaum, S.L. TNF-alpha induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J. Clin. Invest. 2000, 106, 1481–1488. [Google Scholar] [CrossRef] [PubMed]
- Ahsan, F.; Rivas, I.P.; Khan, M.A.; Torres Suarez, A.I. Targeting to macrophages: Role of Physicochemical properties of particulate carriers—liposomes and microspheres—On the phagocytosis by macrophages. J. Control. Release 2002, 79, 29–40. [Google Scholar] [CrossRef]
- Van Rooijen, N.; Sanders, A. Liposome mediated depletion of macrophages: Mechanism of action, preparation of liposomes and applications. J. Immunol. Methods 1994, 174, 83–93. [Google Scholar] [CrossRef]
- van der Geest, T.; Laverman, P.; Gerrits, D.; Franssen, G.M.; Metselaar, J.M.; Storm, G.; Boerman, O.C. Comparison of three remote radiolabelling methods for long-circulating liposomes. J. Control. Release 2015, 220, 239–244. [Google Scholar] [CrossRef] [PubMed]
- van der Geest, T.; Laverman, P.; Gerrits, D.; Walgreen, B.; Helsen, M.M.; Klein, C.; Nayak, T.K.; Storm, G.; Metselaar, J.M.; Koenders, M.I.; et al. Liposomal Treatment of Experimental Arthritis Can Be Monitored Noninvasively with a Radiolabeled Anti-Fibroblast Activation Protein Antibody. J. Nucl. Med. 2017, 58, 151–155. [Google Scholar] [CrossRef] [Green Version]
- Van Lent, P.L.; Van den Hoek, A.E.; Van den Bersselaar, L.A.; Spanjaards, M.F.; Van Rooijen, N.; Dijkstra, C.D.; Van de Putte, L.B.; Van den Berg, W.B. In vivo role of phagocytic synovial lining cells in onset of experimental arthritis. Am. J. Pathol. 1993, 143, 1226–1237. [Google Scholar]
- van Lent, P.L.; van den Hoek, A.E.; van den Bersselaar, L.; van Rooijen, N.; van den Berg, W.B. Role of phagocytic synovial lining cells in experimental arthritis. Agents Actions 1993, 38, C92–C94. [Google Scholar] [CrossRef]
- Richards, P.J.; Williams, A.S.; Goodfellow, R.M.; Williams, B.D. Liposomal clodronate eliminates synovial macrophages, reduces inflammation and ameliorates joint destruction in antigen-induced arthritis. Rheumatology 1999, 38, 818–825. [Google Scholar] [CrossRef] [Green Version]
- Barrera, P.; Blom, A.; van Lent, P.L.; van Bloois, L.; Beijnen, J.H.; van Rooijen, N.; de Waal Malefijt, M.C.; van de Putte, L.B.; Storm, G.; van den Berg, W.B. Synovial macrophage depletion with clodronate-containing liposomes in rheumatoid arthritis. Arthritis Rheum. 2000, 43, 1951–1959. [Google Scholar] [CrossRef] [Green Version]
- Dorst, D.N.; Rijpkema, M.; Boss, M.; Walgreen, B.; Helsen, M.M.A.; Bos, D.L.; Brom, M.; Klein, C.; Laverman, P.; van der Kraan, P.M.; et al. Targeted photodynamic therapy selectively kills activated fibroblasts in experimental arthritis. Rheumatology 2020, 59, 3952–3960. [Google Scholar] [CrossRef]
- Bartneck, M.; Scheyda, K.M.; Warzecha, K.T.; Rizzo, L.Y.; Hittatiya, K.; Luedde, T.; Storm, G.; Trautwein, C.; Lammers, T.; Tacke, F. Fluorescent cell-traceable dexamethasone-loaded liposomes for the treatment of inflammatory liver diseases. Biomaterials 2015, 37, 367–382. [Google Scholar] [CrossRef]
- Deshantri, A.K.; Fens, M.H.; Ruiter, R.W.J.; Metselaar, J.M.; Storm, G.; van Bloois, L.; Varela-Moreira, A.; Mandhane, S.N.; Mutis, T.; Martens, A.C.M.; et al. Liposomal dexamethasone inhibits tumor growth in an advanced human-mouse hybrid model of multiple myeloma. J. Control. Release 2019, 296, 232–240. [Google Scholar] [CrossRef]
- Theek, B.; Baues, M.; Ojha, T.; Mockel, D.; Veettil, S.K.; Steitz, J.; van Bloois, L.; Storm, G.; Kiessling, F.; Lammers, T. Sonoporation enhances liposome accumulation and penetration in tumors with low EPR. J. Control. Release 2016, 231, 77–85. [Google Scholar] [CrossRef] [Green Version]
- de Boer, E.; Warram, J.M.; Hartmans, E.; Bremer, P.J.; Bijl, B.; Crane, L.M.; Nagengast, W.B.; Rosenthal, E.L.; van Dam, G.M. A standardized light-emitting diode device for photoimmunotherapy. J. Nucl. Med. 2014, 55, 1893–1898. [Google Scholar] [CrossRef] [Green Version]
- Joosten, L.A.B.; Lubberts, E.; Durez, P.; Helsen, M.M.A.; Jacobs, M.J.M.; Goldman, M.; vandenBerg, W.B. Role of interleukin-4 and interleukin-10 in murine collagen-induced arthritis—Protective effect of interleukin-4 and interleukin-10 treatment on cartilage destruction. Arthritis Rheum. 1997, 40, 249–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laverman, P.; van der Geest, T.; Terry, S.Y.; Gerrits, D.; Walgreen, B.; Helsen, M.M.; Nayak, T.K.; Freimoser-Grundschober, A.; Waldhauer, I.; Hosse, R.J.; et al. Immuno-PET and Immuno-SPECT of Rheumatoid Arthritis with Radiolabeled Anti-Fibroblast Activation Protein Antibody Correlates with Severity of Arthritis. J. Nucl. Med. 2015, 56, 778–783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayer, S.; Vervoordeldonk, M.J.; Denis, M.C.; Armaka, M.; Hoffmann, M.; Backlund, J.; Nandakumar, K.S.; Niederreiter, B.; Geka, C.; Fischer, A.; et al. ‘SMASH’ recommendations for standardised microscopic arthritis scoring of histological sections from inflammatory arthritis animal models. Ann. Rheum. Dis. 2021, 80, 714–726. [Google Scholar] [CrossRef]
- Van Lent, P.L.; Van den Bersselaar, L.A.M.; Holthuyzen, A.E.M.; Van Rooijen, N.; Van de Putte, L.B.A.; Van den Berg, W.B. Phagocytic synovial lining cells in experimentally induced chronic arthritis: Down-regulation of synovitis by CL2MDP-liposomes. Rheumatol. Int. 1994, 13, 221–228. [Google Scholar] [CrossRef]
- Funke, B.; Jungel, A.; Schastak, S.; Wiedemeyer, K.; Emmrich, F.; Sack, U. Transdermal photodynamic therapy—A treatment option for rheumatic destruction of small joints? Lasers Surg. Med. 2006, 38, 866–874. [Google Scholar] [CrossRef]
- Ozen, G.; Pedro, S.; England, B.R.; Mehta, B.; Wolfe, F.; Michaud, K. Risk of Serious Infection in Patients With Rheumatoid Arthritis Treated With Biologic Versus Nonbiologic Disease-Modifying Antirheumatic Drugs. ACR Open Rheumatol. 2019, 1, 424–432. [Google Scholar] [CrossRef] [Green Version]
- Doran, M.F.; Crowson, C.S.; Pond, G.R.; O’Fallon, W.M.; Gabriel, S.E. Frequency of infection in patients with rheumatoid arthritis compared with controls: A population-based study. Arthritis Rheum. 2002, 46, 2287–2293. [Google Scholar] [CrossRef]
- Kim, M.M.; Darafsheh, A. Light Sources and Dosimetry Techniques for Photodynamic Therapy. Photochem. Photobiol. 2020, 96, 280–294. [Google Scholar] [CrossRef] [Green Version]
- Ash, C.; Dubec, M.; Donne, K.; Bashford, T. Effect of wavelength and beam width on penetration in light-tissue interaction using computational methods. Lasers Med. Sci. 2017, 32, 1909–1918. [Google Scholar] [CrossRef]
- Kawai, Y.; Smedsrod, B.; Elvevold, K.; Wake, K. Uptake of lithium carmine by sinusoidal endothelial and Kupffer cells of the rat liver: New insights into the classical vital staining and the reticulo-endothelial system. Cell Tissue Res. 1998, 292, 395–410. [Google Scholar] [CrossRef]
- Rijpkema, M.; Bos, D.L.; Cornelissen, A.S.; Franssen, G.M.; Goldenberg, D.M.; Oyen, W.J.; Boerman, O.C. Optimization of Dual-Labeled Antibodies for Targeted Intraoperative Imaging of Tumors. Mol. Imaging 2015, 14, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Boswell, C.A.; Tesar, D.B.; Mukhyala, K.; Theil, F.P.; Fielder, P.J.; Khawli, L.A. Effects of charge on antibody tissue distribution and pharmacokinetics. Bioconjug. Chem. 2010, 21, 2153–2163. [Google Scholar] [CrossRef] [PubMed]
- van Doeveren, T.E.M.; Bouwmans, R.; Wassenaar, N.P.M.; Schreuder, W.H.; van Alphen, M.J.A.; van der Heijden, F.; Tan, I.B.; Karakullukcu, M.B.; van Veen, R.L.P. On the Development of a Light Dosimetry Planning Tool for Photodynamic Therapy in Arbitrary Shaped Cavities: Initial Results. Photochem. Photobiol. 2020, 96, 405–416. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dorst, D.N.; Boss, M.; Rijpkema, M.; Walgreen, B.; Helsen, M.M.A.; Bos, D.L.; van Bloois, L.; Storm, G.; Brom, M.; Laverman, P.; et al. Photodynamic Therapy Targeting Macrophages Using IRDye700DX-Liposomes Decreases Experimental Arthritis Development. Pharmaceutics 2021, 13, 1868. https://doi.org/10.3390/pharmaceutics13111868
Dorst DN, Boss M, Rijpkema M, Walgreen B, Helsen MMA, Bos DL, van Bloois L, Storm G, Brom M, Laverman P, et al. Photodynamic Therapy Targeting Macrophages Using IRDye700DX-Liposomes Decreases Experimental Arthritis Development. Pharmaceutics. 2021; 13(11):1868. https://doi.org/10.3390/pharmaceutics13111868
Chicago/Turabian StyleDorst, Daphne N., Marti Boss, Mark Rijpkema, Birgitte Walgreen, Monique M. A. Helsen, Desirée L. Bos, Louis van Bloois, Gerrit Storm, Maarten Brom, Peter Laverman, and et al. 2021. "Photodynamic Therapy Targeting Macrophages Using IRDye700DX-Liposomes Decreases Experimental Arthritis Development" Pharmaceutics 13, no. 11: 1868. https://doi.org/10.3390/pharmaceutics13111868
APA StyleDorst, D. N., Boss, M., Rijpkema, M., Walgreen, B., Helsen, M. M. A., Bos, D. L., van Bloois, L., Storm, G., Brom, M., Laverman, P., van der Kraan, P. M., Buitinga, M., Koenders, M. I., & Gotthardt, M. (2021). Photodynamic Therapy Targeting Macrophages Using IRDye700DX-Liposomes Decreases Experimental Arthritis Development. Pharmaceutics, 13(11), 1868. https://doi.org/10.3390/pharmaceutics13111868