An Overview of Antibody Conjugated Polymeric Nanoparticles for Breast Cancer Therapy
Abstract
:1. Introduction
2. Polymeric Antibody Conjugated Nanoparticles (ACNPs) to Improve Treatments in Breast Cancer
3. Conjugation Strategies for ACNP Generation
3.1. Adsorption
3.2. Covalent Strategies
3.2.1. Chemistry of Carbodiimide
3.2.2. Maleimide Chemistry
3.2.3. Click Chemistry
3.3. Binding by Adapter Molecules
4. Challenges for Clinical Implementation
5. Conclusions and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yeo, S.K.; Guan, J.L. Breast Cancer: Multiple Subtypes within a Tumor? Trends Cancer 2017, 3, 753–760. [Google Scholar] [CrossRef] [PubMed]
- Chau, C.H.; Steeg, P.S.; Figg, W.D. Antibody–drug conjugates for cancer. Lancet 2019, 394, 793–804. [Google Scholar] [CrossRef]
- Chudasama, V.; Maruani, A.; Caddick, S. Recent advances in the construction of antibody-drug conjugates. Nat. Chem. 2016, 8, 114–119. [Google Scholar] [CrossRef] [PubMed]
- Khongorzul, P.; Ling, C.J.; Khan, F.U.; Ihsan, A.U.; Zhang, J. Antibody-drug conjugates: A comprehensive review. Mol. Cancer Res. 2020, 18, 3–19. [Google Scholar] [CrossRef] [Green Version]
- Thomas, A.; Teicher, B.A.; Hassan, R. Antibody–drug conjugates for cancer therapy. Lancet Oncol. 2016, 17, e254–e262. [Google Scholar] [CrossRef]
- Mi, P.; Cabral, H.; Kataoka, K. Ligand-Installed Nanocarriers toward Precision Therapy. Adv. Mater. 2020, 32, 1902604. [Google Scholar] [CrossRef]
- Heath, T.D.; Fraley, R.T.; Papahdjopoulos, D. Antibody targeting of liposomes: Cell specificity obtained by conjugation of F (ab’) 2 to vesicle surface. Science 1980, 210, 539–541. [Google Scholar] [CrossRef]
- Leserman, L.D.; Barbet, J.; Kourilsky, F.; Weinstein, J.N. Targeting to cells of fluorescent liposomes covalently coupled with monoclonal antibody or protein A. Nature 1980, 288, 602–604. [Google Scholar] [CrossRef]
- Shi, J.; Kantoff, P.W.; Wooster, R.; Farokhzad, O.C. Cancer nanomedicine: Progress, challenges and opportunities. Nat. Rev. Cancer 2017, 17, 20–37. [Google Scholar] [CrossRef]
- Mamot, C.; Ritschard, R.; Wicki, A.; Stehle, G.; Dieterle, T.; Bubendorf, L.; Hilker, C.; Deuster, S.; Herrmann, R.; Rochlitz, C. Tolerability, safety, pharmacokinetics, and efficacy of doxorubicin-loaded anti-EGFR immunoliposomes in advanced solid tumours: A phase 1 dose-escalation study. Lancet Oncol. 2012, 13, 1234–1241. [Google Scholar] [CrossRef]
- Johnston, M.C.; Scott, C.J. Antibody Conjugated Nanoparticles as a Novel Form of Antibody Drug Conjugate Chemotherapy. Drug Discov. Today: Technol. 2018, 30, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Chari, R.V.J. Targeted cancer therapy: Conferring specificity to cytotoxic drugs. Acc. Chem. Res. 2008, 41, 98–107. [Google Scholar] [CrossRef] [PubMed]
- Panowski, S.; Bhakta, S.; Raab, H.; Polakis, P.; Junutula, J.R. Site-specific antibody drug conjugates for cancer therapy. MAbs 2014, 6, 34–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pachence, J.M.; Bohrer, M.P.; Kohn, J. Biodegradable polymers. Princ. Tissue Eng. 2007, 3, 323–339. [Google Scholar] [CrossRef]
- Casalini, T.; Perale, G. Types of bioresorbable polymers for medical applications. In Durability and Reliability of Medical Polymers; Elsevier: Amsterdam, The Netherlands, 2012; pp. 3–29. [Google Scholar] [CrossRef]
- Seth, A.; Heo, M.B.; Lim, Y.T. Poly (γ-glutamic acid) based combination of water-insoluble paclitaxel and TLR7 agonist for chemo-immunotherapy. Biomaterials 2014, 35, 7992–8001. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, J.; Mao, H.Q.; Leong, K.W. Polyphosphoesters in drug and gene delivery. Adv. Drug Deliv. Rev. 2003, 55, 483–499. [Google Scholar] [CrossRef]
- Fusser, M.; Øverbye, A.; Pandya, A.D.; Mørch, Ý.; Borgos, S.E.; Kildal, W.; Snipstad, S.; Sulheim, E.; Fleten, K.G.; Askautrud, H.A.; et al. Cabazitaxel-loaded Poly(2-ethylbutyl cyanoacrylate) nanoparticles improve treatment efficacy in a patient derived breast cancer xenograft. J. Control. Release 2019, 293, 183–192. [Google Scholar] [CrossRef]
- Martínez, J.; Martínez De Sarasa Buchaca, M.; De La Cruz-Martínez, F.; Alonso-Moreno, C.; Sánchez-Barba, L.F.; Fernandez-Baeza, J.; Rodríguez, A.M.; Rodríguez-Diéguez, A.; Castro-Osma, J.A.; Otero, A.; et al. Versatile organoaluminium catalysts based on heteroscorpionate ligands for the preparation of polyesters. Dalton Trans. 2018, 47, 7471–7479. [Google Scholar] [CrossRef]
- Martínez, J.; Castro-Osma, J.A.; Alonso-Moreno, C.; Rodríguez-Diéguez, A.; North, M.; Otero, A.; Lara-Sánchez, A. One-Component Aluminum (Heteroscorpionate) Catalysts for the Formation of Cyclic Carbonates from Epoxides and Carbon Dioxide. ChemSusChem 2017, 10, 1175–1185. [Google Scholar] [CrossRef]
- Nanotechnology. In Nano-and Microscale Drug Delivery Systems: Design and Fabrication; Elsevier: Amsterdam, The Netherlands, 2017; pp. 17–32. [CrossRef]
- Kamaly, N.; Xiao, Z.; Valencia, P.M.; Radovic-Moreno, A.F.; Farokhzad, O.C. Targeted Polymeric Therapeutic Nanoparticles: Design, Development and Clinical Translation. Chem. Soc. Rev. 2012, 41, 2971–3010. [Google Scholar] [CrossRef]
- Kamaly, N.; Yameen, B.; Wu, J.; Farokhzad, O.C. Degradable Controlled-Release Polymers and Polymeric Nanoparticles: Mechanisms of Controlling Drug Release. Chem. Rev. 2016, 116, 2602–2663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duncan, R.; Gaspar, R. Nanomedicine(s) under the Microscope. Mol. Pharm. 2011, 8, 2101–2141. [Google Scholar] [CrossRef] [PubMed]
- Malaspina, D.C.; Longo, G.; Szleifer, I. Behavior of Ligand Binding Assays with Crowded Surfaces: Molecular Model of Antigen Capture by Antibody-Conjugated Nanoparticles. PLoS ONE 2017, 12, e0185518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steichen, S.D.; Caldorera-Moore, M.; Peppas, N.A. A Review of Current Nanoparticle and Targeting Moieties for the Delivery of Cancer Therapeutics. Eur. J. Pharm. Sci. 2013, 48, 416–427. [Google Scholar] [CrossRef] [Green Version]
- Danhier, F.; Feron, O.; Préat, V. To Exploit the Tumor Microenvironment: Passive and Active Tumor Targeting of Nanocarriers for Anti-Cancer Drug Delivery. J. Control. Release 2010, 148, 135–146. [Google Scholar] [CrossRef] [PubMed]
- Bawa, R. FDA and Nanotech: Baby Steps Lead to Regulatory Uncertainty. In Bio-Nanotechnology; Blackwell Publishing Ltd.: Oxford, UK, 2013; pp. 720–732. [Google Scholar] [CrossRef]
- Nakamura, Y.; Mochida, A.; Choyke, P.L.; Kobayashi, H. Nanodrug Delivery: Is the Enhanced Permeability and Retention Effect Sufficient for Curing Cancer? Bioconjugate Chem. 2016, 27, 2225–2238. [Google Scholar] [CrossRef]
- Wicki, A.; Witzigmann, D.; Balasubramanian, V.; Huwyler, J. Nanomedicine in Cancer Therapy: Challenges, Opportunities, and Clinical Applications. J. Control. Release 2015, 200, 138–157. [Google Scholar] [CrossRef]
- Nichols, J.W.; Bae, Y.H. Odyssey of a Cancer Nanoparticle: From Injection Site to Site of Action. Nano Today 2012, 7, 606–618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xin, Y.; Yin, M.; Zhao, L.; Meng, F.; Luo, L. Recent Progress on Nanoparticle-Based Drug Delivery Systems for Cancer Therapy. Cancer Biol. Med. 2017, 14, 228–241. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.; Guan, J.; Qian, J.; Zhan, C. Peptide Ligand-Mediated Targeted Drug Delivery of Nanomedicines. Biomater. Sci. 2019, 7, 461–471. [Google Scholar] [CrossRef] [PubMed]
- Allen, T.M. Ligand-Targeted Therapeutics in Anticancer Therapy. Nat. Rev. Cancer 2002, 2, 750–763. [Google Scholar] [CrossRef] [PubMed]
- Stefanick, J.F.; Omstead, D.T.; Kiziltepe, T.; Bilgicer, B. Dual-Receptor Targeted Strategy in Nanoparticle Design Achieves Tumor Cell Selectivity through Cooperativity. Nanoscale 2019, 11, 4414–4427. [Google Scholar] [CrossRef] [PubMed]
- Ud Din, F.; Aman, W.; Ullah, I.; Qureshi, O.S.; Mustapha, O.; Shafique, S.; Zeb, A. Effective Use of Nanocarriers as Drug Delivery Systems for the Treatment of Selected Tumors. Int. J. Nanomed. 2017, 12, 7291–7309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pirollo, K.F.; Chang, E.H. Does a Targeting Ligand Influence Nanoparticle Tumor Localization or Uptake? Trends Biotechnol. 2008, 26, 552–558. [Google Scholar] [CrossRef]
- Bareford, L.M.; Swaan, P.W. Endocytic Mechanisms for Targeted Drug Delivery. Adv. Drug Deliv. Rev. 2007, 59, 748–758. [Google Scholar] [CrossRef] [Green Version]
- Bregoli, L.; Movia, D.; Gavigan-Imedio, J.D.; Lysaght, J.; Reynolds, J.; Prina-Mello, A. Nanomedicine Applied to Translational Oncology: A Future Perspective on Cancer Treatment. Nanomed. Nanotechnol. Biol. Med. 2016, 12, 81–103. [Google Scholar] [CrossRef] [Green Version]
- Farahavar, G.; Abolmaali, S.S.; Gholijani, N.; Nejatollahi, F. Antibody-Guided Nanomedicines as Novel Breakthrough Therapeutic, Diagnostic and Theranostic Tools. Biomater. Sci. 2019, 7, 4000–4016. [Google Scholar] [CrossRef]
- Zhang, B.; Hu, Y.; Pang, Z. Modulating the Tumor Microenvironment to Enhance Tumor Nanomedicine Delivery. Front. Pharmacol. 2017, 8, 952. [Google Scholar] [CrossRef]
- Xenaki, K.T.; Oliveira, S.; van Bergen en Henegouwen, P.M.P. Antibody or Antibody Fragments: Implications for Molecular Imaging and Targeted Therapy of Solid Tumors. Front. Immunol. 2017, 8, 1287. [Google Scholar] [CrossRef]
- Quarta, A.; Manna, L.; Pellegrino, T. Antibody-Functionalized Inorganic NPs: Mimicking Nature for Targeted Diagnosis and Therapy. In Bioinspired Approaches for Human-Centric Technologies; Springer International Publishing: New York, NY, USA, 2014; pp. 1–28. [Google Scholar] [CrossRef]
- Oliveira, J.P.; Prado, A.R.; Keijok, W.J.; Antunes, P.W.P.; Yapuchura, E.R.; Guimarães, M.C.C. Impact of Conjugation Strategies for Targeting of Antibodies in Gold Nanoparticles for Ultrasensitive Detection of 17β-Estradiol. Sci. Rep. 2019, 9, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Cardoso, M.M.; Peça, I.N.; Roque, A.C.A. Antibody-Conjugated Nanoparticles for Therapeutic Applications. Curr. Med. Chem. 2012, 19, 3103–3127. [Google Scholar] [CrossRef] [PubMed]
- Liébana, S.; Drago, G.A. Bioconjugation and Stabilisation of Biomolecules in Biosensors. Essays Biochem. 2016, 60, 59–68. [Google Scholar] [CrossRef] [Green Version]
- Tallawi, M.; Rosellini, E.; Barbani, N.; Grazia Cascone, M.; Rai, R.; Saint-Pierre, G.; Boccaccini, A.R. Strategies for the Chemical and Biological Functionalization of Scaffolds for Cardiac Tissue Engineering: A Review. J. R. Soc. Interface 2015, 12, 20150254. [Google Scholar] [CrossRef] [PubMed]
- Goossens, J.; Sein, H.; Lu, S.; Radwanska, M.; Muyldermans, S.; Sterckx, Y.G.J.; Magez, S. Functionalization of Gold Nanoparticles with Nanobodies through Physical Adsorption. Anal. Methods 2017, 9, 3430–3440. [Google Scholar] [CrossRef]
- Marques, A.C.; Costa, P.J.; Velho, S.; Amaral, M.H. Functionalizing Nanoparticles with Cancer-Targeting Antibodies: A Comparison of Strategies. J. Control. Release 2020, 320, 180–200. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.S.; Jang, W.S.; Park, J.S. Comparison of Adsorption and Conjugation of Herceptin on Poly(Lactic--Glycolic Acid) Nanoparticles–Effect on Cell Internalization in Breast Cancer Cells. Mater. Sci. Eng. C 2018, 92, 496–507. [Google Scholar] [CrossRef]
- Parracino, M.A.; Martín, B.; Grazú, V. State-of-the-Art Strategies for the Biofunctionalization of Photoactive Inorganic Nanoparticles for Nanomedicine. In Photoactive Inorganic Nanoparticles: Surface Composition and Nanosystem Functionality; Elsevier: Amsterdam, The Netherlands, 2019; pp. 211–257. [Google Scholar] [CrossRef]
- Sivaram, A.J.; Wardiana, A.; Howard, C.B.; Mahler, S.M.; Thurecht, K.J. Recent Advances in the Generation of Antibody-Nanomaterial Conjugates. Adv. Healthc. Mater. 2018, 7, 1700607. [Google Scholar] [CrossRef]
- Polo, E.; Puertas, S.; Moros, M.; Batalla, P.; Guisán, J.M.; De La Fuente, J.M.; Grazú, V. Tips for the Functionalization of Nanoparticles with Antibodies. Methods Mol. Biol. 2013, 1051, 149–163. [Google Scholar] [CrossRef]
- Fager, C.; Olsson, E. Understanding and Utilizing the Biomolecule/Nanosystems Interface: Soft Materials and Coatings for Controlled Drug Release. In Nanotechnologies in Preventive and Regenerative Medicine: An Emerging Big Picture; Elsevier Inc.: Amsterdam, The Netherlands, 2017; pp. 244–260. [Google Scholar] [CrossRef]
- Saha, B.; Songe, P.; Evers, T.H.; Prins, M.W.J. The Influence of Covalent Immobilization Conditions on Antibody Accessibility on Nanoparticles. Analyst 2017, 142, 4247–4256. [Google Scholar] [CrossRef] [Green Version]
- Yao, V.J.; D’Angelo, S.; Butler, K.S.; Theron, C.; Smith, T.L.; Marchiò, S.; Gelovani, J.G.; Sidman, R.L.; Dobroff, A.S.; Brinker, C.J.; et al. Ligand-Targeted Theranostic Nanomedicines against Cancer. J. Control. Release 2016, 240, 267–286. [Google Scholar] [CrossRef] [Green Version]
- Conde, J.; Dias, J.T.; Grazú, V.; Moros, M.; Baptista, P.V.; de la Fuente, J.M. Revisiting 30 Years of Biofunctionalization and Surface Chemistry of Inorganic Nanoparticles for Nanomedicine. Front. Chem. 2014, 2, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, M.; Rusling, J.F.; Dixit, C.K. Site-Selective Orientated Immobilization of Antibodies and Conjugates for Immunodiagnostics Development. Methods 2017, 116, 95–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.; Lee, C.H.; Park, J.; Seo, S.; Lim, E.K.; Song, Y.J.; Suh, J.S.; Yoon, H.G.; Huh, Y.M.; Haam, S. Antibody Conjugated Magnetic PLGA Nanoparticles for Diagnosis and Treatment of Breast Cancer. J. Mater. Chem. 2007, 17, 2695–2699. [Google Scholar] [CrossRef]
- Mi, Y.; Liu, X.; Zhao, J.; Ding, J.; Feng, S.S. Multimodality Treatment of Cancer with Herceptin Conjugated, Thermomagnetic Iron Oxides and Docetaxel Loaded Nanoparticles of Biodegradable Polymers. Biomaterials 2012, 33, 7519–7529. [Google Scholar] [CrossRef]
- Sun, B.; Feng, S.S. Trastuzumab-Functionalized Nanoparticles of Biodegradable Copolymers for Targeted Delivery of Docetaxel. Nanomedicine 2009, 4, 431–445. [Google Scholar] [CrossRef]
- Vivek, R.; Thangam, R.; Nipunbabu, V.; Rejeeth, C.; Sivasubramanian, S.; Gunasekaran, P.; Muthuchelian, K.; Kannan, S. Multifunctional HER2-Antibody Conjugated Polymeric Nanocarrier-Based Drug Delivery System for Multi-Drug-Resistant Breast Cancer Therapy. ACS Appl. Mater. Interfaces 2014, 6, 6469–6480. [Google Scholar] [CrossRef]
- Kumar, A.; Lale, S.V.; Alex, M.R.A.; Choudhary, V.; Koul, V. Folic Acid and Trastuzumab Conjugated Redox Responsive Random Multiblock Copolymeric Nanocarriers for Breast Cancer Therapy: In-Vitro and in-Vivo Studies. Colloids Surf. B Biointerfaces 2017, 149, 369–378. [Google Scholar] [CrossRef]
- Fathian, F.; Derakhshandeh, K.; Khaleseh, F.; Hemmati, A.; Mansouri, K.; Khazaei, M. Active Targeting Carrier for Breast Cancer Treatment: Monoclonal Antibody Conjugated Epirubicin Loaded Nanoparticle. J. Drug Deliv. Sci. Technol. 2019, 53, 101136. [Google Scholar] [CrossRef]
- Niza, E.; Noblejas-lópez, M.D.M.; Bravo, I.; Nieto-jiménez, C.; Castro-osma, J.A.; Canales-vázquez, J.; Lara-sanchez, A.; Moya, E.M.G.; Burgos, M.; Ocaña, A.; et al. Trastuzumab-Targeted Biodegradable Nanoparticles for Enhanced Delivery of Dasatinib in HER2+ Metastasic Breast Cancer. Nanomaterials 2019, 9, 1793. [Google Scholar] [CrossRef] [Green Version]
- Zhong, S.; Ling, Z.; Zhou, Z.; He, J.; Ran, H.; Wang, Z.; Zhang, Q.; Song, W.; Zhang, Y.; Luo, J. Herceptin-Decorated Paclitaxel-Loaded Poly(Lactide-Co-Glycolide) Nanobubbles: Ultrasound-Facilitated Release and Targeted Accumulation in Breast Cancers. Pharm. Dev. Technol. 2020, 25, 454–463. [Google Scholar] [CrossRef]
- Kocbek, P.; Obermajer, N.; Cegnar, M.; Kos, J.; Kristl, J. Targeting Cancer Cells Using PLGA Nanoparticles Surface Modified with Monoclonal Antibody. J. Control. Release 2007, 120, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Acharya, S.; Dilnawaz, F.; Sahoo, S.K. Targeted Epidermal Growth Factor Receptor Nanoparticle Bioconjugates for Breast Cancer Therapy. Biomaterials 2009, 30, 5737–5750. [Google Scholar] [CrossRef] [PubMed]
- Kutty, R.V.; Feng, S.-S. Cetuximab Conjugated Vitamin E TPGS Micelles for Targeted Delivery of Docetaxel for Treatment of Triple Negative Breast Cancers. Biomaterials 2013, 34, 10160–10171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, Y.H.; Chang, D.S. Fabrication, Characterization, and Biological Evaluation of Anti-HER2 Indocyanine Green-Doxorubicinencapsulated PEG-b-PLGA Copolymeric Nanoparticles for Targeted Photochemotherapy of Breast Cancer Cells. Sci. Rep. 2017, 7, 1–13. [Google Scholar] [CrossRef]
- Thermo Fisher Scientific-ES. Sulfhydryl-Reactive Crosslinker Chemistry. Available online: https://www.thermofisher.com/es/es/home/life-science/protein-biology/protein-biology-learning-center/protein-biology-resource-library/pierce-protein-methods/sulfhydryl-reactive-crosslinker-chemistry.html (accessed on 19 August 2020).
- Kantner, T.; Watts, A.G. Characterization of Reactions between Water-Soluble Trialkylphosphines and Thiol Alkylating Reagents: Implications for Protein-Conjugation Reactions. Bioconjug. Chem. 2016, 27, 2400–2406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kharkar, P.M.; Rehmann, M.S.; Skeens, K.M.; Maverakis, E.; Kloxin, A.M. Thiol-Ene Click Hydrogels for Therapeutic Delivery. ACS Biomater. Sci. Eng. 2016, 2, 165–179. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, P.; Bertozzi, C.R. Site-Specific Antibody-Drug Conjugates: The Nexus of Bioorthogonal Chemistry, Protein Engineering, and Drug Development. Bioconjug. Chem. 2015, 26, 176–192. [Google Scholar] [CrossRef] [Green Version]
- Yu, M.K.; Park, J.; Jon, S. Targeting Strategies for Multifunctional Nanoparticles in Cancer Imaging and Therapy. Theranostics 2012, 2, 3–44. [Google Scholar] [CrossRef] [Green Version]
- Akkapeddi, P.; Azizi, S.A.; Freedy, A.M.; Cal, P.M.S.D.; Gois, P.M.P.; Bernardes, G.J.L. Construction of Homogeneous Antibody-Drug Conjugates Using Site-Selective Protein Chemistry. Chem. Sci. 2016, 7, 2954–2963. [Google Scholar] [CrossRef] [Green Version]
- Renault, K.; Fredy, J.W.; Renard, P.Y.; Sabot, C. Covalent Modification of Biomolecules through Maleimide-Based Labeling Strategies. Bioconjugate Chem. 2018, 29, 2497–2513. [Google Scholar] [CrossRef]
- Kim, D.; Herr, A.E. Protein Immobilization Techniques for Microfluidic Assays. Biomicrofluidics 2013, 7, 041501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, M.E.B.; Caspersen, M.B.; Robinson, E.; Morais, M.; Maruani, A.; Nunes, J.P.M.; Nicholls, K.; Saxton, M.J.; Caddick, S.; Baker, J.R.; et al. A Platform for Efficient, Thiol-Stable Conjugation to Albumin’s Native Single Accessible Cysteine. Org. Biomol. Chem. 2015, 13, 7946–7949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azadbakht, B.; Afarideh, H.; Ghannadi-Maragheh, M.; Bahrami-Samani, A.; Asgari, M. Preparation and Evaluation of APTES-PEG Coated Iron Oxide Nanoparticles Conjugated to Rhenium-188 Labeled Rituximab. Nucl. Med. Biol. 2017, 48, 26–30. [Google Scholar] [CrossRef] [PubMed]
- Dovgan, I.; Kolodych, S.; Koniev, O.; Wagner, A. 2-(Maleimidomethyl)-1,3-Dioxanes (MD): A Serum-Stable Self-Hydrolysable Hydrophilic Alternative to Classical Maleimide Conjugation. Sci. Rep. 2016, 6, 1–6. [Google Scholar] [CrossRef]
- Markwalter, C.F.; Kantor, A.G.; Moore, C.P.; Richardson, K.A.; Wright, D.W. Inorganic Complexes and Metal-Based Nanomaterials for Infectious Disease Diagnostics. Chem. Rev. 2019, 119, 1456–1518. [Google Scholar] [CrossRef] [Green Version]
- Koniev, O.; Wagner, A. Developments and Recent Advancements in the Field of Endogenous Amino Acid Selective Bond Forming Reactions for Bioconjugation. Chem. Soc. Rev. 2015, 44, 5495–5551. [Google Scholar] [CrossRef] [Green Version]
- Gu, Y.; Zhang, T.T.; Huang, Z.F.; Hu, S.W.; Zhao, W.; Xu, J.J.; Chen, H.Y. An Exploration of Nucleic Acid Liquid Biopsy Using a Glucose Meter. Chem. Sci. 2018, 9, 3517–3522. [Google Scholar] [CrossRef] [Green Version]
- Di Marco, M.; Shamsuddin, S.; Razak, K.A.; Aziz, A.A.; Devaux, C.; Borghi, E.; Levy, L.; Sadun, C. Overview of the Main Methods Used to Combine Proteins with Nanosystems: Absorption, Bioconjugation, and Encapsulation. Int. J. Nanomed. 2010, 5, 37–49. [Google Scholar] [CrossRef] [Green Version]
- Yousefpour, P.; Atyabi, F.; Vasheghani-Farahani, E.; Movahedi, A.A.M.; Dinarvand, R. Targeted Delivery of Doxorubicin-Utilizing Chitosan Nanoparticles Surface-Functionalized with Anti-Her2 Trastuzumab. Int. J. Nanomed. 2011, 6, 1977–1990. [Google Scholar] [CrossRef] [Green Version]
- Eloy, J.O.; Petrilli, R.; Trevizan, L.N.F.; Chorilli, M. Immunoliposomes: A Review on Functionalization Strategies and Targets for Drug Delivery. Colloids Surf. B Biointerfaces 2017, 159, 454–467. [Google Scholar] [CrossRef] [Green Version]
- Yu, K.; Zhou, Y.; Li, Y.; Sun, X.; Sun, F.; Wang, X.; Mu, H.; Li, J.; Liu, X.; Teng, L.; et al. Comparison of Three Different Conjugation Strategies in the Construction of Herceptin-Bearing Paclitaxel-Loaded Nanoparticles. Biomater. Sci. 2016, 4, 1219. [Google Scholar] [CrossRef] [PubMed]
- Greene, M.K.; Richards, D.A.; Nogueira, J.C.F.; Campbell, K.; Smyth, P.; Fernández, M.; Scott, C.J.; Chudasama, V. Forming Next-Generation Antibody-Nanoparticle Conjugates through the Oriented Installation of Non-Engineered Antibody Fragments. Chem. Sci. 2017, 9, 79–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beck, A.; Goetsch, L.; Dumontet, C.; Corvaïa, N. Strategies and Challenges for the next Generation of Antibody-Drug Conjugates. Nat. Rev. Drug Discov. 2017, 16, 315–337. [Google Scholar] [CrossRef] [PubMed]
- Saeed, A.F.U.H.; Wang, R.; Ling, S.; Wang, S. Antibody Engineering for Pursuing a Healthier Future. Front. Microbiol. 2017, 8, 495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forte, N.; Livanos, M.; Miranda, E.; Morais, M.; Yang, X.; Rajkumar, V.S.; Chester, K.A.; Chudasama, V.; Baker, J.R. Tuning the Hydrolytic Stability of Next Generation Maleimide Cross-Linkers Enables Access to Albumin-Antibody Fragment Conjugates and Tri-ScFvs. Bioconjug. Chem. 2018, 29, 486–492. [Google Scholar] [CrossRef] [Green Version]
- Schumacher, F.F.; Sanchania, V.A.; Tolner, B.; Wright, Z.V.F.; Ryan, C.P.; Smith, M.E.B.; Ward, J.M.; Caddick, S.; Kay, C.W.M.; Aeppli, G.; et al. Homogeneous Antibody Fragment Conjugation by Disulfide Bridging Introduces “Spinostics”. Sci. Rep. 2013, 3, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Bahou, C.; Richards, D.A.; Maruani, A.; Love, E.A.; Javaid, F.; Caddick, S.; Baker, J.R.; Chudasama, V. Highly Homogeneous Antibody Modification through Optimisation of the Synthesis and Conjugation of Functionalised Dibromopyridazinediones. Org. Biomol. Chem. 2018, 16, 1359–1366. [Google Scholar] [CrossRef] [Green Version]
- Morais, M.; Ma, M.T. Site-Specific Chelator-Antibody Conjugation for PET and SPECT Imaging with Radiometals. Drug Discov. Today Technol. 2018, 30, 91–104. [Google Scholar] [CrossRef]
- Yi, G.; Son, J.; Yoo, J.; Park, C.; Koo, H. Application of Click Chemistry in Nanoparticle Modification and Its Targeted Delivery. Biomater. Res. 2018, 22, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Xianyu, Y.; Wu, J.; Yin, B.; Jiang, X. Click Chemistry-Mediated Nanosensors for Biochemical Assays. Theranostics 2016, 6, 969–985. [Google Scholar] [CrossRef] [Green Version]
- Hein, C.D.; Liu, X.M.; Wang, D. Click Chemistry, a Powerful Tool for Pharmaceutical Sciences. Pharm. Res. 2008, 25, 2216–2230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takayama, Y.; Kusamori, K.; Nishikawa, M. Click Chemistry as a Tool for Cell Engineering and Drug Delivery. Molecules 2019, 24, 172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Presolski, S.I.; Hong, V.P.; Finn, M.G. Copper-Catalyzed Azide–Alkyne Click Chemistry for Bioconjugation. Curr. Protoc. Chem. Biol. 2011, 3, 153–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baskin, J.M.; Prescher, J.A.; Laughlin, S.T.; Agard, N.J.; Chang, P.V.; Miller, I.A.; Lo, A.; Codelli, J.A.; Bertozzi, C.R. Copper-Free Click Chemistry for Dynamic in Vivo Imaging. Proc. Natl. Acad. Sci. USA 2007, 104, 16793–16797. [Google Scholar] [CrossRef] [Green Version]
- Knall, A.C.; Slugovc, C. Inverse Electron Demand Diels-Alder (IEDDA)-Initiated Conjugation: A (High) Potential Click Chemistry Scheme. Chem. Soc. Rev. 2013, 42, 5131–5142. [Google Scholar] [CrossRef] [Green Version]
- Schilling, C.I.; Jung, N.; Biskup, M.; Schepers, U.; Bräse, S. Bioconjugation via Azide-Staudinger Ligation: An Overview. Chem. Soc. Rev. 2011, 40, 4840–4871. [Google Scholar] [CrossRef]
- Liu, Y.; Hou, W.; Sun, H.; Cui, C.; Zhang, L.; Jiang, Y.; Wu, Y.; Wang, Y.; Li, J.; Sumerlin, B.S.; et al. Thiol-Ene Click Chemistry: A Biocompatible Way for Orthogonal Bioconjugation of Colloidal Nanoparticles. Chem. Sci. 2017, 8, 6182–6187. [Google Scholar] [CrossRef] [Green Version]
- Spicer, C.D.; Davis, B.G. Selective Chemical Protein Modification. Nat. Commun. 2014, 5, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Pickens, C.J.; Johnson, S.N.; Pressnall, M.M.; Leon, M.A.; Berkland, C.J. Practical Considerations, Challenges, and Limitations of Bioconjugation via Azide-Alkyne Cycloaddition. Bioconjugate Chem. 2018, 29, 686–701. [Google Scholar] [CrossRef]
- Smyth, T.; Petrova, K.; Payton, N.M.; Persaud, I.; Redzic, J.S.; Graner, M.W.; Smith-Jones, P.; Anchordoquy, T.J. Surface Functionalization of Exosomes Using Click Chemistry. Bioconjug. Chem. 2014, 25, 1777–1784. [Google Scholar] [CrossRef] [Green Version]
- Haldón, E.; Nicasio, M.C.; Pérez, P.J. Copper-Catalysed Azide-Alkyne Cycloadditions (CuAAC): An Update. Org. Biomol. Chem. 2015, 13, 9528–9550. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Gai, Y.; Anderson, C.J.; Zeng, D. Highly-Efficient and Versatile Fluorous-Tagged Cu (i)-Catalyzed Azide-Alkyne Cycloaddition Ligand for Preparing Bioconjugates. Chem. Commun. 2015, 51, 17072–17075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Z.; Badkas, A.; Stevenson, M.; Lee, J.Y.; Leung, Y.K. Herceptin Conjugated PLGA-PHis-PEG PH Sensitive Nanoparticles for Targeted and Controlled Drug Delivery. Int. J. Pharm. 2015, 487, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Badkas, A.; Frank, E.; Zhou, Z.; Jafari, M.; Chandra, H.; Sriram, V.; Lee, J.-Y.; Yadav, J.S. Modulation of in Vitro Phagocytic Uptake and Immunogenicity Potential of Modified Herceptin®-Conjugated PLGA-PEG Nanoparticles for Drug Delivery. Colloids Surf. B Biointerfaces 2018, 162, 271–278. [Google Scholar] [CrossRef]
- Hatit, M.Z.C.; Reichenbach, L.F.; Tobin, J.M.; Vilela, F.; Burley, G.A.; Watson, A.J.B. A Flow Platform for Degradation-Free CuAAC Bioconjugation. Nat. Commun. 2018, 9, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Ramil, C.P.; Lin, Q. Bioorthogonal Chemistry: Strategies and Recent Developments. Chem. Commun. 2013, 49, 11007–11022. [Google Scholar] [CrossRef] [Green Version]
- Agard, N.J.; Prescher, J.A.; Bertozzi, C.R. A Strain-Promoted [3 + 2] Azide-Alkyne Cycloaddition for Covalent Modification of Biomolecules in Living Systems. J. Am. Chem. Soc. 2004, 126, 15046–15047. [Google Scholar] [CrossRef]
- Dommerholt, J.; Rutjes, F.P.J.T.; van Delft, F.L. Strain-Promoted 1, 3-Dipolar Cycloaddition of Cycloalkynes and Organic Azides. In Topics in Current Chemistry; Springer International Publishing: New York, NY, USA, 2016; pp. 1–20. [Google Scholar] [CrossRef] [Green Version]
- Shi, M.; Wosnick, J.H.; Ho, K.; Keating, A.; Shoichet, M.S. Immuno-Polymeric Nanoparticles by Diels-Alder Chemistry. Angew. Chem.-Int. Ed. 2007, 46, 6126–6131. [Google Scholar] [CrossRef]
- Shi, M.; Ho, K.; Keating, A.; Shoichet, M.S. Doxorubicin-Conjugated Immuno-Nanoparticles for Intracellular Anticancer Drug Delivery. Adv. Funct. Mater. 2009, 19, 1689–1696. [Google Scholar] [CrossRef]
- Logie, J.; Ganesh, A.N.; Aman, A.M.; Al-awar, R.S.; Shoichet, M.S. Preclinical Evaluation of Taxane-Binding Peptide-Modified Polymeric Micelles Loaded with Docetaxel in an Orthotopic Breast Cancer Mouse Model. Biomaterials 2017, 123, 39–47. [Google Scholar] [CrossRef]
- Gordon, M.R.; Canakci, M.; Li, L.; Zhuang, J.; Osborne, B.; Thayumanavan, S. Field Guide to Challenges and Opportunities in Antibody-Drug Conjugates for Chemists. Bioconjugate Chem. 2015, 26, 2198–2215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gascón, V.; Márquez-Alvarez, C.; Díaz, I.; Blanco, R.M. Hybrid Ordered Mesoporous Materials as Supports for Permanent Enzyme Immobilization through Non-Covalent Interactions. In Non-covalent Interactions in the Synthesis and Design of New Compounds; Wiley: Hoboken, NJ, USA, 2016; pp. 345–360. [Google Scholar] [CrossRef]
- Huang, H.; Oizumi, S.; Kojima, N.; Niino, T.; Sakai, Y. Avidin-Biotin Binding-Based Cell Seeding and Perfusion Culture of Liver-Derived Cells in a Porous Scaffold with a Three-Dimensional Interconnected Flow-Channel Network. Biomaterials 2007, 28, 3815–3823. [Google Scholar] [CrossRef] [PubMed]
- Vadlapudi, A.D.; Vadlapatla, R.K.; Pal, D.; Mitra, A.K. Functional and Molecular Aspects of Biotin Uptake via SMVT in Human Corneal Epithelial (HCEC) and Retinal Pigment Epithelial (D407) Cells. AAPS J. 2012, 14, 832–842. [Google Scholar] [CrossRef] [Green Version]
- Ojima, I.; Wang, X.; Jing, Y.; Wang, C. Quest for Efficacious Next-Generation Taxoid Anticancer Agents and Their Tumor-Targeted Delivery. J. Nat. Prod. 2018, 81, 703–721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.; Zhao, X.; Chen, J.; Chen, J.; Kuznetsova, L.; Wong, S.S.; Ojima, I. Mechanism-Based Tumor-Targeting Drug Delivery System. Validation of Efficient Vitamin Receptor-Mediated Endocytosis and Drug Release. Bioconjug. Chem. 2010, 21, 979–987. [Google Scholar] [CrossRef] [Green Version]
- Lv, L.; Liu, C.; Chen, C.; Yu, X.; Chen, G.; Shi, Y.; Qin, F.; Ou, J.; Qiu, K.; Li, G. Quercetin and Doxorubicin Co-Encapsulated Biotin Receptortargeting Nanoparticles for Minimizing Drug Resistance in Breast Cancer. Oncotarget 2016, 7, 32184–32199. [Google Scholar] [CrossRef]
- Mehdizadeh, M.; Rouhani, H.; Sepehri, N.; Varshochian, R.; Ghahremani, M.H.; Amini, M.; Gharghabi, M.; Ostad, S.N.; Atyabi, F.; Baharian, A.; et al. Biotin Decorated PLGA Nanoparticles Containing SN-38 Designed for Cancer Therapy. Artif. Cells Nanomed. Biotechnol. 2017, 45, 495–504. [Google Scholar] [CrossRef] [Green Version]
- Krkavcová, E.; Kreisinger, J.; Hyánková, L.; Hyršl, P.; Javůrková, V. The Hidden Function of Egg White Antimicrobials: Egg Weightdependent Effects of Avidin on Avian Embryo Survival and Hatchling Phenotype. Biol. Open 2018, 7, 031518. [Google Scholar] [CrossRef] [Green Version]
- Jain, A.; Barve, A.; Zhao, Z.; Jin, W.; Cheng, K. Comparison of Avidin, Neutravidin, and Streptavidin as Nanocarriers for Efficient SiRNA Delivery. Mol. Pharm. 2017, 14, 1517–1527. [Google Scholar] [CrossRef]
- Verdoliva, A.; Bellofiore, P.; Rivieccio, V.; Catello, S.; Colombo, M.; Albertoni, C.; Rosi, A.; Leoni, B.; Anastasi, A.M.; De Santis, R. Biochemical and Biological Characterization of a New Oxidized Avidin with Enhanced Tissue Binding Properties. J. Biol. Chem. 2010, 285, 9090–9099. [Google Scholar] [CrossRef] [Green Version]
- Fahie, M.A.; Chen, M. Electrostatic Interactions between OmpG Nanopore and Analyte Protein Surface Can Distinguish between Glycosylated Isoforms. J. Phys. Chem. B 2015, 119, 10198–10206. [Google Scholar] [CrossRef]
- Jain, A.; Cheng, K. The Principles and Applications of Avidin-Based Nanoparticles in Drug Delivery and Diagnosis. J. Control. Release 2017, 245, 27–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sperling, R.A.; Parak, W.J. Surface Modification, Functionalization and Bioconjugation of Colloidal Inorganic Nanoparticles. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2010, 368, 1333–1383. [Google Scholar] [CrossRef] [PubMed]
- Müller, J.M.; Risse, J.M.; Jussen, D.; Flaschel, E. Development of Fed-Batch Strategies for the Production of Streptavidin by Streptomyces Avidinii Based on Power Input and Oxygen Supply Studies. J. Biotechnol. 2013, 163, 325–332. [Google Scholar] [CrossRef]
- Wu, S.C.; Wang, C.; Hansen, D.; Wong, S.L. A Simple Approach for Preparation of Affinity Matrices: Simultaneous Purification and Reversible Immobilization of a Streptavidin Mutein to Agarose Matrix. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, T.T.; Sly, K.L.; Conboy, J.C. Comparison of the Energetics of Avidin, Streptavidin, NeutrAvidin, and Anti-Biotin Antibody Binding to Biotinylated Lipid Bilayer Examined by Second-Harmonic Generation. Anal. Chem. 2012, 84, 201–208. [Google Scholar] [CrossRef]
- Kroetsch, A.; Chin, B.; Nguyen, V.; Gao, J.; Park, S. Functional Expression of Monomeric Streptavidin and Fusion Proteins in Escherichia Coli: Applications in Flow Cytometry and ELISA. Appl. Microbiol. Biotechnol. 2018, 102, 10079–10089. [Google Scholar] [CrossRef]
- Bigini, P.; Previdi, S.; Casarin, E.; Silvestri, D.; Violatto, M.B.; Facchin, S.; Sitia, L.; Rosato, A.; Zuccolotto, G.; Realdon, N.; et al. In Vivo Fate of Avidin-Nucleic Acid Nanoassemblies as Multifunctional Diagnostic Tools. ACS Nano 2014, 8, 175–187. [Google Scholar] [CrossRef]
- Roncato, F.; Rruga, F.; Porcù, E.; Casarin, E.; Ronca, R.; Maccarinelli, F.; Realdon, N.; Basso, G.; Alon, R.; Viola, G.; et al. Improvement and Extension of Anti-EGFR Targeting in Breast Cancer Therapy by Integration with the Avidin-Nucleic-Acid-Nano-Assemblies. Nat. Commun. 2018, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Elzahhar, P.; Belal, A.S.F.; Elamrawy, F.; Helal, N.A.; Nounou, M.I. Bioconjugation in Drug Delivery: Practical Perspectives and Future Perceptions. In Methods in Molecular Biology; Humana Press Inc.: Totowa, NJ, USA, 2019; Volume 2000, pp. 125–182. [Google Scholar] [CrossRef]
- Ren, W.X.; Han, J.; Uhm, S.; Jang, Y.J.; Kang, C.; Kim, J.H.; Kim, J.S. Recent Development of Biotin Conjugation in Biological Imaging, Sensing, and Target Delivery. Chem. Commun. 2015, 51, 10403–10418. [Google Scholar] [CrossRef]
- Wartlick, H.; Michaelis, K.; Balthasar, S.; Strebhardt, K.; Langer, K. Highly Specific HER2-Mediated Cellular Uptake of Antibody-Modified Nanoparticles in Tumour Cells. J. Drug Target. 2004, 12, 461–471. [Google Scholar] [CrossRef] [PubMed]
- Powell, D.; Chandra, S.; Dodson, K.; Shaheen, F.; Wiltz, K.; Ireland, S.; Syed, M.; Dash, S.; Wiese, T.; Mandal, T.; et al. Aptamer-Functionalized Hybrid Nanoparticle for the Treatment of Breast Cancer. Eur. J. Pharm. Biopharm. 2017, 114, 108–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slamon, D.J.; Leyland-Jones, B.; Shak, S.; Fuchs, H.; Paton, V.; Bajamonde, A.; Fleming, T.; Eiermann, W.; Wolter, J.; Pegram, M.; et al. Use of chemotherapy plus a monoclonal antibody against her2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. 2001, 344, 783–792. [Google Scholar] [CrossRef] [PubMed]
- Bardia, A.; Mayer, I.A.; Vahdat, L.T.; Tolaney, S.M.; Isakoff, S.J.; Diamond, J.R.; O’Shaughnessy, J.; Moroose, R.L.; Santin, A.D.; Abramson, V.G.; et al. Sacituzumab govitecan-hziy in refractory metastatic triple-negative breast cancer. N. Engl. J. Med. 2019, 380, 741–751. [Google Scholar] [CrossRef]
- Goldenberg, D.M.; Stein, R.; Sharkey, R.M. The emergence of trophoblast cell-surface antigen 2 (TROP-2) as a novel cancer target. Oncotarget 2018, 9, 28989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Modi, S.; Saura, C.; Yamashita, T.; Park, Y.H.; Kim, S.B.; Tamura, K.; Andre, F.; Iwata, H.; Ito, Y.; Tsurutani, J.; et al. Trastuzumab deruxtecan in previously treated HER2-positive breast cancer. N. Engl. J. Med. 2020, 387, 610–621. [Google Scholar] [CrossRef] [PubMed]
- García-Alonso, S.; Ocaña, A.; Pandiella, A. Trastuzumab Emtansine: Mechanisms of Action and Resistance, Clinical Progress, and Beyond. Trends Cancer 2020, 6, 130–146. [Google Scholar] [CrossRef]
- Ocaña, A.; Amir, E.; Pandiella, A. HER2 heterogeneity and resistance to anti-HER2 antibody-drug conjugates. Breast Cancer Res. 2020, 22, 1–3. [Google Scholar] [CrossRef]
- García-Alonso, S.; Ocaña, A.; Pandiella, A. Resistance to antibody–drug conjugates. Cancer Res. 2018, 78, 2159–2165. [Google Scholar] [CrossRef] [Green Version]
- Ríos-Luci, C.; García-Alonso, S.; Díaz-Rodríguez, E.; Nadal-Serrano, M.; Arribas, J.; Ocaña, A.; Pandiella, A. Resistance to the antibody–drug conjugate T-DM1 is based in a reduction in lysosomal proteolytic activity. Cancer Res. 2017, 77, 4639–4651. [Google Scholar] [CrossRef] [Green Version]
- Seruga, B.; Ocana, A.; Tannock, I.F. Drug resistance in metastatic castration-resistant prostate cancer. Nat. Rev. Clin. Oncol. 2011, 8, 12–23. [Google Scholar] [CrossRef] [PubMed]
- Gandullo-Sánchez, L.; Capone, E.; Ocaña, A.; Iacobelli, S.; Sala, G.; Pandiella, A. HER3 targeting with an antibody-drug conjugate bypasses resistance to anti-HER2 therapies. EMBO Mol. Med. 2020, 12, e11498. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Chen, J.; Xie, F.; Bao, W.; Xu, H.; Wang, H.; Xu, Y.; Du, Z. Herceptin-conjugated paclitaxel loaded PCL-PEG worm-like nanocrystal micelles for the combinatorial treatment of HER2-positive breast cancer. Biomaterials 2019, 222, 119420. [Google Scholar] [CrossRef] [PubMed]
- Steinhauser, I.; Spa, B.; Strebhardt, K.; Langer, K. Trastuzumab-Modified Nanoparticles: Optimisation of Preparation and Uptake in Cancer Cells. Biomaterials 2006, 27, 4975–4983. [Google Scholar] [CrossRef]
- Koopaei, M.N.; Dinarvand, R.; Amini, M.; Rabbani, H.; Emami, S.; Ostad, S.N.; Atyabi, F. Docetaxel Immunonanocarriers as Targeted Delivery Systems for HER 2-Positive Tumor Cells: Preparation, Characterization, and Cytotoxicity Studies. Int. J. Nanomed. 2011, 6, 1903–1912. [Google Scholar] [CrossRef] [Green Version]
- Kouchakzadeh, H.; Shojaosadati, S.A.; Mohammadnejad, J.; Paknejad, M.; Rasaee, M.J. Attachment of an Anti-MUC1 Monoclonal Antibody to 5-FU Loaded BSA Nanoparticles for Active Targeting of Breast Cancer Cells. Hum. Antibodies 2012, 21, 49–56. [Google Scholar] [CrossRef]
- Swaminathan, S.K.; Roger, E.; Toti, U.; Niu, L.; Ohlfest, J.R.; Panyam, J. CD133-Targeted Paclitaxel Delivery Inhibits Local Tumor Recurrence in Amousemodel of Breast Cancer. J. Control. Release 2013, 171, 280–287. [Google Scholar] [CrossRef] [Green Version]
- Khanna, V.; Kalscheuer, S.; Kirtane, A.; Zhang, W.; Panyam, J. Perlecan-Targeted Nanoparticles for Drug Delivery to Triple-Negative Breast Cancer. Future Drug Discov. 2019, 1, FDD8. [Google Scholar] [CrossRef] [Green Version]
- Saqafi, B.; Rahbarizadeh, F. Polyethyleneimine-Polyethylene Glycol Copolymer Targeted by Anti-HER2 Nanobody for Specific Delivery of Transcriptionally Targeted TBid Containing Construct. Artif. Cells Nanomed. Biotechnol. 2019, 47, 501–511. [Google Scholar] [CrossRef] [Green Version]
Conjugation Method | Nanoparticle Characteristic | Drug Encapsulated | Antibody Attached (Cross-Linker and or Substrategy) | Reference |
---|---|---|---|---|
Carbodiimide Chemistry | Magnetic poly(d,l-lactide-co-glycolide) | Doxorubicin | Trastuzumab | [59] |
Poly(lactic-co-glycolic acid) (PLGA) | Anti MCF-7 mAb | [67] | ||
Poly(d,l-lactide-co-glycolide) (PLGA) | Rapamycin | monoclonal EGFR antibody | [69] | |
Poly(lactide)-d-α-tocopheryl polyethylene glycol succinate (PLA-TPGS/TPGS–COOH) copolymers | Docetaxel and iron oxides | Trastuzumab | [60] | |
Poly(lactide)-d-α-tocopheryl polyethylene glycol succinate (PLA-TPGS/TPGS-COOH) copolymers | Docetaxel | Trastuzumab | [61] | |
Amine terminated d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS–NH2) | Docetaxel | Cetuximab | [69] | |
Poly(N-vinylpyrrolidone/Poly(d,l-lactic-co-glycolic acid) (PVP–PLGA) | Tamoxifen | Trastuzumab | [62] | |
Folate conjugated poly(d,l-lactide) (PLA) polyethylene glycol (PEG) PLA-PEG-PLA-urthane-s-s random multiblock copolymer | Doxorubicin | Trastuzumab | [63] | |
(PEG-β-PLGA) copolymer | Indocyanine green and doxorubicin | Anti-HER2 | [70] | |
Poly(lactic-co-glycolic acid) (PLGA) | Epirubicin | Trastuzumab | [64] | |
Poly(ethylene glycol)-poly(ε-caprolactone) copolymer (PEG-PCL) | Dasatinib | Trastuzumab | [65] | |
Poly(lactic-co-glycolic acid) (PLGA) | Paclitaxel | Trastuzumab | [66] | |
Maleimide Chemistry | Human Serum Albumin (HSA) | Trastuzumab (NHS-PEG5000-Mal) | [154] | |
Poly(2-methyl-2-carboxytrimethylene carbonate-co-d,l-lactide)-graft-poly(ethylene glycol)-furan (Poly(TMCC-co-LA)-g-PEG-furan) | Doxorubicin | Trastuzumab | [118] | |
Poly(d,l-lactide-co-glycolide) (PLGA) | Docetaxel | Trastuzumab (NHS-PEG-Mal) | [155] | |
Chitosan | Doxorubicin | Trastuzumab (sulfosuccinimidyl 4-(N-maleimidomethyl) cyclohexane-1-1-carboxylate) | [86] | |
Bovine serum albumin (BSA) | 5-fluorouracil | PR81 (NHS-PEG7500-Mal) | [156] | |
Poly(d,l-lactide-co-glycolide) (PLGA) | Paclitaxel | anti-CD133 (NHS-PEG-Mal) | [157] | |
Poly(d,l-lactide-co-glycolide) (PLGA) | Paclitaxel | Trastuzumab (DSPE-PEG2000-Mal) | [88] | |
Poly(d,l-lactide-co-glycolide) (PLGA) | Paclitaxel | Clone 6, AM6 (NHS-PEG-Mal) | [158] | |
Polyethyelenimine-polyethylenglycol copolymer (PEI-PEG) | SiRNA | anti-HER2 Nb (RR4) (NHS-PEG3500-Mal) | [159] | |
Click Chemistry | (Poly(TMCC-co-LA)-g-PEG-furan) | Trastuzumab (Diels-Alder) | [117] | |
(Poly(TMCC-co-LA)-g-PEG-furan) | Doxorubicin | Trastuzumab (Diels-Alder) | [118] | |
(PLGA-β-PEG-azide and PLGA-β-PHis-β-PEG-azide) | Doxorubicin | Trastuzumab (CuAAC) | [111] | |
Poly(d,l-lactide-co-2-methyl-2-carboxytrimethylene carbonate) (P(LA-co-TMCC) | Docetaxel | Fab 73J (Diels-Alder) | [109] | |
(PLGA–PEG-azide) | Trastuzumab (2,5-Dioxopyrrolidin-1-yl 1-((1R,8S,9S)-bicyclo[6.1.0]non-4-yn-9-yl)-3,14-dioxo-2,7,10-trioxa-4,13-diazaoctadecan-18-oate/SPAAC) | [89] | ||
Poly(d,l-lactide-coglycolide)-β-polyethylene glycol (PLGA-PEG) | Trastuzumab (CuAAC) | [112] | ||
Aptamers | Human serum albumin (HSA) | Trastuzumab (Biotin/Neutravidin) | [142] | |
Methoxy poly(ethylene glycol)-b-poly(ε-caprolactone) and methoxy poly(ethylene glycol)-b-poly(ε-caprolactone) | Doxorubicin and quercetin | [116] | ||
(PLGA-PEG-biotin copolymer) | SN-38 | [117] | ||
Poly(d,l-lactide-coglycolide) (PLGA) and Poly(d,l-lactide-coglycolide) (PLGA)-β-polyethylene glycol (PEG) | Doxorubicin and p-gp SiRNA | Aptamer A6 (DSPE-PEG-Mal) | [143] | |
Avidin-Nucleic-Acid-Nano-Assemblies (ANANAS) | Biotin-PEG-Atto488, biotin- Hz-doxo and biotin-PEG-Hz-doxo | Biotin-PEG-cetuximab, Cetuximab-Atto488 and cetuximab-Hz-doxorubicin | [139] |
Breast Cancer Subtype | Clinical Trial | Agent | Target | Combinatorial Agent | Phase |
---|---|---|---|---|---|
Luminal | NCT03874325 | Durvalumab | PD-L1 | Anastrozole | II |
NCT03409198 | Chemo + ipilimumab + nivolumab | CTLA-4/PD-1 | Ipilimumab, nivolumab, pegylated liposomal doxorubicin and cyclophosphamide | II | |
NCT03691311 | Denosumab | RANKL | - | I | |
NCT03879174 | Pembrolizumab | PD-1 | Tamoxifen | II | |
NCT03051659 | Pembrolizumab | PD-1 | Eribulin Mesylate | II | |
NCT03393845 | Pembrolizumab | PD-1 | Fulvestrant | II | |
NCT03492918 | Pembrolizumab | PD-1 | - | II | |
NCT03608865 | Durvalumab and Tremelimumab | PD-L1 and CTLA-4 | - | II | |
NCT04251169 | Pembrolizumab | PD-1 | Paclitaxel | II | |
NCT01491737 | Pertuzumab and Trastuzumab | HER2 | Anastrozole | II | |
NCT04088032 | Durvalumab | PD-L1 | Abemaciclib and Anastrozole | I | |
NCT03241810 | Seribantumab | HER3 | Fulvestrant | II | |
NCT03132467 | Durvalumab and Tremelimumab | PD-L1 and CTLA-4 | - | I | |
NCT00405938 | Bevacizumab | VEGF-A | Anastrozole | II | |
NCT03659136 | Xentuzumab | IGF | Everolimus | II | |
NCT02990845 | Pembrolizumab | PD-1 | Exemestane/Leuprolide | I/II | |
NCT00022672 | Trastuzumab | HER2 | anastrazole | III | |
NCT03099174 | Xentuzumab | IGF | Letrozole/anastrozole | I | |
NCT02971748 | Pembrolizumab | PD-1 | - | II | |
NCT03051672 | Pembrolizumab | PD-1 | Palliative radiotherapy | II | |
NCT02997995 | Durvalumab | PD-L1 | - | II | |
NCT04243616 | Cemiplimab | PD-1 | Cemiplimab + Paclitaxel + Doxorubicin + Cyclophosphamide | II | |
NCT04243616 | U3-1402 | HER3 | - | I/II | |
HER2 | NCT03321981 | MCI-A-128 | HER2 | Trastuzumab/Chemotherapy | II |
NCT03983395 | GBR 1302 | CD3/HER2 | - | I/II | |
NCT03052634 | RC48 | HER2 | - | Ib/II | |
NCT03523585 | DS-8201a | HER2 | - | III | |
NCT03529110 | DS-8201a | HER2 | - | III | |
NCT03734029 | DS-8201a | HER2 | - | III | |
NCT03052634 | RC48 | HER2 | - | Ib/II | |
NCT03944499 | FS-1502 | HER2 | - | I | |
NCT03262935 | SYD985 | HER2 | - | II | |
NCT03255070 | ARX788 | HER2 | - | I | |
NCT03032107 | Pembrolizumab | PD-1 | T-DM1 | Ib/II | |
NCT03747120 | Pembrolizuab | PD-1 | Paclitaxel, Trastuzumab and Pertuzumab | II | |
NCT02605915 | Atezolizumab | PD-1 | Pertuzumab, trastumuzab | Ib | |
NCT03199885 | Atezolizumab | PD-1 | Paclitaxel, Trastuzumab and Pertuzumab | III | |
NCT03125928 | Atezolizumab | PD-1 | Paclitaxel, Trastuzumab and Pertuzumab | IIa | |
NCT03726879 | Atezolizumab | PD-1 | Doxorubicin, Cyclophosphamide, Paclitaxel, Trastuzumab and Pertuzumab | III | |
NCT03417544 | Atezolizumab | PD-1 | Pertuzumab, trastumuzab | II | |
NCT04034823 | KN035 | PD-1 | Trastuzumab/Docetaxel | II | |
NCT03112590 | IFN-Y | IFN-Y | Paclitaxel, Trastuzumab and Pertuzumab | II | |
NCT03135171 | Tocilizumab | IL-6 | Trastuzumab and Pertuzumab | I | |
NCT03364348 | Utomilumab | TNF | Trastuzumab emtansine or Trastuzumab | Ib | |
NCT03414658 | Utomilumab | TNF | Vinorelbine, Avelumab, Utomilumab | II | |
TNBC | NCT02655822 | CPI-444 | A2AR | Atezolizumab (PD-LI) | I/Ib |
NCT03454451 | CPI-006 | CD73 | Pembrolizumab CD-I), cm-444 (A2AR) | I | |
NCT03251313 | JS001 | PD-1 | Gemcitabine and cisplatin | I | |
NCT03012230 | Pembrolizumab | PD-1 | Ruxolitinib OAK) | I | |
NCT02890069 | Spartlizumab | PD-1 | Everolimus (mTOR), panobinosat (HDAC), LCL161 (apoptosis), QBM076 (CXCR2) | I | |
NCT03250832 | TSR-033 | LAG-3 | Anti-PD-1 antibodies | I | |
NCT02646748 | Pembrolizumab | PD-1 | Itacitinib OAK), INCB050465 (P13K) | I | |
NCT02947165 | NIS793 | TGFß | Spartalizumab (PD-1) | I/Ib | |
NCT03549000 | NZV930 | CD73 | Spartalizumab (PD-1), NIR178 (A2AR) | I | |
NCT02838823 | JS001 | PD-1 | - | I | |
NCT02622074 | Pembrolizumab | PD-1 | nab-Paclitaxel, doxorubicin, | I | |
NCT03292172 | Atezolizumab | PD-L1 | cyclophosphamide, carboplatin R06870810 (BET) | I | |
NCT02936102 | FAZ053 | PD-L1 | Spartalizumab (PD-I) | I | |
NCT03579472 | M7824 | PD-Ll/TGFß | Eribulin | I | |
NCT0280744 | MCSI 10 | CSF-I | Spartalizumab (PD-1) | I | |
NCT024602.24 | LAG525 | LAG-3 | Spartalizumab (PD-1) | I/II | |
NCT03241173 | INCAGN01949 | OX-40 | Nivolumab (anti-PD-1) and/or ipilimumab (anti-CTLA4) | I/II | |
NCT035912.76 | Pembrolizumab | PD-1 | Pegylated doxorubicin | I/II | |
NCT02628132 | Durvalumab | PD-L1 | Paclitaxel | I/II | |
NCT02657889 | Pembrolizumab | PD-1 | Niraparib (PARP) | I/II | |
NCT03356860 | Durvalumab | PD-L1 | Paclitaxel, epirubicin, cyclophosphamide | I/II | |
NCT02513472 | Pembrolizumab | PD-1 | Eribulin | I/II | |
NCT02484404 | Durvalumab | PD-L1 | Olaparib (PARP) | I/II | |
NCT02708680 | Atezolizumab | PD-L1 | Entinostat (HDAC) | I/II | |
NCT02734004 | Durvalumab | PD-L1 | Diaparib (PARD | I/II | |
NCT02614833 | IMP321 | LAG-3 | Paclitaxel | II | |
NCT03394287 | SHR-1210 | PD-1 | Apatanib (VEGFR) | II | |
NCT03414684 | Nivolumab | PD. 1 | Carboplatin | II | |
NCT02648477 | Pembrolizumab | PD-1 | Doxorubicin | II | |
NCT03004183 | Pembrolizumab | PD-1 | SBRT and ADV/HSV-tk | II | |
NCT02536794 | Durvalumab | PD-LI | Tremelimumab (CTLA-4) | II | |
NCT02752685 | Pembrolizumab | PD-1 | nab-Paclitaxel | II | |
NCT03095352 | Pembrolizumab | PD-1 | Carboplatin | II | |
NCT03184558 | Pembrolizumab | PD-1 | Bemcentinib (AXL) | II | |
NCT02971761 | Pembrolizumab | PD-1 | Enobosarrn (selecdve androgen receptor modulator) | II | |
NCT02554812 | Avelumab | PD-L1 | Utomilumab (CD 137) | II | |
NCT02849496 | Atezolizumab | PD-L1 | Olaparib (PARP) | II | |
NCT03483012 | Atezolizumab | PD-L1 | Stereotactic radiosurgery | II | |
NCT03164993 | Atezolizumab | PD-L1 | Pegytated doxorubicin | II | |
NCT01898117 | Atezolizumab | PD-L1 | Carboplatin and cyclophosphamide or paclitaxel | II | |
NCT02883062 | Atezolizumab | PD-L1 | Carboplatin | II | |
NCT02981303 | Pembrolizumab | PD-1 | Imprime PGG (PAMP) | II | |
NCT02819518 | Pembrolizumab | PD-1 | nab-Paclltaxel, gemcitabine, carboplatin | III | |
NCT03498716 | Atezolizumab | PD-L1 | Paclitaxel, epirubicin. cyclophosphamide | III | |
NCT03197935 | Atezolizumab | PD-L1 | nab-Paclitaxel, doxorubicin, | III | |
NCT02425891 | Atezolizumab | PD-L1 | cyclophosphamide nab-Paclitaxel | III | |
NCT03125902 | Atezolizumab | PD-L1 | Paclitaxel | III | |
NCT02574455 | Sacituzumab govitecan | Trop-2 | - | III |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Juan, A.; Cimas, F.J.; Bravo, I.; Pandiella, A.; Ocaña, A.; Alonso-Moreno, C. An Overview of Antibody Conjugated Polymeric Nanoparticles for Breast Cancer Therapy. Pharmaceutics 2020, 12, 802. https://doi.org/10.3390/pharmaceutics12090802
Juan A, Cimas FJ, Bravo I, Pandiella A, Ocaña A, Alonso-Moreno C. An Overview of Antibody Conjugated Polymeric Nanoparticles for Breast Cancer Therapy. Pharmaceutics. 2020; 12(9):802. https://doi.org/10.3390/pharmaceutics12090802
Chicago/Turabian StyleJuan, Alberto, Francisco J. Cimas, Iván Bravo, Atanasio Pandiella, Alberto Ocaña, and Carlos Alonso-Moreno. 2020. "An Overview of Antibody Conjugated Polymeric Nanoparticles for Breast Cancer Therapy" Pharmaceutics 12, no. 9: 802. https://doi.org/10.3390/pharmaceutics12090802
APA StyleJuan, A., Cimas, F. J., Bravo, I., Pandiella, A., Ocaña, A., & Alonso-Moreno, C. (2020). An Overview of Antibody Conjugated Polymeric Nanoparticles for Breast Cancer Therapy. Pharmaceutics, 12(9), 802. https://doi.org/10.3390/pharmaceutics12090802