Comparison of 1-Palmitoyl-2-Linoleoyl-3-Acetyl-Rac-Glycerol-Loaded Self-Emulsifying Granule and Solid Self-Nanoemulsifying Drug Delivery System: Powder Property, Dissolution and Oral Bioavailability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Animals
2.3. Solubility Tests
2.4. Preparation of SEGS and SNEDDS
2.4.1. Preparation of SEGS by Fluid Bed Granulation
2.4.2. Preparation of SNEDDS by Spray-Drying Method
2.5. Morphological and Physical Characterization
2.5.1. Flowability
2.5.2. Emulsion Droplet Size
2.5.3. Morphological Analysis
2.5.4. Solid State Characterization
2.6. In Vitro Dissolution
2.7. Oral Bioavailability
3. Results and Discussion
3.1. Component Optimization
3.2. Comparison of SEGS and SNEDDS
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yoon, S.Y.; Kang, H.B.; Ko, Y.E.; Shin, S.H.; Kim, Y.J.; Sohn, K.Y.; Han, Y.H.; Chong, S.; Kim, J.W. 1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol (EC-18) Modulates Th2 immunit through attenuation of IL-4 expression. Immune Netw. 2015, 15, 100–109. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.; Kim, Y.J.; Yoon, S.Y.; Kim, Y.J.; Kim, J.H.; Sohn, K.Y.; Kim, H.J.; Han, Y.H.; Chong, S.; Kim, J.W. PLAG (1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol) modulates eosinophil chemotaxis by regulating CCL26 expression from epithelial cells. PLoS ONE 2016, 11, e0151758. [Google Scholar] [CrossRef] [PubMed]
- Ryu, H.M.; Jeong, Y.S.; Yim, C.S.; Lee, J.H.; Chung, S.J. Quantification of EC-18, a synthetic monoacetyldiglyceride (1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol), in rat and mouse plasma by liquid-chromatography/tandem mass spectrometry. J. Pharm. Biomed. Anal. 2017, 137, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.S.; Yang, E.S.; Kim, D.S.; Kim, D.W.; Yoo, H.H.; Yong, C.S.; Youn, Y.S.; Oh, K.T.; Jee, J.P.; Kim, J.O.; et al. A novel solid self-nanoemulsifying drug delivery system (S-SNEDDS) for improved stability and oral bioavailability of an oily drug, 1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol. Drug Deliv. 2017, 24, 1018–1025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luu, T.D.; Lee, B.J.; Tran, P.H.; Tran, T.T. Modified sprouted rice for modulation of curcumin crystallinity and dissolution enhancement by solid dispersion. J. Pharm. Investig. 2019, 49, 127–134. [Google Scholar] [CrossRef]
- Fu, Q.; Li, B.; Zhang, D.; Fang, M.; Shao, J.; Guo, M.; Li, M.; Sun, J.; Zhai, Y. Comparative studies of the in vitro dissolution and in vivo pharmacokinetics for different formulation strategies (solid dispersion, micronization, and nanocrystals) for poorly water-soluble drugs: A case study for lacidipine. Colloids Surf. B Biointerfaces 2015, 132, 171–176. [Google Scholar] [CrossRef] [PubMed]
- Peterson, B.; Weyers, M.; Steenekamp, J.H.; Steyn, J.D.; Gouws, C.; Hamman, J.H. Drug bioavailability enhancing agents of natural origin (bioenhancers) that modulate drug membrane permeation and pre-systemic metabolism. Pharmaceutics 2019, 11, 33. [Google Scholar] [CrossRef]
- Pokharkar, V.; Patil-Gadhe, A.; Kaur, G. Physicochemical and pharmacokinetic evaluation of rosuvastatin loaded nanostructured lipid carriers: Influence of long-and medium-chain fatty acid mixture. J. Pharm. Investig. 2018, 48, 465–476. [Google Scholar] [CrossRef]
- Kim, K.S.; Jin, S.G.; Mustapha, O.; Yousaf, A.M.; Kim, D.W.; Kim, Y.H.; Kim, J.O.; Yong, C.S.; Woo, J.S.; Choi, H.G. Novel fenofibric acid-loaded controlled-release pellet bioequivalent to choline fenofibrate-loaded commercial product in Beagle dogs. Int. J. Pharm. 2015, 490, 273–280. [Google Scholar] [CrossRef]
- Yi, T.; Zhang, J. Effects of hydrophilic carriers on structural transitions and in vitro properties of solid self-microemulsifying drug delivery systems. Pharmaceutics 2019, 11, 267. [Google Scholar] [CrossRef]
- Kim, D.S.; Kim, D.W.; Kim, K.S.; Choi, J.S.; Seo, Y.G.; Youn, Y.S.; Oh, K.T.; Yong, C.S.; Kim, J.O.; Jin, S.G.; et al. Development of a novel l-sulpiride-loaded quaternary microcapsule: Effect of TPGS as an absorption enhancer on physicochemical characterization and oral bioavailability. Colloids Surf. B Biointerfaces 2016, 147, 250–257. [Google Scholar] [CrossRef] [PubMed]
- Seo, Y.G.; Kim, D.W.; Yousaf, A.M.; Park, J.H.; Chang, P.S.; Baek, H.H.; Lim, S.J.; Kim, J.O.; Yong, C.S.; Choi, H.G. Solid self-nanoemulsifying drug delivery system (SNEDDS) for enhanced oral bioavailability of poorly water-soluble tacrolimus: Physicochemical characterisation and pharmacokinetics. J. Microencapsul. 2015, 32, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Tan, A.; Rao, S.; Prestidge, C.A. Transforming lipid-based oral drug delivery systems into solid dosage forms: An overview of solid carriers, physicochemical properties, and biopharmaceutical performance. Pharm. Res. 2013, 30, 2993–3017. [Google Scholar] [CrossRef] [PubMed]
- Mustapha, O.; Kim, K.S.; Shafique, S.; Kim, D.S.; Jin, S.G.; Seo, Y.G.; Youn, Y.S.; Oh, K.T.; Lee, B.J.; Park, Y.J.; et al. Development of novel cilostazol-loaded solid SNEDDS using a SPG membrane emulsification technique: Physicochemical characterization and in vivo evaluation. Colloids Surf. B Biointerfaces 2017, 150, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Saluja, V.; Arora, S.; Goyal, S. Self-emulsifying lipid formulation: An overview. Curr. Drug Deliv. 2015, 12, 166–176. [Google Scholar] [CrossRef] [PubMed]
- Cheng, G.; Hu, R.; Ye, L.; Wang, B.; Gui, Y.; Gao, S.; Li, X.; Tang, J. Preparation and in vitro/in vivo evaluation of puerarin solid self-microemulsifying drug delivery system by spherical crystallization technique. AAPS PharmSciTech 2016, 17, 1336–1346. [Google Scholar] [CrossRef] [PubMed]
- Patel, J.; Dhingani, A.; Tilala, J.; Raval, M.; Sheth, N. Formulation and development of self-nanoemulsifying granules of olmesartan medoxomil for bioavailability enhancement. Particul. Sci. Technol. 2014, 32, 274–290. [Google Scholar] [CrossRef]
- Krupa, A.; Jachowicz, R.; Kurek, M.; Figiel, W.; Kwiecień, M. Preparation of solid self-emulsifying drug delivery systems using magnesium aluminometasilicates and fluid-bed coating process. Powder Technol. 2014, 266, 329–339. [Google Scholar] [CrossRef]
- Kim, D.S.; Yang, E.S.; Yong, C.S.; Youn, Y.S.; Oh, K.T.; Li, D.X.; Kim, J.O.; Jin, S.G.; Choi, H.G. Effect of inorganic mesoporous carriers on 1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol-loaded solid self-emulsifying drug delivery system: Physicochemical characterization and bioavailability in rats. Colloids Surf. B Biointerfaces 2017, 160, 331–336. [Google Scholar] [CrossRef]
- Kim, K.S.; Yang, E.S.; Kim, D.S.; Kim, D.W.; Yong, C.S.; Kim, J.O.; Jin, S.G.; Choi, H.G. Degradation kinetics study of 1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol (PLAG) by a validated stability-indicating RP-HPLC method. J. Pharm. Biomed. Anal. 2018, 149, 374–380. [Google Scholar] [CrossRef]
- Čerpnjak, K.; Zvonar Pobirk, A.; Vrečer, F.; Gašperlin, M. Tablets and minitablets prepared from spray-dried SMEDDS containing naproxen. Int. J. Pharm. 2015, 495, 336–346. [Google Scholar] [CrossRef] [Green Version]
- Ngo, V.D.; Luu, T.D.; Vo, T.V.; Tran, V.T.; Duan, W.; Tran, P.H.; Tran, T.T. An investigation of effects of modification processes on physical properties and mechanism of drug release for sustaining drug release from modified rice. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 67, 1–7. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, L.; Zhang, M.; Pang, Y.; Li, Z.; Zhao, A.; Feng, J. Self-emulsifying drug delivery system and the applications in herbal drugs. Drug Deliv. 2015, 22, 475–486. [Google Scholar] [CrossRef]
- Rashid, R.; Kim, D.W.; Yousaf, A.M.; Mustapha, O.; Fakhar, U.D.; Park, J.H.; Yong, C.S.; Oh, Y.K.; Youn, Y.S.; Kim, J.O.; et al. Comparative study on solid self-nanoemulsifying drug delivery and solid dispersion system for enhanced solubility and bioavailability of ezetimibe. Int. J. Nanomed. 2015, 10, 6147–6159. [Google Scholar]
- Bondi, C.A.; Marks, J.L.; Wroblewski, L.B.; Raatikainen, H.S.; Lenox, S.R.; Gebhardt, K.E. Human and environmental toxicity of sodium lauryl sulfate (SLS): Evidence for safe use in household cleaning products. Environ. Health Insights 2015, 9, 27–32. [Google Scholar] [CrossRef]
- Shanmugam, S.; Im, H.T.; Sohn, Y.T.; Kim, Y.I.; Park, J.H.; Park, E.S.; Woo, J.S. Enhanced oral bioavailability of paclitaxel by solid dispersion granulation. Drug Dev. Ind. Pharm. 2015, 41, 1864–1876. [Google Scholar] [CrossRef]
- Qi, J.; Lu, Y.I.; Wu, W. Manufacturing solid dosage forms from bulk liquids using the fluid-bed drying technology. Curr. Pharm. Des. 2015, 21, 2668–2676. [Google Scholar] [CrossRef]
- Li, L.; Yi, T.; Lam, C.W. Effects of spray-drying and choice of solid carriers on concentrations of Labrasol® and Transcutol® in solid self-microemulsifying drug delivery systems (SMEDDS). Molecules 2013, 18, 545–560. [Google Scholar] [CrossRef]
- Milović, M.; Djuriš, J.; Djekić, L.; Vasiljević, D.; Ibrić, S. Characterization and evaluation of solid self-microemulsifying drug delivery systems with porous carriers as systems for improved carbamazepine release. Int. J. Pharm. 2012, 436, 58–65. [Google Scholar] [CrossRef]
- Thoorens, G.; Krier, F.; Leclercq, B.; Carlin, B.; Evrard, B. Microcrystalline cellulose, a direct compression binder in a quality by design environment—A review. Int. J. Pharm. 2014, 473, 64–72. [Google Scholar] [CrossRef]
- Shi, W.; Sprockel, O.L. A practical approach for the scale-up of roller compaction process. Eur. J. Pharm. Biopharm. 2016, 106, 15–19. [Google Scholar] [CrossRef]
- Badawy, M.A.; Kamel, A.O.; Sammour, O.A. Use of biorelevant media for assessment of a poorly soluble weakly basic drug in the form of liquisolid compacts: In vitro and in vivo study. Drug Deliv. 2016, 23, 818–827. [Google Scholar] [CrossRef]
- Eroğlu, İ.; Gökçe, E.H.; Tsapis, N.; Tanrıverdi, S.T.; Gökçe, G.; Fattal, E.; Özer, Ö. Evaluation of characteristics and in vitro antioxidant properties of RSV-loaded hyaluronic acid-DPPC microparticles as a wound healing system. Colloids Surf. B Biointerfaces 2015, 126, 50–57. [Google Scholar] [CrossRef]
- Kim, G.G.; Poudel, B.K.; Marasini, N.; Lee, D.W.; Hiep, T.T.; Yang, K.Y.; Kim, J.O.; Yong, C.S.; Choi, H.G. Enhancement of oral bioavailability of fenofibrate by solid self-microemulsifying drug delivery systems. Drug Dev. Ind. Pharm. 2013, 39, 1431–1438. [Google Scholar] [CrossRef]
- Qiao, H.; Chen, L.; Rui, T.; Wang, J.; Chen, T.; Fu, T.; Li, J.; Di, L. Fabrication and in vitro/in vivo evaluation of amorphous andrographolide nanosuspensions stabilized by d-α-tocopheryl polyethylene glycol 1000 succinate/sodium lauryl sulfate. Int. J. Nanomed. 2017, 12, 1033. [Google Scholar] [CrossRef]
- Kim, D.S.; Choi, J.S.; Kim, D.W.; Kim, K.S.; Seo, Y.G.; Cho, K.H.; Kim, J.O.; Yong, C.S.; Youn, Y.S.; Lim, S.J.; et al. Comparison of solvent-wetted and kneaded l-sulpiride-loaded solid dispersions: Powder characterization and in vivo evaluation. Int. J. Pharm. 2016, 511, 351–358. [Google Scholar] [CrossRef]
- Mandić, J.; Zvonar Pobirk, A.; Vrečer, F.; Gašperlin, M. Overview of solidification techniques for self-emulsifying drug delivery systems from industrial perspective. Int. J. Pharm. 2017, 533, 335–345. [Google Scholar] [CrossRef]
- Shao, B.; Cui, C.; Ji, H.; Tang, J.; Wang, Z.; Liu, H.; Qin, M.; Li, X.; Wu, L. Enhanced oral bioavailability of piperine by self-emulsifying drug delivery systems: In vitro, in vivo and in situ intestinal permeability studies. Drug Deliv. 2015, 22, 740–747. [Google Scholar] [CrossRef]
- Mustapha, O.; Din, F.U.; Kim, D.W.; Park, J.H.; Woo, K.B.; Lim, S.J.; Youn, Y.S.; Cho, K.H.; Rashid, R.; Yousaf, A.M.; et al. Novel piroxicam-loaded nanospheres generated by the electrospraying technique: Physicochemical characterisation and oral bioavailability evaluation. J. Microencapsul. 2016, 33, 323–330. [Google Scholar] [CrossRef]
- Kim, K.S.; Kim, J.C.; Jin, S.G.; Kim, D.W.; Kim, D.S.; Yong, C.S.; Kim, J.O.; Youn, Y.S.; Oh, K.T.; Woo, J.S.; et al. Development of novel prasugrel base microsphere-loaded tablet with enhanced stability: Physicochemical characterization and in vivo evaluation in Beagle dogs. Colloids Surf. B Biointerfaces 2016, 146, 754–761. [Google Scholar] [CrossRef]
Parameter | Drug | SEGS | SNEDDS |
---|---|---|---|
Tmax (h) | 0.50 ± 0.65 | 0.26 ± 0.18 | 1.00 ± 0.77 |
Cmax (ng/mL) | 0.81 ± 0.42 | 4.27 ± 3.72 * | 2.66 ± 1.60 * |
AUC (h·ng/mL) | 0.98 ± 0.83 | 4.65 ± 1.05 * | 4.76 ± 2.51 * |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.S.; Kim, J.S.; Lim, S.-J.; Kim, J.O.; Yong, C.S.; Choi, H.-G.; Jin, S.G. Comparison of 1-Palmitoyl-2-Linoleoyl-3-Acetyl-Rac-Glycerol-Loaded Self-Emulsifying Granule and Solid Self-Nanoemulsifying Drug Delivery System: Powder Property, Dissolution and Oral Bioavailability. Pharmaceutics 2019, 11, 415. https://doi.org/10.3390/pharmaceutics11080415
Kim DS, Kim JS, Lim S-J, Kim JO, Yong CS, Choi H-G, Jin SG. Comparison of 1-Palmitoyl-2-Linoleoyl-3-Acetyl-Rac-Glycerol-Loaded Self-Emulsifying Granule and Solid Self-Nanoemulsifying Drug Delivery System: Powder Property, Dissolution and Oral Bioavailability. Pharmaceutics. 2019; 11(8):415. https://doi.org/10.3390/pharmaceutics11080415
Chicago/Turabian StyleKim, Dong Shik, Jung Suk Kim, Soo-Jeong Lim, Jong Oh Kim, Chul Soon Yong, Han-Gon Choi, and Sung Giu Jin. 2019. "Comparison of 1-Palmitoyl-2-Linoleoyl-3-Acetyl-Rac-Glycerol-Loaded Self-Emulsifying Granule and Solid Self-Nanoemulsifying Drug Delivery System: Powder Property, Dissolution and Oral Bioavailability" Pharmaceutics 11, no. 8: 415. https://doi.org/10.3390/pharmaceutics11080415
APA StyleKim, D. S., Kim, J. S., Lim, S.-J., Kim, J. O., Yong, C. S., Choi, H.-G., & Jin, S. G. (2019). Comparison of 1-Palmitoyl-2-Linoleoyl-3-Acetyl-Rac-Glycerol-Loaded Self-Emulsifying Granule and Solid Self-Nanoemulsifying Drug Delivery System: Powder Property, Dissolution and Oral Bioavailability. Pharmaceutics, 11(8), 415. https://doi.org/10.3390/pharmaceutics11080415