Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = 1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 2354 KiB  
Article
Acetylated Diacylglycerol 1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol in Autoimmune Arthritis and Interstitial Lung Disease in SKG Mice
by Doo-Ho Lim, Eun-Ju Lee, Hee-Seop Lee, Do Hoon Kim, Jae-Hyun Lee, Mi Ryeong Jeong, Seokchan Hong, Chang-Keun Lee, Bin Yoo, Jeehee Youn and Yong-Gil Kim
Biomedicines 2021, 9(9), 1095; https://doi.org/10.3390/biomedicines9091095 - 27 Aug 2021
Cited by 2 | Viewed by 2653
Abstract
Acetylated diacylglycerol 1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol (PLAG) is a lipid molecule from the antlers of sika deer that might reduce inflammation by effectively controlling neutrophil infiltration, endothelial permeability and inflammatory chemokine production. Therefore, we evaluated the modulatory effect of PLAG on arthritis and interstitial lung disease [...] Read more.
Acetylated diacylglycerol 1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol (PLAG) is a lipid molecule from the antlers of sika deer that might reduce inflammation by effectively controlling neutrophil infiltration, endothelial permeability and inflammatory chemokine production. Therefore, we evaluated the modulatory effect of PLAG on arthritis and interstitial lung disease (ILD) in an autoimmune arthritis model. We injected curdlan into SKG mice and PLAG was orally administered every day from 3 weeks to 20 weeks after the curdlan injection. The arthritis score was measured every week after the curdlan injection. At 20 weeks post-injection, the lung specimens were evaluated with H&E, Masson’s trichrome and multiplexed immunofluorescent staining. Serum cytokines were also analyzed using a Luminex multiple cytokine assay. PLAG administration decreased the arthritis score until 8 weeks after the curdlan injection. However, the effect was not sustained thereafter. A lung histology revealed severe inflammation and fibrosis in the curdlan-induced SKG mice, which was attenuated in the PLAG-treated mice. Furthermore, immunofluorescent staining of the lung tissue showed a GM-CSF+ neutrophil accumulation and a decreased citrullinated histone 3 expression after PLAG treatment. PLAG also downregulated the levels of IL-6 and TNF-α and upregulated the level of sIL-7Rα, an anti-fibrotic molecule. Our results indicate that PLAG might have a preventative effect on ILD development through the resolution of NETosis in the lung. Full article
(This article belongs to the Topic Animal Model in Biomedical Research)
Show Figures

Figure 1

16 pages, 5780 KiB  
Article
PLAG Exerts Anti-Metastatic Effects by Interfering with Neutrophil Elastase/PAR2/EGFR Signaling in A549 Lung Cancer Orthotopic Model
by Guen Tae Kim, Kyu Woong Hahn, Sun Young Yoon, Ki-Young Sohn and Jae Wha Kim
Cancers 2020, 12(3), 560; https://doi.org/10.3390/cancers12030560 - 28 Feb 2020
Cited by 14 | Viewed by 4754
Abstract
The effectiveness of chemotherapy and radiotherapy to treat lung cancer is limited because of highly metastatic nature. Novel strategies and drugs to attenuate metastatic activity are urgently required. In this study, red fluorescence proteins (RFP)-labeled A549 human lung cancer cells were orthotopically implantation, [...] Read more.
The effectiveness of chemotherapy and radiotherapy to treat lung cancer is limited because of highly metastatic nature. Novel strategies and drugs to attenuate metastatic activity are urgently required. In this study, red fluorescence proteins (RFP)-labeled A549 human lung cancer cells were orthotopically implantation, where they developed primary tumors. Metastasis in brain and intestines were reduced by up to 80% by treatment with 100 mpk 1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol (PLAG) compared with that in control mice. PLAG treatment also reduced the migration of the primary tumors. Interestingly, substantial neutrophil infiltration was observed in the tumors in control mice. The neutrophil contribution to A549 cell metastatic activity was examined in in vitro co-culture system. Metastatic activity could be achieved in the A549 cells through epidermal growth factor receptor (EGFR) transactivation mediated by protease activating receptor 2 (PAR2) receptor. Neutrophil elastase secreted from tumor-infiltrating neutrophils stimulated PAR2 and induced EGFR transactivation. However, this transactivation was inhibited by inducing PAR2 degradation following PLAG treatment and metastatic activity was effectively inhibited. PLAG attenuated cancer metastatic activity via modulated PAR2/EGFR transactivation by accelerating PAR2 degradation. These results suggest PLAG as potential therapeutic agent to combat tumor metastasis via regulating the activation signal pathway of PAR2 by tumor infiltrate-neutrophils. Full article
Show Figures

Figure 1

20 pages, 1457 KiB  
Article
Mitigating Effect of 1-Palmitoyl-2-Linoleoyl-3-Acetyl-Rac-Glycerol (PLAG) on a Murine Model of 5-Fluorouracil-Induced Hematological Toxicity
by Jinseon Jeong, Yong-Jae Kim, Do Young Lee, Ki-Young Sohn, Sun Young Yoon and Jae Wha Kim
Cancers 2019, 11(11), 1811; https://doi.org/10.3390/cancers11111811 - 18 Nov 2019
Cited by 8 | Viewed by 3568
Abstract
5-Fluorouracil (5-FU) is an antimetabolite chemotherapy widely used for the treatment of various cancers. However, many cancer patients experience hematological side effects following 5-FU treatment. Here, we investigated the protective effects of 1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol (PLAG) as a mitigator against 5-FU-induced hematologic toxicity, including neutropenia, [...] Read more.
5-Fluorouracil (5-FU) is an antimetabolite chemotherapy widely used for the treatment of various cancers. However, many cancer patients experience hematological side effects following 5-FU treatment. Here, we investigated the protective effects of 1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol (PLAG) as a mitigator against 5-FU-induced hematologic toxicity, including neutropenia, monocytopenia, thrombocytopenia, and thrombocytosis, in Balb/c mice injected with 5-FU (100 mg/kg, i.p.). Administration of PLAG significantly and dose-dependently reduced the duration of neutropenia and improved the nadirs of absolute neutrophil counts (ANCs). Moreover, while the ANCs of all mice in the control fell to the severely neutropenic range, none of the mice in the PLAG 200 and 400 mg/kg-treated groups experienced severe neutropenia. Administration of PLAG significantly delayed the mean first day of monocytopenia and reduced the duration of monocytopenia. PLAG also effectively reduced extreme changes in platelet counts induced by 5-FU treatment, thus preventing 5-FU-induced thrombocytopenia and thrombocytosis. PLAG significantly decreased plasma levels of the chemokine (C–X–C motif) ligand 1 (CXCL1), CXCL2, interleukin (IL)-6, and C-reactive protein (CRP), which were elevated consistently with the occurrence time of neutropenia, monocytopenia, and thrombocytopenia. When compared with olive oil and palmitic linoleic hydroxyl glycerol (PLH), only PLAG effectively mitigated 5-FU-induced hematological toxicity, indicating that it has a distinctive mechanism of action. In conclusion, PLAG may have therapeutic potential as a mitigator for 5-FU-induced neutropenia and other hematological disorders. Full article
Show Figures

Figure 1

14 pages, 3373 KiB  
Article
Comparison of 1-Palmitoyl-2-Linoleoyl-3-Acetyl-Rac-Glycerol-Loaded Self-Emulsifying Granule and Solid Self-Nanoemulsifying Drug Delivery System: Powder Property, Dissolution and Oral Bioavailability
by Dong Shik Kim, Jung Suk Kim, Soo-Jeong Lim, Jong Oh Kim, Chul Soon Yong, Han-Gon Choi and Sung Giu Jin
Pharmaceutics 2019, 11(8), 415; https://doi.org/10.3390/pharmaceutics11080415 - 16 Aug 2019
Cited by 23 | Viewed by 4566
Abstract
The main objective of this study was to compare the powder property, dissolution and bioavailability of 1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol (PLAG)-loaded self-emulsifying granule system (SEGS) and solid self-nanoemulsifying drug delivery system (SNEDDS). Various SEGS formulations were prepared, and the effect of surfactant and binder on the [...] Read more.
The main objective of this study was to compare the powder property, dissolution and bioavailability of 1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol (PLAG)-loaded self-emulsifying granule system (SEGS) and solid self-nanoemulsifying drug delivery system (SNEDDS). Various SEGS formulations were prepared, and the effect of surfactant and binder on the drug solubility in them, leading to selecting sodium lauryl sulphate (SLS) and hydroxyl propyl methyl cellulose (HPMC). The SEGS and SNEDDS were prepared with PLAG/SLS/HPMC/calcium silicate/microcrystalline cellulose at the weight ratio of 1:0.25:0.1:0.5:3 employing the fluid bed granulation and spray-drying technique, respectively. Their powder properties were compared in terms of flow ability, emulsion droplet size, scanning electron microscopy, and powder X-ray diffraction. Furthermore, the solubility, dissolution, and oral bioavailability in rats of the SEGS were assessed in comparison with the SNEDDS. The SEGS and SNEDDS enhanced the solubility of the drug approximately 36- and 32-fold as compared with the drug alone; but they had no differences. The crystalline drug may exist in both the calcium silicate and microcrystalline cellulose (MCC) in the SEGS, but only in the calcium silicate in the SNEDDS. The SEGS had considerably improved the flow ability (Hausner ratio, 1.23 vs. 1.07; Carr index, 19.8 vs. 43.5%) and drug dissolution as compared with the SNEDDS. The SEGS and SNEDDS with double peak profiles, unlike the single peak of drug alone, showed a significantly higher plasma concentration and area under the curve (AUC), as compared with drug alone. Although they were not significantly different, the SEGS gave higher AUC than did the SNEDDS, suggesting its enhanced oral bioavailability of PLAG. Thus, the SEGS could be used as a powerful oral dosage form to improve the flow ability and oral bioavailability of PLAG, an oily drug. Full article
Show Figures

Graphical abstract

Back to TopTop