Application of the Discrete Element Method for Manufacturing Process Simulation in the Pharmaceutical Industry
Abstract
:1. Introduction
2. Comprehensive Theory of Discrete Element Method
2.1. Hard-Sphere Model
2.2. Soft-Sphere Model
2.3. Contact Model
2.3.1. Elastic Contact Model
Linear Spring Model
Hertz-Mindlin Model
Hertz-Mindlin + JKR Model and DMT Model
2.3.2. Inelastic Contact Model
Linear Spring-Dashpot Model
Hysteretic Model
Thornton Model
2.4. Non-Contact Force
2.5. Considerations of Computational Time for DEM Simulation
2.6. Input Parameters for DEM Simulation
2.6.1. Material Properties
Particle Shape
Particle Size
Young’s Modulus, Shear Modulus and Poisson’s Ratio
2.6.2. Interaction Parameters
Coefficient of Restitution, Static Friction, Sliding Friction and Rolling Friction
Calibration Method for Input Parameters
2.7. Available DEM Software for the Pharmaceutical Industry
3. Applications of DEM in the Pharmaceutical Manufacturing Process
3.1. Milling
3.2. Blending
3.3. Granulation
3.4. Coating
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rogers, A.; Ierapetritou, M. Challenges and opportunities in modeling pharmaceutical manufacturing processes. Comput. Chem. Eng. 2015, 81, 32–39. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. Guidance for industry: Q8 (R2) pharmaceutical development; Food and Drug Administration: White Oak, MD, USA, 2006.
- Suresh, P.; Basu, P.K. Improving pharmaceutical product development and manufacturing: Impact on cost of drug development and cost of goods sold of pharmaceuticals. J. Pharm. Innov. 2008, 3, 175–187. [Google Scholar] [CrossRef]
- Ketterhagen, W.R.; am Ende, M.T.; Hancock, B.C. Process modeling in the pharmaceutical industry using the discrete element method. J. Pharm. Sci. 2009, 98, 442–470. [Google Scholar] [CrossRef] [PubMed]
- Kremer, D.; Hancock, B. Process simulation in the pharmaceutical industry: A review of some basic physical models. J. Pharm. Sci. 2006, 95, 517–529. [Google Scholar] [CrossRef] [PubMed]
- Pandey, P.; Bharadwaj, R. Predictive Modeling of Pharmaceutical Unit Operations; Woodhead Publishing: Cambridge, UK, 2016. [Google Scholar]
- Björn, I.N.; Jansson, A.; Karlsson, M.; Folestad, S.; Rasmuson, A. Empirical to mechanistic modelling in high shear granulation. Chem. Eng. Sci. 2005, 60, 3795–3803. [Google Scholar] [CrossRef]
- Reklaitis, G.V.; García-Munoz, S.; Seymour, C. Comprehensive Quality by Design for Pharmaceutical Product Development and Manufacture; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Wassgren, C.; Curtis, J.S. The application of computational modeling to pharmaceutical materials science. MRS Bull. 2006, 31, 900–904. [Google Scholar] [CrossRef]
- Norton, T.; Sun, D.-W. Computational fluid dynamics (cfd)—An effective and efficient design and analysis tool for the food industry: A review. Trends Food Sci. Technol. 2006, 17, 600–620. [Google Scholar] [CrossRef]
- Darelius, A.; Rasmuson, A.; van Wachem, B.; Niklasson Björn, I.; Folestad, S. Cfd simulation of the high shear mixing process using kinetic theory of granular flow and frictional stress models. Chem. Eng. Sci. 2008, 63, 2188–2197. [Google Scholar] [CrossRef]
- Neuman, S.P. Adaptive eulerian—Lagrangian finite element method for advection—Dispersion. Int. J. Numer. Methods Eng. 1984, 20, 321–337. [Google Scholar] [CrossRef]
- Zheng, Q.J.; Yu, A.B. Modelling the granular flow in a rotating drum by the eulerian finite element method. Powder Technol. 2015, 286, 361–370. [Google Scholar] [CrossRef]
- Diarra, H.; Mazel, V.; Busignies, V.; Tchoreloff, P. Fem simulation of the die compaction of pharmaceutical products: Influence of visco-elastic phenomena and comparison with experiments. Int. J. Pharm. 2013, 453, 389–394. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.P.; Zhou, Z.Y.; Yang, R.Y.; Yu, A.B. Discrete particle simulation of particulate systems: Theoretical developments. Chem. Eng. Sci. 2007, 62, 3378–3396. [Google Scholar] [CrossRef]
- Pantaleev, S.; Yordanova, S.; Janda, A.; Marigo, M.; Ooi, J.Y. An experimentally validated dem study of powder mixing in a paddle blade mixer. Powder Technol. 2017, 311, 287–302. [Google Scholar] [CrossRef]
- Börner, M.; Michaelis, M.; Siegmann, E.; Radeke, C.; Schmidt, U. Impact of impeller design on high-shear wet granulation. Powder Technol. 2016, 295, 261–271. [Google Scholar] [CrossRef]
- Ketterhagen, W.R. Modeling the motion and orientation of various pharmaceutical tablet shapes in a film coating pan using dem. Int. J. Pharm. 2011, 409, 137–149. [Google Scholar] [CrossRef] [PubMed]
- Fries, L.; Antonyuk, S.; Heinrich, S.; Palzer, S. Dem–cfd modeling of a fluidized bed spray granulator. Chem. Eng. Sci. 2011, 66, 2340–2355. [Google Scholar] [CrossRef]
- Ransing, R.S.; Gethin, D.T.; Khoei, A.R.; Mosbah, P.; Lewis, R.W. Powder compaction modelling via the discrete and finite element method. Mater. Des. 2000, 21, 263–269. [Google Scholar] [CrossRef]
- Mazor, A.; Orefice, L.; Michrafy, A.; de Ryck, A.; Khinast, J.G. A combined dem & fem approach for modelling roll compaction process. Powder Technol. 2018, 337, 3–16. [Google Scholar]
- Flores-Johnson, E.; Wang, S.; Maggi, F.; El Zein, A.; Gan, Y.; Nguyen, G.; Shen, L. Discrete element simulation of dynamic behaviour of partially saturated sand. Int. J. Mech. Mater. Des. 2016, 12, 495–507. [Google Scholar] [CrossRef]
- Cundall, P.A.; Strack, O.D. A discrete numerical model for granular assemblies. Geotechnique 1979, 29, 47–65. [Google Scholar] [CrossRef]
- Weerasekara, N.; Powell, M.; Cleary, P.; Tavares, L.M.; Evertsson, M.; Morrison, R.; Quist, J.; Carvalho, R. The contribution of dem to the science of comminution. Powder Technol. 2013, 248, 3–24. [Google Scholar] [CrossRef]
- Escotet-Espinoza, M.S.; Foster, C.J.; Ierapetritou, M. Discrete element modeling (dem) for mixing of cohesive solids in rotating cylinders. Powder Technol. 2018, 335, 124–136. [Google Scholar] [CrossRef]
- Suzzi, D.; Toschkoff, G.; Radl, S.; Machold, D.; Fraser, S.D.; Glasser, B.J.; Khinast, J.G. Dem simulation of continuous tablet coating: Effects of tablet shape and fill level on inter-tablet coating variability. Chem. Eng. Sci. 2012, 69, 107–121. [Google Scholar] [CrossRef]
- Yanagita, T. Three-dimensional cellular automaton model of segregation of granular materials in a rotating cylinder. Phys. Rev. Lett. 1999, 82, 3488. [Google Scholar] [CrossRef]
- LaMarche, K.R.; Conway, S.L.; Glasser, B.J.; Shinbrot, T. Cellular automata model of gravity-driven granular flows. Granul. Matter 2007, 9, 219–229. [Google Scholar] [CrossRef]
- Jullien, R.; Meakin, P.; Pavlovitch, A. Three-dimensional model for particle-size segregation by shaking. Phys. Rev. Lett. 1992, 69, 640. [Google Scholar] [CrossRef] [PubMed]
- Fitt, A.; Wilmott, P. Cellular-automaton model for segregation of a two-species granular flow. Phys. Rev. A 1992, 45, 2383. [Google Scholar] [CrossRef]
- Langston, P.A.; Tüzün, U.; Heyes, D.M. Discrete element simulation of granular flow in 2d and 3d hoppers: Dependence of discharge rate and wall stress on particle interactions. Chem. Eng. Sci. 1995, 50, 967–987. [Google Scholar] [CrossRef]
- Gu, Z.H.; Arnold, P.C.; McLean, A.G. A simplified model for predicting the particle flowrate from mass flow bins. Powder Technol. 1993, 74, 153–158. [Google Scholar] [CrossRef]
- Abreu, C.R.; Tavares, F.W.; Castier, M. Influence of particle shape on the packing and on the segregation of spherocylinders via monte carlo simulations. Powder Technol. 2003, 134, 167–180. [Google Scholar] [CrossRef]
- Rosato, A.; Prinz, F.; Standburg, K.; Swendsen, R. Monte carlo simulation of particulate matter segregation. Powder Technol. 1986, 49, 59–69. [Google Scholar] [CrossRef]
- Kumar, A.; Gernaey, K.V.; De Beer, T.; Nopens, I. Model-based analysis of high shear wet granulation from batch to continuous processes in pharmaceutical production—A critical review. Eur. J. Pharm. Biopharm. 2013, 85, 814–832. [Google Scholar] [CrossRef] [PubMed]
- Mitarai, N.; Nakanishi, H. Hard-sphere limit of soft-sphere model for granular materials: Stiffness dependence of steady granular flow. Phys. Rev. E 2003, 67, 021301. [Google Scholar] [CrossRef] [PubMed]
- Ketterhagen, W.R.; Curtis, J.S.; Wassgren, C.R. Stress results from two-dimensional granular shear flow simulations using various collision models. Phys. Rev. E 2005, 71, 061307. [Google Scholar] [CrossRef] [PubMed]
- Deen, N.G.; Van Sint Annaland, M.; Van der Hoef, M.A.; Kuipers, J.A.M. Review of discrete particle modeling of fluidized beds. Chem. Eng. Sci. 2007, 62, 28–44. [Google Scholar] [CrossRef]
- Hopkins, M.A.; Louge, M.Y. Inelastic microstructure in rapid granular flows of smooth disks. Phys. Fluids A: Fluid Dyn. 1991, 3, 47–57. [Google Scholar] [CrossRef] [Green Version]
- Campbell, C.S.; Brennen, C.E. Computer simulation of granular shear flows. J. Fluid Mech. 1985, 151, 167–188. [Google Scholar] [CrossRef] [Green Version]
- Shishodia, N.; Wassgren, C.R. Particle segregation in vibrofluidized beds due to buoyant forces. Phys. Rev. Lett. 2001, 87, 084302. [Google Scholar] [CrossRef]
- Campbell, C.; Brennen, C. Chute flows of granular material: Some computer simulations. J. Appl. Mech. 1985, 52, 172–178. [Google Scholar] [CrossRef]
- Bertrand, F.; Leclaire, L.-A.; Levecque, G. Dem-based models for the mixing of granular materials. Chem. Eng. Sci. 2005, 60, 2517–2531. [Google Scholar] [CrossRef]
- Adam, S.; Suzzi, D.; Radeke, C.; Khinast, J.G. An integrated quality by design (qbd) approach towards design space definition of a blending unit operation by discrete element method (dem) simulation. Eur. J. Pharm. Sci. 2011, 42, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Soni, R.K.; Mohanty, R.; Mohanty, S.; Mishra, B. Numerical analysis of mixing of particles in drum mixers using dem. Adv. Powder Technol. 2016, 27, 531–540. [Google Scholar] [CrossRef]
- Sahni, E.; Chaudhuri, B. Experiments and numerical modeling to estimate the coating variability in a pan coater. Int. J. Pharm. 2011, 418, 286–296. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Yang, R.; Yu, A. Dem investigation of energy distribution and particle breakage in tumbling ball mills. Powder Technol. 2012, 223, 83–91. [Google Scholar] [CrossRef]
- Mateo-Ortiz, D.; Muzzio, F.J.; Méndez, R. Particle size segregation promoted by powder flow in confined space: The die filling process case. Powder Technol. 2014, 262, 215–222. [Google Scholar] [CrossRef]
- Horabik, J.; Molenda, M. Parameters and contact models for dem simulations of agricultural granular materials: A review. Biosyst. Eng. 2016, 147, 206–225. [Google Scholar] [CrossRef]
- Lu, G.; Third, J.; Müller, C. Discrete element models for non-spherical particle systems: From theoretical developments to applications. Chem. Eng. Sci. 2015, 127, 425–465. [Google Scholar] [CrossRef]
- Di Renzo, A.; Di Maio, F.P. An improved integral non-linear model for the contact of particles in distinct element simulations. Chem. Eng. Sci. 2005, 60, 1303–1312. [Google Scholar] [CrossRef]
- Machado, M.; Moreira, P.; Flores, P.; Lankarani, H.M. Compliant contact force models in multibody dynamics: Evolution of the hertz contact theory. Mech. Mach. Theory 2012, 53, 99–121. [Google Scholar] [CrossRef]
- Peng, B. Discrete Element Method (Dem) Contact Models Applied to Pavement Simulation; Virginia Tech: Blacksburg, VA, USA, 2014. [Google Scholar]
- Thornton, C.; Cummins, S.J.; Cleary, P.W. An investigation of the comparative behaviour of alternative contact force models during elastic collisions. Powder Technol. 2011, 210, 189–197. [Google Scholar] [CrossRef]
- Malone, K.F.; Xu, B.H. Determination of contact parameters for discrete element method simulations of granular systems. Particuology 2008, 6, 521–528. [Google Scholar] [CrossRef]
- Hertz, H.R. Uber die beruhrung fester elastischer korper und uber die harte. J. Reine Angew. Math. 1881, 92, 156–171. [Google Scholar]
- Mindlin, R.D. Elastic spheres in contact under varying oblique forces. J. Appl. Mech. 1953, 20, 327–344. [Google Scholar]
- Di Renzo, A.; Di Maio, F.P. Comparison of contact-force models for the simulation of collisions in dem-based granular flow codes. Chem. Eng. Sci. 2004, 59, 525–541. [Google Scholar] [CrossRef]
- Vu-Quoc, L.; Zhang, X. An accurate and efficient tangential force–displacement model for elastic frictional contact in particle-flow simulations. Mech. Mater. 1999, 31, 235–269. [Google Scholar] [CrossRef]
- Vu-Quoc, L.; Zhang, X. An elastoplastic contact force–displacement model in the normal direction: Displacement–driven version. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 1999, 455, 4013–4044. [Google Scholar] [CrossRef]
- Xiao, X.; Tan, Y.; Zhang, H.; Deng, R.; Jiang, S. Experimental and dem studies on the particle mixing performance in rotating drums: Effect of area ratio. Powder Technol. 2017, 314, 182–194. [Google Scholar] [CrossRef]
- Dubey, A.; Hsia, R.; Saranteas, K.; Brone, D.; Misra, T.; Muzzio, F.J. Effect of speed, loading and spray pattern on coating variability in a pan coater. Chem. Eng. Sci. 2011, 66, 5107–5115. [Google Scholar] [CrossRef]
- Fries, L.; Antonyuk, S.; Heinrich, S.; Dopfer, D.; Palzer, S. Collision dynamics in fluidised bed granulators: A dem-cfd study. Chem. Eng. Sci. 2013, 86, 108–123. [Google Scholar] [CrossRef]
- Capece, M.; Bilgili, E.; Davé, R.N. Formulation of a physically motivated specific breakage rate parameter for ball milling via the discrete element method. AIChE J. 2014, 60, 2404–2415. [Google Scholar] [CrossRef]
- Johnson, K.L.; Kendall, K.; Roberts, A. Surface energy and the contact of elastic solids. Proc. R. Soc. Lond. A 1971, 324, 301–313. [Google Scholar] [CrossRef] [Green Version]
- Prokopovich, P.; Perni, S. Comparison of jkr-and dmt-based multi-asperity adhesion model: Theory and experiment. Colloids Surf. A Physicochem. Eng. Asp. 2011, 383, 95–101. [Google Scholar] [CrossRef]
- Deng, X.; Scicolone, J.V.; Davé, R.N. Discrete element method simulation of cohesive particles mixing under magnetically assisted impaction. Powder Technol. 2013, 243, 96–109. [Google Scholar] [CrossRef]
- Behjani, M.A.; Rahmanian, N.; Fardina bt Abdul Ghani, N.; Hassanpour, A. An investigation on process of seeded granulation in a continuous drum granulator using dem. Adv. Powder Technol. 2017, 28, 2456–2464. [Google Scholar] [CrossRef]
- Derjaguin, B.V.; Muller, V.M.; Toporov, Y.P. Effect of contact deformations on the adhesion of particles. J. Colloid Interface Sci. 1975, 53, 314–326. [Google Scholar] [CrossRef]
- Walton, O.R. Application of molecular dynamics to macroscopic particles. Int. J. Eng. Sci. 1984, 22, 1097–1107. [Google Scholar] [CrossRef]
- Cleary, P.W.; Sawley, M.L. Dem modelling of industrial granular flows: 3d case studies and the effect of particle shape on hopper discharge. Appl. Math. Model. 2002, 26, 89–111. [Google Scholar] [CrossRef]
- Pereira, G.; Tran, N.; Cleary, P. Segregation of combined size and density varying binary granular mixtures in a slowly rotating tumbler. Granul. Matter 2014, 16, 711–732. [Google Scholar] [CrossRef]
- Elskamp, F.; Kruggel-Emden, H. Review and benchmarking of process models for batch screening based on discrete element simulations. Adv. Powder Technol. 2015, 26, 679–697. [Google Scholar] [CrossRef]
- Thornton, C.; Cummins, S.J.; Cleary, P.W. An investigation of the comparative behaviour of alternative contact force models during inelastic collisions. Powder Technol. 2013, 233, 30–46. [Google Scholar] [CrossRef]
- Walton, O.R.; Braun, R.L. Viscosity, granular-temperature and stress calculations for shearing assemblies of inelastic, frictional disks. J. Rheol. 1986, 30, 949–980. [Google Scholar] [CrossRef]
- Chaudhuri, B.; Mehrotra, A.; Muzzio, F.J.; Tomassone, M.S. Cohesive effects in powder mixing in a tumbling blender. Powder Technol. 2006, 165, 105–114. [Google Scholar] [CrossRef]
- Sahni, E.; Yau, R.; Chaudhuri, B. Understanding granular mixing to enhance coating performance in a pan coater: Experiments and simulations. Powder Technol. 2011, 205, 231–241. [Google Scholar] [CrossRef]
- Thornton, C. Coefficient of restitution for collinear collisions of elastic-perfectly plastic spheres. J. Appl. Mech. 1997, 64, 383–386. [Google Scholar] [CrossRef]
- Mishra, B.K. A review of computer simulation of tumbling mills by the discrete element method: Part i—contact mechanics. Int. J. Miner. Process. 2003, 71, 73–93. [Google Scholar] [CrossRef]
- Seville, J.P.K.; Willett, C.D.; Knight, P.C. Interparticle forces in fluidisation: A review. Powder Technol. 2000, 113, 261–268. [Google Scholar] [CrossRef]
- Israelachvili, J.N. Intermolecular and Surface Forces; Academic Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Abbasfard, H.; Evans, G.; Moreno-Atanasio, R. Effect of van der waals force cut-off distance on adhesive collision parameters in dem simulation. Powder Technol. 2016, 299, 9–18. [Google Scholar] [CrossRef]
- Hamaker, H.C. The london—Van der waals attraction between spherical particles. Physica 1937, 4, 1058–1072. [Google Scholar] [CrossRef]
- Lifshitz, E.M.; Hamermesh, M. The theory of molecular attractive forces between solids. In Perspectives in Theoretical Physics; Elsevier: Amsterdam, The Netherlands, 1992; pp. 329–349. [Google Scholar]
- Knoll, J.; Nirschl, H. Influence of the magnetic force on the van der waals force of superparamagnetic composite particles. Powder Technol. 2014, 259, 30–36. [Google Scholar] [CrossRef]
- Moreno-Atanasio, R.; Antony, S.J.; Williams, R.A. Influence of interparticle interactions on the kinetics of self-assembly and mechanical strength of nanoparticulate aggregates. Particuology 2009, 7, 106–113. [Google Scholar] [CrossRef]
- Yang, R.Y.; Zou, R.P.; Yu, A.B. Computer simulation of the packing of fine particles. Phys. Rev. E 2000, 62, 3900–3908. [Google Scholar] [CrossRef] [PubMed]
- Yen, K.; Chaki, T. A dynamic simulation of particle rearrangement in powder packings with realistic interactions. J. Appl. Phys. 1992, 71, 3164–3173. [Google Scholar] [CrossRef]
- Muguruma, Y.; Tanaka, T.; Tsuji, Y. Numerical simulation of particulate flow with liquid bridge between particles (simulation of centrifugal tumbling granulator). Powder Technol. 2000, 109, 49–57. [Google Scholar] [CrossRef]
- Fisher, R. On the capillary forces in an ideal soil; correction of formulae given by wb haines. J. Agric. Sci. 1926, 16, 492–505. [Google Scholar] [CrossRef]
- Lian, G.; Thornton, C.; Adams, M.J. A theoretical study of the liquid bridge forces between two rigid spherical bodies. J. Colloid Interface Sci. 1993, 161, 138–147. [Google Scholar] [CrossRef]
- Gillespie, T.; Settineri, W.J. The effect of capillary liquid on the force of adhesion between spherical solid particles. J. Colloid Interface Sci. 1967, 24, 199–202. [Google Scholar] [CrossRef]
- Tsunazawa, Y.; Fujihashi, D.; Fukui, S.; Sakai, M.; Tokoro, C. Contact force model including the liquid-bridge force for wet-particle simulation using the discrete element method. Adv. Powder Technol. 2016, 27, 652–660. [Google Scholar] [CrossRef]
- Simons, S.J.R.; Seville, J.P.K.; Adams, M.J. An analysis of the rupture energy of pendular liquid bridges. Chem. Eng. Sci. 1994, 49, 2331–2339. [Google Scholar] [CrossRef]
- Weigert, T.; Ripperger, S. Calculation of the liquid bridge volume and bulk saturation from the half-filling angle. Part. Syst. Charact. 1999, 16, 238–242. [Google Scholar] [CrossRef]
- Willett, C.D.; Adams, M.J.; Johnson, S.A.; Seville, J.P. Capillary bridges between two spherical bodies. Langmuir 2000, 16, 9396–9405. [Google Scholar] [CrossRef]
- Rabinovich, Y.I.; Esayanur, M.S.; Moudgil, B.M. Capillary forces between two spheres with a fixed volume liquid bridge: Theory and experiment. Langmuir 2005, 21, 10992–10997. [Google Scholar] [CrossRef] [PubMed]
- Pei, C.; Wu, C.Y.; England, D.; Byard, S.; Berchtold, H.; Adams, M. Dem-cfd modeling of particle systems with long-range electrostatic interactions. AIChE J. 2015, 61, 1792–1803. [Google Scholar] [CrossRef]
- Hogue, M.D.; Calle, C.I.; Weitzman, P.S.; Curry, D.R. Calculating the trajectories of triboelectrically charged particles using discrete element modeling (dem). J. Electrost. 2008, 66, 32–38. [Google Scholar] [CrossRef]
- Lu, L.-S.; Hsiau, S.-S. Mixing in vibrated granular beds with the effect of electrostatic force. Powder Technol. 2005, 160, 170–179. [Google Scholar] [CrossRef]
- Krupp, H. Particles adhesion theory and experiment. Adv. Colloid Interface Sci. 1967, 1, 111–239. [Google Scholar]
- Yang, R.Y.; Zou, R.P.; Dong, K.J.; An, X.Z.; Yu, A. Simulation of the packing of cohesive particles. Comput. Phys. Commun. 2007, 177, 206–209. [Google Scholar] [CrossRef]
- Rhodes, M.J.; Wang, X.S.; Nguyen, M.; Stewart, P.; Liffman, K. Use of discrete element method simulation in studying fluidization characteristics: Influence of interparticle force. Chem. Eng. Sci. 2001, 56, 69–76. [Google Scholar] [CrossRef]
- Peng, Z.; Doroodchi, E.; Evans, G. Dem simulation of aggregation of suspended nanoparticles. Powder Technol. 2010, 204, 91–102. [Google Scholar] [CrossRef]
- Marigo, M.; Stitt, E.H. Discrete element method (dem) for industrial applications: Comments on calibration and validation for the modelling of cylindrical pellets. KONA Powder Part. J. 2015, 32, 236–252. [Google Scholar] [CrossRef]
- Coetzee, C. Particle upscaling: Calibration and validation of the discrete element method. Powder Technol. 2019, 344, 487–503. [Google Scholar] [CrossRef]
- Thakur, S.C.; Ooi, J.Y.; Ahmadian, H. Scaling of discrete element model parameters for cohesionless and cohesive solid. Powder Technol. 2016, 293, 130–137. [Google Scholar] [CrossRef] [Green Version]
- Lommen, S.; Schott, D.; Lodewijks, G. Dem speedup: Stiffness effects on behavior of bulk material. Particuology 2014, 12, 107–112. [Google Scholar] [CrossRef]
- Chen, H.; Xiao, Y.G.; Liu, Y.L.; Shi, Y.S. Effect of young’s modulus on dem results regarding transverse mixing of particles within a rotating drum. Powder Technol. 2017, 318, 507–517. [Google Scholar] [CrossRef]
- Radeke, C.A.; Glasser, B.J.; Khinast, J.G. Large-scale powder mixer simulations using massively parallel gpuarchitectures. Chem. Eng. Sci. 2010, 65, 6435–6442. [Google Scholar] [CrossRef]
- Barrios, G.K.; de Carvalho, R.M.; Kwade, A.; Tavares, L.M. Contact parameter estimation for dem simulation of iron ore pellet handling. Powder Technol. 2013, 248, 84–93. [Google Scholar] [CrossRef]
- Coetzee, C.J. Review: Calibration of the discrete element method. Powder Technol. 2017, 310, 104–142. [Google Scholar] [CrossRef]
- Soltanbeigi, B.; Podlozhnyuk, A.; Papanicolopulos, S.-A.; Kloss, C.; Pirker, S.; Ooi, J.Y. Dem study of mechanical characteristics of multi-spherical and superquadric particles at micro and macro scales. Powder Technol. 2018, 329, 288–303. [Google Scholar] [CrossRef]
- Williams, J.R.; Pentland, A.P. Superquadrics and modal dynamics for discrete elements in interactive design. Eng. Comput. 1992, 9, 115–127. [Google Scholar] [CrossRef]
- Cleary, P.W. Particulate mixing in a plough share mixer using dem with realistic shaped particles. Powder Technol. 2013, 248, 103–120. [Google Scholar] [CrossRef]
- Delaney, G.; Cleary, P.; Morrison, R.; Cummins, S.; Loveday, B. Predicting breakage and the evolution of rock size and shape distributions in ag and sag mills using dem. Miner. Eng. 2013, 50, 132–139. [Google Scholar] [CrossRef]
- Kodam, M.; Bharadwaj, R.; Curtis, J.; Hancock, B.; Wassgren, C. Force model considerations for glued-sphere discrete element method simulations. Chem. Eng. Sci. 2009, 64, 3466–3475. [Google Scholar] [CrossRef]
- Langston, P.A.; Al-Awamleh, M.A.; Fraige, F.Y.; Asmar, B.N. Distinct element modelling of non-spherical frictionless particle flow. Chem. Eng. Sci. 2004, 59, 425–435. [Google Scholar] [CrossRef]
- Santos, D.A.; Barrozo, M.A.; Duarte, C.R.; Weigler, F.; Mellmann, J. Investigation of particle dynamics in a rotary drum by means of experiments and numerical simulations using dem. Adv. Powder Technol. 2016, 27, 692–703. [Google Scholar] [CrossRef]
- Khazeni, A.; Mansourpour, Z. Influence of non-spherical shape approximation on dem simulation accuracy by multi-sphere method. Powder Technol. 2018, 332, 265–278. [Google Scholar] [CrossRef]
- Toschkoff, G.; Just, S.; Knop, K.; Kleinebudde, P.; Funke, A.; Djuric, D.; Scharrer, G.; Khinast, J.G. Modeling of an active tablet coating process. J. Pharm. Sci. 2015, 104, 4082–4092. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Dai, F.; Xu, N.; Liu, Y.; Xu, Y. A composite particle model for non-spherical particles in dem simulations. Granul. Matter 2015, 17, 763–774. [Google Scholar] [CrossRef]
- Song, Y.; Turton, R.; Kayihan, F. Contact detection algorithms for dem simulations of tablet-shaped particles. Powder Technol. 2006, 161, 32–40. [Google Scholar] [CrossRef]
- Kruggel-Emden, H.; Rickelt, S.; Wirtz, S.; Scherer, V. A study on the validity of the multi-sphere discrete element method. Powder Technol. 2008, 188, 153–165. [Google Scholar] [CrossRef]
- Houlsby, G.T. Potential particles: A method for modelling non-circular particles in dem. Comput. Geotech. 2009, 36, 953–959. [Google Scholar] [CrossRef]
- Podlozhnyuk, A.; Pirker, S.; Kloss, C. Efficient implementation of superquadric particles in discrete element method within an open-source framework. Comput. Part. Mech. 2017, 4, 101–118. [Google Scholar] [CrossRef]
- Govender, N.; Wilke, D.N.; Wu, C.-Y.; Khinast, J.; Pizette, P.; Xu, W. Hopper flow of irregularly shaped particles (non-convex polyhedra): Gpu-based dem simulation and experimental validation. Chem. Eng. Sci. 2018, 188, 34–51. [Google Scholar] [CrossRef]
- Govender, N.; Wilke, D.N.; Wu, C.-Y.; Rajamani, R.; Khinast, J.; Glasser, B.J. Large-scale gpu based dem modeling of mixing using irregularly shaped particles. Adv. Powder Technol. 2018, 29, 2476–2490. [Google Scholar] [CrossRef]
- Ciantia, M.; Arroyo Alvarez de Toledo, M.; Calvetti, F.; Gens Solé, A. An approach to enhance efficiency of dem modelling of soils with crushable grains. Géotechnique 2015, 65, 91–110. [Google Scholar] [CrossRef]
- Hassanpour, A.; Tan, H.; Bayly, A.; Gopalkrishnan, P.; Ng, B.; Ghadiri, M. Analysis of particle motion in a paddle mixer using discrete element method (dem). Powder Technol. 2011, 206, 189–194. [Google Scholar] [CrossRef]
- Lacey, P.M.C. Developments in the theory of particle mixing. J. Appl. Chem. 1954, 4, 257–268. [Google Scholar] [CrossRef]
- Janda, A.; Ooi, J.Y. Dem modeling of cone penetration and unconfined compression in cohesive solids. Powder Technol. 2016, 293, 60–68. [Google Scholar] [CrossRef]
- Byrn, S.R.; Zografi, G.; Chen, X.S. Solid-State Properties of Pharmaceutical Materials; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Zhou, Y.C.; Xu, B.H.; Yu, A.B.; Zulli, P. An experimental and numerical study of the angle of repose of coarse spheres. Powder Technol. 2002, 125, 45–54. [Google Scholar] [CrossRef]
- Liu, X.; Hu, Z.; Wu, W.; Zhan, J.; Herz, F.; Specht, E. Dem study on the surface mixing and whole mixing of granular materials in rotary drums. Powder Technol. 2017, 315, 438–444. [Google Scholar] [CrossRef]
- Alizadeh, E.; Bertrand, F.; Chaouki, J. Comparison of dem results and lagrangian experimental data for the flow and mixing of granules in a rotating drum. AIChE J. 2014, 60, 60–75. [Google Scholar] [CrossRef]
- Kwan, C.C.; Mio, H.; Chen, Y.Q.; Ding, Y.L.; Saito, F.; Papadopoulos, D.G.; Bentham, A.C.; Ghadiri, M. Analysis of the milling rate of pharmaceutical powders using the distinct element method (dem). Chem. Eng. Sci. 2005, 60, 1441–1448. [Google Scholar] [CrossRef]
- Mangwandi, C.; Cheong, Y.; Adams, M.; Hounslow, M.; Salman, A. The coefficient of restitution of different representative types of granules. Chem. Eng. Sci. 2007, 62, 437–450. [Google Scholar] [CrossRef]
- Teffo, V.; Naudé, N. Determination of the coefficients of restitution, static and rolling friction of eskom-grade coal for discrete element modelling. J. South. Afr. Inst. Min. Metall. 2013, 113, 351–356. [Google Scholar]
- Anand, A.; Curtis, J.S.; Wassgren, C.R.; Hancock, B.C.; Ketterhagen, W.R. Predicting discharge dynamics from a rectangular hopper using the discrete element method (dem). Chem. Eng. Sci. 2008, 63, 5821–5830. [Google Scholar] [CrossRef]
- Coetzee, C.J.; Els, D.N.J. Calibration of granular material parameters for dem modelling and numerical verification by blade–granular material interaction. J. Terramechanics 2009, 46, 15–26. [Google Scholar] [CrossRef]
- Combarros, M.; Feise, H.J.; Zetzener, H.; Kwade, A. Segregation of particulate solids: Experiments and dem simulations. Particuology 2014, 12, 25–32. [Google Scholar] [CrossRef]
- Just, S.; Toschkoff, G.; Funke, A.; Djuric, D.; Scharrer, G.; Khinast, J.; Knop, K.; Kleinebudde, P. Experimental analysis of tablet properties for discrete element modeling of an active coating process. AAPS PharmSciTech 2013, 14, 402–411. [Google Scholar] [CrossRef] [PubMed]
- Coetzee, C.J. Calibration of the discrete element method and the effect of particle shape. Powder Technol. 2016, 297, 50–70. [Google Scholar] [CrossRef]
- Marczewska, I.; Rojek, J.; Kačianauskas, R. Investigation of the effective elastic parameters in the discrete element model of granular material by the triaxial compression test. Arch. Civ. Mech. Eng. 2016, 16, 64–75. [Google Scholar] [CrossRef]
- Wang, Y.; Alonso-Marroquin, F. A finite deformation method for discrete modeling: Particle rotation and parameter calibration. Granul. Matter 2009, 11, 331–343. [Google Scholar] [CrossRef]
- Phillip Grima, A.; Wilhelm Wypych, P. Discrete element simulations of granular pile formation: Method for calibrating discrete element models. Eng. Comput. 2011, 28, 314–339. [Google Scholar] [CrossRef]
- Roessler, T.; Katterfeld, A. Scaling of the angle of repose test and its influence on the calibration of dem parameters using upscaled particles. Powder Technol. 2018, 330, 58–66. [Google Scholar] [CrossRef]
- Roessler, T.; Katterfeld, A. Dem parameter calibration of cohesive bulk materials using a simple angle of repose test. Particuology 2019, 45, 105–115. [Google Scholar] [CrossRef]
- Roessler, T.; Richter, C.; Katterfeld, A.; Will, F. Development of a standard calibration procedure for the dem parameters of cohesionless bulk materials—Part i: Solving the problem of ambiguous parameter combinations. Powder Technol. 2019, 343, 803–812. [Google Scholar] [CrossRef]
- Cabiscol, R.; Finke, J.H.; Kwade, A. Calibration and interpretation of dem parameters for simulations of cylindrical tablets with multi-sphere approach. Powder Technol. 2018, 327, 232–245. [Google Scholar] [CrossRef]
- Frankowski, P.; Morgeneyer, M. Calibration and validation of dem rolling and sliding friction coefficients in angle of repose and shear measurements. AIP Conf. Proc. 2013, 1542, 851. [Google Scholar]
- Hu, Z.; Liu, X.; Wu, W. Study of the critical angles of granular material in rotary drums aimed for fast dem model calibration. Powder Technol. 2018, 340, 563–569. [Google Scholar] [CrossRef]
- Yan, Z.; Wilkinson, S.K.; Stitt, E.H.; Marigo, M. Investigating mixing and segregation using discrete element modelling (dem) in the freeman ft4 rheometer. Int. J. Pharm. 2016, 513, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, S.; Turnbull, S.; Yan, Z.; Stitt, E.H.; Marigo, M. A parametric evaluation of powder flowability using a freeman rheometer through statistical and sensitivity analysis: A discrete element method (dem) study. Comput. Chem. Eng. 2017, 97, 161–174. [Google Scholar] [CrossRef]
- Yan, M.; Wilkinson, S.; Turnbull, S.; Stitt, E.; Marigo, M. Parametric evaluation for powder flowability using a freeman rheometer: A discrete element method study. Crossroads Part. Sci. Technol. 2015. [Google Scholar]
- Simons, T.A.; Weiler, R.; Strege, S.; Bensmann, S.; Schilling, M.; Kwade, A. A ring shear tester as calibration experiment for dem simulations in agitated mixers—A sensitivity study. Procedia Eng. 2015, 102, 741–748. [Google Scholar] [CrossRef]
- Baran, O.; DeGennaro, A.; Ramé, E.; Wilkinson, A. Dem simulation of a schulze ring shear tester. AIP Conf. Proc. 2009, 1145, 409. [Google Scholar]
- Bilgili, E.; Yepes, J.; Stephenson, L.; Johanson, K.; Scarlett, B. Stress inhomogeneity in powder specimens tested in the jenike shear cell: Myth or fact? Part. Syst. Charact. 2004, 21, 293–302. [Google Scholar] [CrossRef]
- Keppler, I.; Safranyik, F.; Oldal, I. Shear test as calibration experiment for dem simulations: A sensitivity study. Eng. Comput. 2016, 33, 742–758. [Google Scholar] [CrossRef]
- Hanley, K.J.; O’Sullivan, C.; Byrne, E.P.; Cronin, K. Discrete element modelling of the quasi-static uniaxial compression of individual infant formula agglomerates. Particuology 2012, 10, 523–531. [Google Scholar] [CrossRef]
- Hanley, K.J.; O’Sullivan, C.; Oliveira, J.C.; Cronin, K.; Byrne, E.P. Application of taguchi methods to dem calibration of bonded agglomerates. Powder Technol. 2011, 210, 230–240. [Google Scholar] [CrossRef]
- Yoon, J. Application of experimental design and optimization to pfc model calibration in uniaxial compression simulation. Int. J. Rock Mech. Min. Sci. 2007, 44, 871–889. [Google Scholar] [CrossRef]
- Lumay, G.; Boschini, F.; Traina, K.; Bontempi, S.; Remy, J.C.; Cloots, R.; Vandewalle, N. Measuring the flowing properties of powders and grains. Powder Technol. 2012, 224, 19–27. [Google Scholar] [CrossRef]
- Sing, S.L.; Yeong, W.Y.; Wiria, F.E. Selective laser melting of titanium alloy with 50 wt% tantalum: Microstructure and mechanical properties. J. Alloy. Compd. 2016, 660, 461–470. [Google Scholar] [CrossRef]
- Hou, H.; Sun, C.C. Quantifying effects of particulate properties on powder flow properties using a ring shear tester. J. Pharm. Sci. 2008, 97, 4030–4039. [Google Scholar] [CrossRef]
- Maltby, L.; Enstad, G. Uniaxial tester for quality control and flow property characterization of powders. Bulk Solids Handl. 1993, 13, 135. [Google Scholar]
- Lindberg, N.O.; Pålsson, M.; Pihl, A.C.; Freeman, R.; Freeman, T.; Zetzener, H.; Enstad, G. Flowability measurements of pharmaceutical powder mixtures with poor flow using five different techniques. Drug Dev. Ind. Pharm. 2004, 30, 785–791. [Google Scholar] [CrossRef] [PubMed]
- Rackl, M.; Hanley, K.J. A methodical calibration procedure for discrete element models. Powder Technol. 2017, 307, 73–83. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Feng, Y.; Mustoe, G. Proceedings of the 7th International Conference on Discrete Element Methods; Springer: Berlin, Germany, 2016; Volume 188. [Google Scholar]
- Kureck, H.; Govender, N.; Siegmann, E.; Boehling, P.; Radeke, C.; Khinast, J.G. Industrial scale simulations of tablet coating using gpu based dem: A validation study. Chem. Eng. Sci. 2019, 202, 462–480. [Google Scholar] [CrossRef]
- Bao, Y.; Li, T.; Wang, D.; Cai, Z.; Gao, Z. Discrete element method study of effects of the impeller configuration and operating conditions on particle mixing in a cylindrical mixer. Particuology 2019. [Google Scholar] [CrossRef]
- Yaraghi, A.; Ebrahimi, M.; Ein-Mozaffari, F.; Lohi, A. Mixing assessment of non-cohesive particles in a paddle mixer through experiments and discrete element method (dem). Adv. Powder Technol. 2018, 29, 2693–2706. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Yaraghi, A.; Ein-Mozaffari, F.; Lohi, A. The effect of impeller configurations on particle mixing in an agitated paddle mixer. Powder Technol. 2018, 332, 158–170. [Google Scholar] [CrossRef]
- Börner, M.; Bück, A.; Tsotsas, E. Dem-cfd investigation of particle residence time distribution in top-spray fluidised bed granulation. Chem. Eng. Sci. 2017, 161, 187–197. [Google Scholar] [CrossRef]
- Pedrayes, F.; Norniella, J.G.; Melero, M.G.; Menéndez-Aguado, J.M.; del Coz-Díaz, J.J. Frequency domain characterization of torque in tumbling ball mills using dem modelling: Application to filling level monitoring. Powder Technol. 2018, 323, 433–444. [Google Scholar] [CrossRef]
- Freireich, B.; Kumar, R.; Ketterhagen, W.; Su, K.; Wassgren, C.; Zeitler, J.A. Comparisons of intra-tablet coating variability using dem simulations, asymptotic limit models and experiments. Chem. Eng. Sci. 2015, 131, 197–212. [Google Scholar] [CrossRef]
- Freireich, B.; Ketterhagen, W.R.; Wassgren, C. Intra-tablet coating variability for several pharmaceutical tablet shapes. Chem. Eng. Sci. 2011, 66, 2535–2544. [Google Scholar] [CrossRef]
- Santhanam, P.R.; Dreizin, E.L. Predicting conditions for scaled-up manufacturing of materials prepared by ball milling. Powder Technol. 2012, 221, 403–411. [Google Scholar] [CrossRef]
- Teng, S.; Wang, P.; Zhang, Q.; Gogos, C. Analysis of fluid energy mill by gas-solid two-phase flow simulation. Powder Technol. 2011, 208, 684–693. [Google Scholar] [CrossRef]
- Deng, X.; Scicolone, J.; Han, X.; Davé, R.N. Discrete element method simulation of a conical screen mill: A continuous dry coating device. Chem. Eng. Sci. 2015, 125, 58–74. [Google Scholar] [CrossRef]
- Metta, N.; Ierapetritou, M.; Ramachandran, R. A multiscale dem-pbm approach for a continuous comilling process using a mechanistically developed breakage kernel. Chem. Eng. Sci. 2018, 178, 211–221. [Google Scholar] [CrossRef]
- Tahvildarian, P.; Ein-Mozaffari, F.; Upreti, S.R. Circulation intensity and axial dispersion of non-cohesive solid particles in a v-blender via dem simulation. Particuology 2013, 11, 619–626. [Google Scholar] [CrossRef]
- Horibe, M.; Sonoda, R.; Watano, S. Scale-up of lubricant mixing process by using v-type blender based on discrete element method. Chem. Pharm. Bull. 2018, 66, 548–553. [Google Scholar] [CrossRef] [PubMed]
- Moakher, M.; Shinbrot, T.; Muzzio, F.J. Experimentally validated computations of flow, mixing and segregation of non-cohesive grains in 3d tumbling blenders. Powder Technol. 2000, 109, 58–71. [Google Scholar] [CrossRef]
- Sen, M.; Karkala, S.; Panikar, S.; Lyngberg, O.; Johnson, M.; Marchut, A.; Schäfer, E.; Ramachandran, R. Analyzing the mixing dynamics of an industrial batch bin blender via discrete element modeling method. Processes 2017, 5, 22. [Google Scholar] [CrossRef]
- Alchikh-Sulaiman, B.; Alian, M.; Ein-Mozaffari, F.; Lohi, A.; Upreti, S.R. Using the discrete element method to assess the mixing of polydisperse solid particles in a rotary drum. Particuology 2016, 25, 133–142. [Google Scholar] [CrossRef]
- Hassanpour, A.; Pasha, M.; Susana, L.; Rahmanian, N.; Santomaso, A.C.; Ghadiri, M. Analysis of seeded granulation in high shear granulators by discrete element method. Powder Technol. 2013, 238, 50–55. [Google Scholar] [CrossRef]
- Pasha, M.; Hare, C.; Ghadiri, M.; Gunadi, A.; Piccione, P.M. Effect of particle shape on flow in discrete element method simulation of a rotary batch seed coater. Powder Technol. 2016, 296, 29–36. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Freireich, B.; Wassgren, C. Dem–compartment–population balance model for particle coating in a horizontal rotating drum. Chem. Eng. Sci. 2015, 125, 144–157. [Google Scholar] [CrossRef]
- Toschkoff, G.; Just, S.; Funke, A.; Djuric, D.; Knop, K.; Kleinebudde, P.; Scharrer, G.; Khinast, J.G. Spray models for discrete element simulations of particle coating processes. Chem. Eng. Sci. 2013, 101, 603–614. [Google Scholar] [CrossRef]
- Liu, M.; Chen, M.; Li, T.; Tang, Y.; Liu, R.; Shao, Y.; Liu, B.; Chang, J. Cfd–dem–cvd multi-physical field coupling model for simulating particle coating process in spout bed. Particuology 2019, 42, 67–78. [Google Scholar] [CrossRef]
- Nyembwe, A.M.; Cromarty, R.D.; Garbers-Craig, A.M. Simulation of the pressure drop across granulated mixtures using a coupled dem–cfd model. Adv. Powder Technol. 2019, 30, 85–97. [Google Scholar] [CrossRef]
- Jiménez-Herrera, N.; Barrios, G.K.P.; Tavares, L.M. Comparison of breakage models in dem in simulating impact on particle beds. Adv. Powder Technol. 2018, 29, 692–706. [Google Scholar] [CrossRef]
- Boikov, A.V.; Savelev, R.V.; Payor, V.A. Dem calibration approach: Design of experiment. J. Phys. Conf. Ser. 2018, 1015, 032017. [Google Scholar] [CrossRef]
- Donohue, T.; Wensrich, C.; Reid, S. On the use of the uniaxial shear test for dem calibration. In International Conference on Discrete Element Methods; Springer: Beijing, China, 2016; pp. 733–740. [Google Scholar]
- Baran, O.; Han, K.; Aglave, R. Dem Simulation of the Mixture of Dry and Wet Particles inside Rotary Mixer. In Proceedings of the 2016 AIChE Annual Meeting, San Francisco, CA, USA, 14 November 2016. [Google Scholar]
- Devarampally, D.R. Development of Two-Way Coupled Cfd–Dem Model for Top Spray Fluid Bed Granulator Using Star Ccm+; Rutgers University-Graduate School-New Brunswick: New Brunswick, NJ, USA, 2017. [Google Scholar]
- Tamrakar, A.; Ramachandran, R. Cfd–dem–pbm coupled model development and validation of a 3d top-spray fluidized bed wet granulation process. Comput. Chem. Eng. 2019, 125, 249–270. [Google Scholar] [CrossRef]
- Barrasso, D.; Eppinger, T.; Pereira, F.E.; Aglave, R.; Debus, K.; Bermingham, S.K.; Ramachandran, R. A multi-scale, mechanistic model of a wet granulation process using a novel bi-directional pbm–dem coupling algorithm. Chem. Eng. Sci. 2015, 123, 500–513. [Google Scholar] [CrossRef]
- Barrasso, D.; Ramachandran, R. Qualitative assessment of a multi-scale, compartmental pbm-dem model of a continuous twin-screw wet granulation process. J. Pharm. Innov. 2016, 11, 231–249. [Google Scholar] [CrossRef]
- Karajan, N.; Han, Z.; Teng, H.; Wang, J. On the parameter estimation for the discrete-element method in ls-dyna®. In Proceedings of the 13th International LS_DYNA Users Conference, Dearborn, MI, USA, 2014; pp. 8–10. [Google Scholar]
- Jensen, A.; Fraser, K.; Laird, G. Improving the precision of discrete element simulations through calibration models. In Proceedings of the 13th International LS-DYNA Users Conference, Dearborn, MI, USA, 2014; pp. 1–12. [Google Scholar]
- Han, Z.; Teng, H.; Wang, J. Computer generation of sphere packing for discrete element analysis in ls-dyna. In Proceedings of the 12th International LS-DYNA Conference, Detroit, MI, USA, 2012. [Google Scholar]
- Kwapinska, M.; Saage, G.; Tsotsas, E. Mixing of particles in rotary drums: A comparison of discrete element simulations with experimental results and penetration models for thermal processes. Powder Technol. 2006, 161, 69–78. [Google Scholar] [CrossRef]
- Wang, X.; Li, J. Simulation of triaxial response of granular materials by modified dem. Sci. China Phys. Mech. Astron. 2014, 57, 2297–2308. [Google Scholar] [CrossRef]
- Göbel, F.; Golshan, S.; Norouzi, H.R.; Zarghami, R.; Mostoufi, N. Simulation of granular mixing in a static mixer by the discrete element method. Powder Technol. 2019, 346, 171–179. [Google Scholar] [CrossRef]
- Tanabe, S.; Gopireddy, S.R.; Minami, H.; Ando, S.; Urbanetz, N.A.; Scherließ, R. Influence of particle size and blender size on blending performance of bi-component granular mixing: A dem and experimental study. Eur. J. Pharm. Sci. 2019, 134, 205–218. [Google Scholar] [CrossRef] [PubMed]
- Garner, S.; Strong, J.; Zavaliangos, A. Study of the die compaction of powders to high relative densities using the discrete element method. Powder Technol. 2018, 330, 357–370. [Google Scholar] [CrossRef]
- Beinert, S.; Fragnière, G.; Schilde, C.; Kwade, A. Analysis and modelling of bead contacts in wet-operating stirred media and planetary ball mills with cfd–dem simulations. Chem. Eng. Sci. 2015, 134, 648–662. [Google Scholar] [CrossRef]
- Pei, C.; Elliott, J.A. Asymptotic limits on tablet coating variability based on cap-to-band thickness distributions: A discrete element model (dem) study. Chem. Eng. Sci. 2017, 172, 286–296. [Google Scholar] [CrossRef]
- Jiang, Z.; Bück, A.; Tsotsas, E. Cfd–dem study of residence time, droplet deposition and collision velocity for a binary particle mixture in a wurster fluidized bed coater. Dry. Technol. 2018, 36, 638–650. [Google Scholar] [CrossRef]
- Kulju, T.; Paavola, M.; Spittka, H.; Keiski, R.L.; Juuso, E.; Leiviskä, K.; Muurinen, E. Modeling continuous high-shear wet granulation with dem-pb. Chem. Eng. Sci. 2016, 142, 190–200. [Google Scholar] [CrossRef]
- Darabi, P.; Pougatch, K.; Salcudean, M.; Grecov, D. Dem investigations of fluidized beds in the presence of liquid coating. Powder Technol. 2011, 214, 365–374. [Google Scholar] [CrossRef]
- Li, T.; Guenther, C. Mfix-dem simulations of change of volumetric flow in fluidized beds due to chemical reactions. Powder Technol. 2012, 220, 70–78. [Google Scholar] [CrossRef]
- Gopalakrishnan, P.; Tafti, D. Development of parallel dem for the open source code mfix. Powder Technol. 2013, 235, 33–41. [Google Scholar] [CrossRef]
- Chen, S.; Adepu, M.; Emady, H.; Jiao, Y.; Gel, A. Enhancing the physical modeling capability of open-source mfix-dem software for handling particle size polydispersity: Implementation and validation. Powder Technol. 2017, 317, 117–125. [Google Scholar] [CrossRef]
- Garg, R.; Galvin, J.; Li, T.; Pannala, S. Open-source mfix-dem software for gas–solids flows: Part i—Verification studies. Powder Technol. 2012, 220, 122–137. [Google Scholar] [CrossRef]
- Li, T.; Garg, R.; Galvin, J.; Pannala, S. Open-source mfix-dem software for gas-solids flows: Part ii—Validation studies. Powder Technol. 2012, 220, 138–150. [Google Scholar] [CrossRef]
- Li, T.; Gopalakrishnan, P.; Garg, R.; Shahnam, M. Cfd–dem study of effect of bed thickness for bubbling fluidized beds. Particuology 2012, 10, 532–541. [Google Scholar] [CrossRef]
- Fu, X.; Dutt, M.; Bentham, A.C.; Hancock, B.C.; Cameron, R.E.; Elliott, J.A. Investigation of particle packing in model pharmaceutical powders using x-ray microtomography and discrete element method. Powder Technol. 2006, 167, 134–140. [Google Scholar] [CrossRef]
- Mukherjee, R.; Mao, C.; Chattoraj, S.; Chaudhuri, B. Dem based computational model to predict moisture induced cohesion in pharmaceutical powders. Int. J. Pharm. 2018, 536, 301–309. [Google Scholar] [CrossRef]
- Schiano, S.; Chen, L.; Wu, C.-Y. The effect of dry granulation on flow behaviour of pharmaceutical powders during die filling. Powder Technol. 2018, 337, 78–83. [Google Scholar] [CrossRef]
- Wu, C.-Y. Dem simulations of die filling during pharmaceutical tabletting. Particuology 2008, 6, 412–418. [Google Scholar] [CrossRef]
- Du, B.; Zhao, C.; Dong, G.; Bi, J. Fem-dem coupling analysis for solid granule medium forming new technology. J. Mater. Process. Technol. 2017, 249, 108–117. [Google Scholar] [CrossRef]
- Barrasso, D.; Ramachandran, R. Multi-scale modeling of granulation processes: Bi-directional coupling of pbm with dem via collision frequencies. Chem. Eng. Res. Des. 2015, 93, 304–317. [Google Scholar] [CrossRef]
- Khadka, P.; Ro, J.; Kim, H.; Kim, I.; Kim, J.T.; Kim, H.; Cho, J.M.; Yun, G.; Lee, J. Pharmaceutical particle technologies: An approach to improve drug solubility, dissolution and bioavailability. Asian J. Pharm. Sci. 2014, 9, 304–316. [Google Scholar] [CrossRef] [Green Version]
- Naik, S.; Chaudhuri, B. Quantifying dry milling in pharmaceutical processing: A review on experimental and modeling approaches. J. Pharm. Sci. 2015, 104, 2401–2413. [Google Scholar] [CrossRef] [PubMed]
- Hogg, R.; Cho, H. A review of breakage behavior in fine grinding by stirred-media milling. KONA Powder Part. J. 2000, 18, 9–19. [Google Scholar] [CrossRef]
- Loh, Z.H.; Samanta, A.K.; Sia Heng, P.W. Overview of milling techniques for improving the solubility of poorly water-soluble drugs. Asian J. Pharm. Sci. 2015, 10, 255–274. [Google Scholar] [CrossRef] [Green Version]
- Peltonen, L.; Hirvonen, J. Pharmaceutical nanocrystals by nanomilling: Critical process parameters, particle fracturing and stabilization methods. J. Pharm. Pharmacol. 2010, 62, 1569–1579. [Google Scholar] [CrossRef]
- Khanal, M.; Jayasundara, C.T. Role of particle stiffness and inter-particle sliding friction in milling of particles. Particuology 2014, 16, 54–59. [Google Scholar] [CrossRef]
- Capece, M.; Davé, R.N.; Bilgili, E. A pseudo-coupled dem–non-linear pbm approach for simulating the evolution of particle size during dry milling. Powder Technol. 2018, 323, 374–384. [Google Scholar] [CrossRef]
- Capece, M.; Bilgili, E.; Davé, R. Insight into first-order breakage kinetics using a particle-scale breakage rate constant. Chem. Eng. Sci. 2014, 117, 318–330. [Google Scholar] [CrossRef]
- Naik, S.; Malla, R.; Shaw, M.; Chaudhuri, B. Investigation of comminution in a wiley mill: Experiments and dem simulations. Powder Technol. 2013, 237, 338–354. [Google Scholar] [CrossRef]
- Naik, S.; Chaudhuri, B. Investigating granular milling in a hammer mill: Experiments and simulation. In Computational Methods and Experimental Measurements XV; WIT Press: Ashurst Lodge, UK, 2011; Volume 15, pp. 121–132. [Google Scholar]
- Nishiura, D.; Wakita, Y.; Shimosaka, A.; Shirakawa, Y.; Hidaka, J. Estimation of power during dispersion in stirred media mill by dem–les simulation. J. Chem. Eng. Jpn. 2010, 43, 841–849. [Google Scholar] [CrossRef]
- Potapov, A.V.; Campbell, C.S. Computer simulation of impact-induced particle breakage. Powder Technol. 1994, 81, 207–216. [Google Scholar] [CrossRef]
- Rajamani, R.; Mishra, B.; Venugopal, R.; Datta, A. Discrete element analysis of tumbling mills. Powder Technol. 2000, 109, 105–112. [Google Scholar] [CrossRef]
- Vanarase, A.U.; Osorio, J.G.; Muzzio, F.J. Effects of powder flow properties and shear environment on the performance of continuous mixing of pharmaceutical powders. Powder Technol. 2013, 246, 63–72. [Google Scholar] [CrossRef] [Green Version]
- Dubey, A.; Vanarase, A.U.; Muzzio, F.J. Impact of process parameters on critical performance attributes of a continuous blender—A dem-based study. AIChE J. 2012, 58, 3676–3684. [Google Scholar] [CrossRef]
- Kuo, H.P.; Knight, P.C.; Parker, D.J.; Tsuji, Y.; Adams, M.J.; Seville, J.P.K. The influence of dem simulation parameters on the particle behaviour in a v-mixer. Chem. Eng. Sci. 2002, 57, 3621–3638. [Google Scholar] [CrossRef]
- Lemieux, M.; Bertrand, F.; Chaouki, J.; Gosselin, P. Comparative study of the mixing of free-flowing particles in a v-blender and a bin-blender. Chem. Eng. Sci. 2007, 62, 1783–1802. [Google Scholar] [CrossRef]
- Lemieux, M.; Léonard, G.; Doucet, J.; Leclaire, L.A.; Viens, F.; Chaouki, J.; Bertrand, F. Large-scale numerical investigation of solids mixing in a v-blender using the discrete element method. Powder Technol. 2008, 181, 205–216. [Google Scholar] [CrossRef]
- Manickam, S.S.; Shah, R.; Tomei, J.; Bergman, T.L.; Chaudhuri, B. Investigating mixing in a multi-dimensional rotary mixer: Experiments and simulations. Powder Technol. 2010, 201, 83–92. [Google Scholar] [CrossRef]
- Ren, X.; Zhou, G.; Xu, J.; Cui, L.; Ge, W. Numerical analysis of enhanced mixing in a gallay tote blender. Particuology 2016, 29, 95–102. [Google Scholar] [CrossRef]
- Ren, X.; Xu, J.; Qi, H.; Cui, L.; Ge, W.; Li, J. Gpu-based discrete element simulation on a tote blender for performance improvement. Powder Technol. 2013, 239, 348–357. [Google Scholar] [CrossRef]
- Yang, S.; Sun, Y.; Zhang, L.; Chew, J.W. Impact of granular segregation on the solid residence time and active-passive exchange in a rotating drum. Chem. Eng. Sci. 2017, 173, 287–302. [Google Scholar] [CrossRef]
- Yang, S.; Luo, K.; Chew, J.W. Three-dimensional axial dispersion dynamics of granular flow in the rolling-regime rotating drum. Powder Technol. 2018, 332, 131–138. [Google Scholar] [CrossRef]
- Xu, Y.; Xu, C.; Zhou, Z.; Du, J.; Hu, D. 2d dem simulation of particle mixing in rotating drum: A parametric study. Particuology 2010, 8, 141–149. [Google Scholar] [CrossRef]
- Hansuld, E.; Briens, L. A review of monitoring methods for pharmaceutical wet granulation. Int. J. Pharm. 2014, 472, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Faure, A.; York, P.; Rowe, R. Process control and scale-up of pharmaceutical wet granulation processes: A review. Eur. J. Pharm. Biopharm. 2001, 52, 269–277. [Google Scholar] [CrossRef]
- Thompson, M. Twin screw granulation—Review of current progress. Drug Dev. Ind. Pharm. 2015, 41, 1223–1231. [Google Scholar] [CrossRef]
- Litster, J.D. Scaleup of wet granulation processes: Science not art. Powder Technol. 2003, 130, 35–40. [Google Scholar] [CrossRef]
- Sarkar, S.; Chaudhuri, B. Dem modeling of high shear wet granulation of a simple system. Asian J. Pharm. Sci. 2018, 13, 220–228. [Google Scholar] [CrossRef]
- Gantt, J.A.; Cameron, I.T.; Litster, J.D.; Gatzke, E.P. Determination of coalescence kernels for high-shear granulation using dem simulations. Powder Technol. 2006, 170, 53–63. [Google Scholar] [CrossRef]
- Washino, K.; Tan, H.S.; Hounslow, M.J.; Salman, A.D. A new capillary force model implemented in micro-scale cfd–dem coupling for wet granulation. Chem. Eng. Sci. 2013, 93, 197–205. [Google Scholar] [CrossRef]
- Terashita, K.; Nishimura, T.; Natsuyama, S. Optimization of operating conditions in a high-shear mixer using dem model: Determination of optimal fill level. Chem. Pharm. Bull. 2002, 50, 1550–1557. [Google Scholar] [CrossRef]
- Lee, K.F.; Dosta, M.; McGuire, A.D.; Mosbach, S.; Wagner, W.; Heinrich, S.; Kraft, M. Development of a multi-compartment population balance model for high-shear wet granulation with discrete element method. Comput. Chem. Eng. 2017, 99, 171–184. [Google Scholar] [CrossRef]
- McGuire, A.D.; Lee, K.F.; Dosta, M.; Mosbach, S.; Rosenboom, J.-G.; Heinrich, S.; Kraft, M. Compartmental residence time estimation in batch granulators using a colourimetric image analysis algorithm and discrete element modelling. Adv. Powder Technol. 2017, 28, 2239–2255. [Google Scholar] [CrossRef]
- Tamrakar, A.; Chen, S.-W.; Ramachandran, R. A dem model-based study to quantitatively compare the effect of wet and dry binder addition in high-shear wet granulation processes. Chem. Eng. Res. Des. 2019, 142, 307–326. [Google Scholar] [CrossRef]
- Nakamura, H.; Miyazaki, Y.; Sato, Y.; Iwasaki, T.; Watano, S. Numerical analysis of similarities of particle behavior in high shear mixer granulators with different vessel sizes. Adv. Powder Technol. 2009, 20, 493–501. [Google Scholar] [CrossRef]
- Kafui, D.K.; Thornton, C. Fully-3d dem simulation of fluidised bed spray granulation using an exploratory surface energy-based spray zone concept. Powder Technol. 2008, 184, 177–188. [Google Scholar] [CrossRef]
- Dhenge, R.M.; Washino, K.; Cartwright, J.J.; Hounslow, M.J.; Salman, A.D. Twin screw granulation using conveying screws: Effects of viscosity of granulation liquids and flow of powders. Powder Technol. 2013, 238, 77–90. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Siegmann, E.; Prieling, D.; Glasser, B.J.; Khinast, J.G. An investigation of the hydrodynamic similarity of single-spout fluidized beds using cfd-dem simulations. Adv. Powder Technol. 2017, 28, 2465–2481. [Google Scholar] [CrossRef]
- Boehling, P.; Toschkoff, G.; Just, S.; Knop, K.; Kleinebudde, P.; Funke, A.; Rehbaum, H.; Rajniak, P.; Khinast, J.G. Simulation of a tablet coating process at different scales using dem. Eur. J. Pharm. Sci. 2016, 93, 74–83. [Google Scholar] [CrossRef]
- Boehling, P.; Toschkoff, G.; Knop, K.; Kleinebudde, P.; Just, S.; Funke, A.; Rehbaum, H.; Khinast, J. Analysis of large-scale tablet coating: Modeling, simulation and experiments. Eur. J. Pharm. Sci. 2016, 90, 14–24. [Google Scholar] [CrossRef]
- Kalbag, A.; Wassgren, C.; Sumana Penumetcha, S.; Pérez-Ramos, J.D. Inter-tablet coating variability: Residence times in a horizontal pan coater. Chem. Eng. Sci. 2008, 63, 2881–2894. [Google Scholar] [CrossRef]
- Pandey, P.; Song, Y.; Kayihan, F.; Turton, R. Simulation of particle movement in a pan coating device using discrete element modeling and its comparison with video-imaging experiments. Powder Technol. 2006, 161, 79–88. [Google Scholar] [CrossRef]
- Boehling, P.; Toschkoff, G.; Dreu, R.; Just, S.; Kleinebudde, P.; Funke, A.; Rehbaum, H.; Khinast, J.G. Comparison of video analysis and simulations of a drum coating process. Eur. J. Pharm. Sci. 2017, 104, 72–81. [Google Scholar] [CrossRef]
- Hilton, J.E.; Ying, D.Y.; Cleary, P.W. Modelling spray coating using a combined cfd–dem and spherical harmonic formulation. Chem. Eng. Sci. 2013, 99, 141–160. [Google Scholar] [CrossRef]
- Li, L.; Remmelgas, J.; van Wachem, B.G.M.; von Corswant, C.; Johansson, M.; Folestad, S.; Rasmuson, A. Residence time distributions of different size particles in the spray zone of a wurster fluid bed studied using dem-cfd. Powder Technol. 2015, 280, 124–134. [Google Scholar] [CrossRef]
Calibration Method | Measured Bulk Properties | Related DEM Input Parameters | Ref. Used the Calibration Method |
---|---|---|---|
Static angle of repose | Angle of repose | 1 P-P static friction P-P rolling friction P-P cohesion | [144,147,148,149,150,151] |
Dynamic angle of repose | Avalanche angle Dynamic cohesive index | P-P static friction P-P rolling friction JKR surface energy | [151,152,153] |
FT4 rheometer | Flow energy P-P friction P-G friction | Bulk density P-P & 2 P-G static friction Coefficient of restitution JKR surface energy Surface energy | [154,155,156] |
Shear cell test | Bulk density Time flow function Flow function | P-P & P-G static friction P-P & P-G rolling friction Coefficient of restitution JKR surface energy Surface energy | [157,158,159,160] |
Uniaxial test | Unconfined yield strength Flow factor | P-P static friction P-P rolling friction Contact plasticity ratio | [161,162,163] |
DEM Software | Company or Developer | Relevant Literature in the Pharmaceutical Industry | |
---|---|---|---|
Commercial software | EDEMTM | DEM solutions Ltd. | [18,19,26,44,63,64,68,121,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192] |
Rocky DEMTM | ESSS | [193,194,195,196] | |
STAR-CCM+ | CD-adapco | [197,198,199,200,201] | |
LS-DYNA® | LSTC | [202,203,204] | |
PFC 2D (3D) | Itasca International Inc. | [135,141,153,205] | |
Open-source software | MercuryDPM | University of Twente | - |
YADE | SDEC at Grenoble University | [160,206] | |
LIGGGHTS | Johannes Kepler University | [207,208,209,210,211,212,213] | |
MFIX-DEM | NETL | [214,215,216,217,218,219,220] |
Equipment | Simulation Conditions | Predicted Results Based on the Process Simulation | Ref. | |||||
---|---|---|---|---|---|---|---|---|
Contact Model | Simulation Coupling Approach | Simulation Time (s) | Number of Particles | Process Parameters | ||||
Ball mill | Hertz-Mindlin model | DEM-PBM | 240 | - |
|
| Particle velocity, power draw, particle flow patterns, collision energy, dissipated energy, maximum impact energy and particle size | [47] |
|
| |||||||
|
| |||||||
- | - | 14,500 |
| Trajectory of particles, collision energy and power draw | [232] | |||
Hertz-Mindlin no slip model | - | - | - |
|
| Energy dissipation rate | [179] | |
|
| |||||||
|
| |||||||
DEM-PBM | 20 | Up to 26,320 |
| Impact energy distribution, collision frequency for dissipation energy, specific breakage parameter, material strength parameter and size-independent threshold energy | [64] | |||
DEM-PBM | 10 | Up to 14,213 |
| Specific breakage rate constant, collision frequency, mass specific energy rate, particle size distribution (PSD) | [233] | |||
DEM-PBM | 20 | Up to 24,353 |
| Collision frequency, specific breakage rate constant, mass specific energy rate, PSD | [234] | |||
Fluid energy mill(Jet mill) | Hertz-Mindlin model | DEM-CFD | 0.5 | 1000 |
| PSD, particle and air flow patterns, particle velocity distribution, number of particles in each zone and particle collision frequency and velocity | [180] | |
Conical scree mill | Hertz-Mindlin model | - | 20 | 5000 |
| Collision rate, number of particles in transition zone, average collision numbers and particle number in the conical screen mill | [181] | |
10,000 | ||||||||
20,000 | ||||||||
Hertz-Mindlin no slip model | DEM-PBM | 40 | - |
| Particles of different sizes, collision and mass specific energy, material strength parameter, size-independent threshold energy | [182] | ||
Hammer mill | Hysteretic model | - | 10 | 10,000 |
| Spatial distribution of particles size | [235] | |
- | 3 | 4000 |
| Average particle size, kinetic energy | [236] | |||
Stirred media mill | Hertz-Mindlin model | - | - | - |
| Cumulative stress energy distribution, spatial distribution of grinding media, number of grinding media contact, powder input, kinetic energy | [210] | |
DEM-CFD | - | Up to 119,302 |
| Fluid velocity, bead and fluid behavior in stirred media mill, bead velocity, average size of aggregated particles, fluid shear power distribution | [237] |
Equipment | Simulation Conditions | Predicted Results Based on the Process Simulation | Ref. | ||||
---|---|---|---|---|---|---|---|
Contact Model | Simulation Time (s) | Number of Particles | Process Parameters | ||||
V-blender | LSD model | 8 | 11,168 |
| Axial and radial velocities at the cross-sectional plane, particle average speeds, velocity fluctuation, exchange rate between two arms, circulation time in the two arms and dispersion at division and combination steps | [242] | |
Modified LSD model | - | 420,000 |
|
| Granular flow and blending dynamics, percentage of particles crossing the axial plane of symmetry, RSD, mean granular velocity and temperature | [243] | |
780.000 |
| ||||||
Hertz-Mindlin model | A few seconds | 9363 |
|
| Circulation intensity, particle kinetic energy, particle velocity and axial dispersion coefficient | [183] | |
13,108 |
| ||||||
15,917 |
| ||||||
21,534 |
| ||||||
Modified Hertz-Mindlin model | 120 | 225,000 |
|
| Granular flow and blending patterns, particle velocity field, torque and degree of mixture homogeneity (RSD) | [244] | |
113,200 |
| ||||||
Hertz-Mindlin no slip model and Hertz-Mindlin + JKR model | 10 | Up to 120,576 |
| Travel distance of particles | [184] | ||
Hysteretic model | - | 15,000 |
| Blending mechanism, axial blending flux, particle velocity field and segregation rate | [185] | ||
Double cone blender | LSD model | - | 30,000 |
| RSD | [44] | |
Hysteretic model | 10 | 500,000 |
| Granular flow and blending patterns | [245] | ||
- | 15,000 |
| Blending mechanism, axial blending flux, particle velocity field and segregation rate | [185] | |||
Bin (tote) blender | Modified LSD model | - | 420,000 |
|
| Granular flow and blending dynamics, percentage of particles crossing the axial plane of symmetry, RSD and mean granular velocity and temperature | [243] |
780.000 |
| ||||||
Hertz-Mindlin model | 502 | 200,000 |
| RSD, intensity segregation | [186] | ||
- | Up to 507, 459 |
| Particle blending patterns, RSD, axial velocity of particles and particle velocity distribution | [246] | |||
- | 261,787 |
| RSD, particle blending patterns and particle mean velocity | [247] | |||
524,580 |
| ||||||
665,980 |
| ||||||
789,610 |
| ||||||
1,015,705 |
| ||||||
Rotating drum | LSD model | - | Up to 11,860 |
| Particle velocity field, number of contacts, mixing time (tR) and mixing numbers (Nmix) | [205] | |
280 | 278,113 |
|
| Active-passive interface, particle trajectory, crossing fraction distribution, particle displacement in the active region and particle residence time in the active and passive region | [248] | ||
287,660 |
| ||||||
300,126 |
| ||||||
338.677 |
| ||||||
70 | 261,946 |
|
| Axial dispersion coefficient | [249] | ||
296,939 |
| ||||||
Hertz-Mindlin model | 20 | Up to 44,296 |
| Granular flow and blending patterns and mixing index | [187] | ||
Hertz-Mindlin + JKR model | 300 | Up to 10,365 |
| Concentration of particles, axial dispersion coefficient and RSD | [25] | ||
Thornton’s model | Up to 274.26 | 180 |
| Granular flow and blending patterns and velocity field | [250] |
Equipment | Simulation Conditions | Predicted Results Based on the Process Simulation | Ref. | |||||
---|---|---|---|---|---|---|---|---|
Contact Model | Simulation Coupling Approach | Simulation Time (s) | Number of Particles | Process Parameters | ||||
High shear granulator | LSD model | - | 5 | 17,823,551 |
| Shear force distribution and kinetic energy | [17] | |
| ||||||||
- | 3 | 5000 |
| Particle collision rate, Stoke’s deformation number and consolidation rate constant | [256] | |||
DEM-CFD | - | - |
| Liquid droplet penetration into a particle bed, droplet impingement on a dynamic particle bed and relative velocity of droplets in vertical direction | [257] | |||
- | - | 8069 |
|
| Solid fraction of particles, particle velocity vector and particle velocity | [258] | ||
16,607 |
| |||||||
25,826 |
| |||||||
33,354 |
| |||||||
41,709 |
| |||||||
49,660 |
| |||||||
Hertz-Mindlin model | - | 10 | 147,460 |
| Particle velocity field, particle concentration at various regions and number of seeded granules | [188] | ||
DEM-PBM | - | 80,000 |
| Residence time distribution and volume fractions | [259] | |||
200,000 | Collision frequency | |||||||
- | 200 | 80,000 | - | Residence time distribution, volume fraction, particle concentrations from the surface and particle velocity | [260] | |||
Hertz-Mindlin no slip model | - | 44 | 53,913 |
| Viscosity of wetted granules, distribution of binder particle and liquid droplets, capillary forces, viscous forces, liquid bridge forces, granules velocity, collision frequency and number of liquid bridges | [261] | ||
Liquid bridge model | - | 10 | 2132 |
| Total number of liquid bridges | [255] | ||
Rolling friction model | - | - | 8.349 |
|
| Particle configuration depending on its position, particle velocity filed and particle collision energy | [262] | |
28.178 |
| |||||||
66,792 |
| |||||||
130,454 |
| |||||||
Fluid bed granulator | Hertz-Mindlin model | DEM-CFD | 15 | 165,000 |
| Mean particle residence time, re-circulation time, total particle passes, mean solid volume fraction, mean crossing length, mean particle velocity and particle wetting | [175] | |
DEM-CFD | 4 | 150,000 |
| Particle velocity, time-averaged gas velocity and solid volume fraction, particle collision velocity, density distribution and angular velocity | [63] | |||
Hertz-Mindlin no slip model | DEM-CFD | 5 | 45,000 |
| Particle position and velocity distribution, Residence time distribution and solid volume fraction, particle collision and collision velocity and mean contact time | [19] | ||
PBM-DEM-CFD | 10 | 40,000 |
| Air flow rate, solid volume fraction, particle velocities, compartmental distribution of particles, inter-compartmental particle transfer, particle collision frequencies, particle collision energy, particle residence time in the spray zone and particle temperature | [199] | |||
Hertz-Mindlin + JKR model | - | 0.525 | 50,000 |
| Number of granules, number of bonds and active sprayed particles, adhesive bond energy, granule size distribution and fractal dimension | [263] | ||
Twin screw granulator | Hertz-Mindlin model | DEM-PBM | 30 | - |
| Number contacts, impact frequency and average particle velocity | [200] | |
DEM-PBM | 10 | 1000 |
| Residence time information, particle collision and velocity data | [201] | |||
Modified Hertz-Mindlin model | - | - | 195,916 |
| Granular flow, surface velocity vectors, resultant velocity | [264] |
Equipment | Simulation Conditions | Predicted Results Based on the Process Simulation | Ref. | |||||
---|---|---|---|---|---|---|---|---|
Contact Model | Simulation Coupling Approach | Simulation Time (s) | Number of Particles | Process Parameters | ||||
Pan coater | Hertz-Mindlin model | - | 600 | 40,000 |
|
| RSD of concentration, RSD of residence time and residence time distribution | [62] |
60,000 |
| |||||||
- | 60 | 1000 |
| Tablet coating thickness and cap-to-band ratios | [211] | |||
Hertz-Mindlin no slip model | - | 60 | Up to 1539 |
| Tablet orientation in the spray zone appearance frequency, mean circulation time between appearances, mean residence time per pass, inter-tablet coating uniformity and intra-tablet coating uniformity | [18] | ||
- | 1800 | Up to 770 |
| Intra-tablet coating variability and coating thickness distribution | [177] | |||
- | 120 | Up to 1168 |
| Intra-tablet coating variability and relative asymptotic coating thickness | [178] | |||
LSD model and hysteretic model | - | 60 or 120 | - |
| Average and deviation of residence time, fractional residence time and the dimensionless appearance frequency | [268] | ||
Hysteretic model | - | 12 | Up to 90,000 |
| Coating variability and frequency distribution of residence time | [46] | ||
Modified Thornton’s model and hysteretic model | - | 6 or 8 | 4700 |
|
| Dynamic angle of repose, average cascading velocity and average surface velocity | [269] | |
6000 |
| |||||||
7500 |
| |||||||
Drum coater | LSD model | - | 90 | 815,602 |
|
| Inter-tablet coating uniformity, velocity distribution in the spray zone, spray residence time and normalized bed cycle time | [267] |
1,028,368 |
| |||||||
- | 36 | - |
| Tablet velocity, spray residence time and tablet bed residence | [270] | |||
- | 60 | 26,362 |
|
| RSD of binary mixture, residence time, tablet velocity field, surface velocity of tablet bed and tablet angular velocity | [26] | ||
31,634 |
| |||||||
36,906 |
| |||||||
Modified LSD model | - | - | 10,638 |
| Tablet velocity | [171] | ||
14,184 |
| |||||||
57,128 |
| |||||||
76,170 |
| |||||||
Hertz-Mindlin model | - | 25 | 4200 |
| Particle radial and tangential velocity distribution and number of contact | [189] | ||
DEM-PBM | 1000 | 2263 |
|
| Inter-tablet coating variability and residence time distributions | [190] | ||
2694 |
| |||||||
- | - | 18 | 12,446 |
| RSD and coating mass distribution | [191] | ||
- | 90 | Up to 14,177 |
| Coefficient of variation of the coating mass | [121] | |||
Fluidized bed coater | LSD model | - | 20 | 2400 |
| Bed behavior, average particle height, bed height, gas pressure drop fluctuations and wet coefficient of restitution | [214] | |
DEM-CFD | 10 | 7000 |
| Probability distribution functions for the coating volume and inter-tablet coating uniformity | [271] | |||
Modified LSD model | DEM-CFD | 30 | 32,400 |
| Cycle time distribution, residence time distribution and collision velocity | [212] | ||
Hertz-Mindlin model | DEM-CFD-CVD 1 | 7 | 15,000 |
| Layer thickness, deposition rate, fluid dynamic pressure, fluid volume fraction and particle velocity field | [192] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yeom, S.B.; Ha, E.-S.; Kim, M.-S.; Jeong, S.H.; Hwang, S.-J.; Choi, D.H. Application of the Discrete Element Method for Manufacturing Process Simulation in the Pharmaceutical Industry. Pharmaceutics 2019, 11, 414. https://doi.org/10.3390/pharmaceutics11080414
Yeom SB, Ha E-S, Kim M-S, Jeong SH, Hwang S-J, Choi DH. Application of the Discrete Element Method for Manufacturing Process Simulation in the Pharmaceutical Industry. Pharmaceutics. 2019; 11(8):414. https://doi.org/10.3390/pharmaceutics11080414
Chicago/Turabian StyleYeom, Su Bin, Eun-Sol Ha, Min-Soo Kim, Seong Hoon Jeong, Sung-Joo Hwang, and Du Hyung Choi. 2019. "Application of the Discrete Element Method for Manufacturing Process Simulation in the Pharmaceutical Industry" Pharmaceutics 11, no. 8: 414. https://doi.org/10.3390/pharmaceutics11080414
APA StyleYeom, S. B., Ha, E.-S., Kim, M.-S., Jeong, S. H., Hwang, S.-J., & Choi, D. H. (2019). Application of the Discrete Element Method for Manufacturing Process Simulation in the Pharmaceutical Industry. Pharmaceutics, 11(8), 414. https://doi.org/10.3390/pharmaceutics11080414