Next Article in Journal
Controlled Drug Delivery Systems for Oral Cancer Treatment—Current Status and Future Perspectives
Next Article in Special Issue
Biomedical Applications of Hyaluronic Acid-Based Nanomaterials in Hyperthermic Cancer Therapy
Previous Article in Journal
Latest Advances in the Development of Eukaryotic Vaults as Targeted Drug Delivery Systems
Previous Article in Special Issue
pH-Responsive i-motif Conjugated Hyaluronic Acid/Polyethylenimine Complexes for Drug Delivery Systems
Open AccessReview

Hyaluronic Acid-Coated Nanomedicine for Targeted Cancer Therapy

Department of Chemistry, School of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
Department of Chemistry and Life Science, Sahmyook University, Seoul 01795, Korea
Authors to whom correspondence should be addressed.
These authors contributed equally to this work.
Pharmaceutics 2019, 11(7), 301;
Received: 23 May 2019 / Revised: 25 June 2019 / Accepted: 26 June 2019 / Published: 30 June 2019
(This article belongs to the Special Issue Hyaluronic Acid for Biomedical Applications)
Hyaluronic acid (HA) has been widely investigated in cancer therapy due to its excellent characteristics. HA, which is a linear anionic polymer, has biocompatibility, biodegradability, non-immunogenicity, non-inflammatory, and non-toxicity properties. Various HA nanomedicines (i.e., micelles, nanogels, and nanoparticles) can be prepared easily using assembly and modification of its functional groups such as carboxy, hydroxy and N-acetyl groups. Nanometer-sized HA nanomedicines can selectively deliver drugs or other molecules into tumor sites via their enhanced permeability and retention (EPR) effect. In addition, HA can interact with overexpressed receptors in cancer cells such as cluster determinant 44 (CD44) and receptor for HA-mediated motility (RHAMM) and be degraded by a family of enzymes called hyaluronidase (HAdase) to release drugs or molecules. By interaction with receptors or degradation by enzymes inside cancer cells, HA nanomedicines allow enhanced targeting cancer therapy. In this article, recent studies about HA nanomedicines in drug delivery systems, photothermal therapy, photodynamic therapy, diagnostics (because of the high biocompatibility), colloidal stability, and cancer targeting are reviewed for strategies using micelles, nanogels, and inorganic nanoparticles. View Full-Text
Keywords: hyaluronic acid; cancer therapy; drug delivery; micelle; nanogel; silica nanoparticle; gold nanoparticle; metal organic framework hyaluronic acid; cancer therapy; drug delivery; micelle; nanogel; silica nanoparticle; gold nanoparticle; metal organic framework
Show Figures

Figure 1

MDPI and ACS Style

Kim, K.; Choi, H.; Choi, E.S.; Park, M.-H.; Ryu, J.-H. Hyaluronic Acid-Coated Nanomedicine for Targeted Cancer Therapy. Pharmaceutics 2019, 11, 301.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

Search more from Scilit
Back to TopTop