Formulation Composition and Process Affect Counterion for CSP7 Peptide
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Buffer Preparation
- The phosphate buffer solution (pH 2.0) was prepared by dissolving 50 mM disodium dihydrogen phosphate and 50 mM potassium dihydrogen phosphate in 1 L of purified water. The pH of the buffer solution was adjusted to 2.0 (±0.1) using phosphoric acid.
- The phosphate buffer solution (pH 3.5) was prepared by dissolving 50 mM potassium dihydrogen phosphate in 1 L of purified water. The pH of the buffer solution was adjusted to 3.5 (±0.1) using phosphoric acid.
- The sodium acetate buffer solution (pH 4.5) was prepared by dissolving 50 mM sodium acetate in 1 L of purified water. The pH of the buffer solution was adjusted to 4.5 (±0.1) using glacial acetic acid.
- The phosphate–citrate buffer solution (pH 5.5) was prepared by dissolving 50 mM disodium hydrogen phosphate and citric acid in 1 L of purified water. The pH of the buffer solution was adjusted to 5.5 (± 0.1) using sodium hydroxide.
- The phosphate buffer solution (pH 6.5) was prepared by dissolving 50 mM monobasic potassium phosphate in 1 L of purified water. The pH of the buffer solution was adjusted to 6.5 (±0.1) using sodium hydroxide.
- The tris-hydrochloride buffer solution (pH 7.5 and 8.0) was prepared by dissolving 50 mM tris(hydroxymethyl)aminomethane in 1 L of purified water. The pH of the buffer solutions was adjusted to 7.5 (±0.1) and 8.0 (±0.1) using hydrochloric acid.
- The tris-acetate buffer solution (pH 8.5 and 10.0) was prepared by dissolving 50 mM calcium chloride and 50 mM tris(hydroxymethyl)aminomethane in 1 L of purified water. The pH of the buffer solutions was adjusted to 8.5 (±0.1) and 10.0 (±0.1) with glacial acetic acid.
- The tris buffer saline (TBS) was prepared by dissolving 40 mM tris base and 10 mM sodium chloride in 1 L of purified water. The pH of solution was adjusted to pH 7.5 (±0.1) by adding 1 N hydrochloric acid.
2.3. Solubility Study
2.4. Solution Stability
2.4.1. Storage Stability
2.4.2. Freeze-Thaw Stability
2.4.3. Mechanical Stability
2.5. Preparation of Lyophilized Formulations
2.6. HPLC Analysis
2.7. Karl Fischer Titration
2.8. X-ray Diffractometry (XRD)
2.9. Water Sorption Isotherms Measurement
2.10. Thermogravimetric Analysis
2.11. Differential Scanning Calorimetry (DSC)
2.12. Stability of Lyophilized Peptides
2.13. Stability of Lyophilized Peptides after Exposure to High Humidity Environments
2.14. Solution Nuclear Magnetic Resonance
2.14.1. 1H-NMR
2.14.2. 19F-NMR
2.15. Molar Ratio of Counterions to CSP7
2.16. Statistical Analysis
3. Results
3.1. Comparison of Physicochemical Properties of CSP7 Acetate and CSP7 TFA
3.1.1. Solubility of CSP7
3.1.2. Moisture Sorption-Desorption Isotherm of CSP7 Acetate and CSP7 TFA
3.1.3. Counterion Volatilization
3.1.4. Stability of CSP7 Acetate in Solution
3.2. Stabilizing Effect of Bulking Agents against Moisture
3.3. Physical State of Lyophilized Formulations
3.4. The Presence of Counterions after Lyophilization
3.4.1. Effect of Lyophilization on the Loss of Counterions
3.4.2. Effect of Excipients on the Preservation of Counterions in Lyophilized Compositions
3.4.3. Effect of Vacuum Pressure on the Preservation of Counterions in Lyophilized Formulations
3.5. Stability of Lyophilized Formulations
3.6. Molar Ratios of Counterions to CSP7 in Lyophilized Formulations after Storage
3.7. Thermal Analysis of Ammonium Acetate and Ammonium TFA
4. Discussion
4.1. Various Counterions of CSP7 Affect the Physicochemical Properties of CSP7
4.2. Effect of the Loss of Counterions on the Stability of CSP7
4.3. Formulation and Process Design to Preserve Counterion Level after Lyophilization
4.4. Stabilizing Effect of Bulking Agents and Buffers against Peptide Aggregation
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- King, T.E.; Pardo, A.; Selman, M. Idiopathic pulmonary fibrosis. Lancet 2011, 378, 1949–1961. [Google Scholar] [CrossRef]
- Wilson, M.S.; Wynn, T.A. Pulmonary fibrosis: Pathogenesis, etiology and regulation. Mucosal Immunol. 2009, 2, 103–121. [Google Scholar] [CrossRef]
- Raghu, G.; Weycker, D.; Edelsberg, J.; Bradford, W.Z.; Oster, G. Incidence and prevalence of idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 2006, 174, 810–816. [Google Scholar] [CrossRef] [PubMed]
- Canestaro, W.J.; Forrester, S.H.; Raghu, G.; Ho, L.; Devine, B.E. Drug Treatment of Idiopathic Pulmonary Fibrosis: Systematic Review and Network Meta-Analysis. Chest 2016, 149, 756–766. [Google Scholar] [CrossRef] [PubMed]
- Loveman, E.; Copley, V.R.; Scott, D.A.; Colquitt, J.L.; Clegg, A.J.; O’Reilly, K.M. Comparing new treatments for idiopathic pulmonary fibrosis—A network meta-analysis. BMC Pulm. Med. 2015, 15, 37. [Google Scholar] [CrossRef] [PubMed]
- Raghu, G.; Selman, M. Nintedanib and pirfenidone. New antifibrotic treatments indicated for idiopathic pulmonary fibrosis offer hopes and raises questions. Am. J. Respir. Crit. Care Med. 2015, 191, 252–254. [Google Scholar] [CrossRef] [PubMed]
- Kishaba, T. Evaluation and management of Idiopathic Pulmonary Fibrosis. Respir. Investig. 2019, 57, 300–311. [Google Scholar] [CrossRef] [PubMed]
- Shetty, S.K.; Bhandary, Y.P.; Marudamuthu, A.S.; Abernathy, D.; Velusamy, T.; Starcher, B.; Shetty, S. Regulation of airway and alveolar epithelial cell apoptosis by p53-Induced plasminogen activator inhibitor-1 during cigarette smoke exposure injury. Am. J. Respir. Cell Mol. Biol. 2012, 47, 474–483. [Google Scholar] [CrossRef]
- Tourkina, E.; Hoffman, S. Caveolin-1 Signaling in Lung Fibrosis. Open Rheumatol. J. 2012, 6, 116–122. [Google Scholar] [CrossRef] [Green Version]
- Marudamuthu, A.S.; Bhandary, Y.P.; Shetty, S.K.; Fu, J.; Sathish, V.; Prakash, Y.S.; Shetty, S. Role of the Urokinase-Fibrinolytic System in Epithelial–Mesenchymal Transition during Lung Injury. Am. J. Pathol. 2015, 185, 55–68. [Google Scholar] [CrossRef]
- Shetty, S.K.; Tiwari, N.; Marudamuthu, A.S.; Puthusseri, B.; Bhandary, Y.P.; Fu, J.; Levin, J.; Idell, S.; Shetty, S. p53 and miR-34a Feedback Promotes Lung Epithelial Injury and Pulmonary Fibrosis. Am. J. Pathol. 2017, 187, 1016–1034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhandary, Y.P.; Shetty, S.K.; Marudamuthu, A.S.; Gyetko, M.R.; Idell, S.; Gharaee-Kermani, M.; Shetty, R.S.; Starcher, B.C.; Shetty, S. Regulation of alveolar epithelial cell apoptosis and pulmonary fibrosis by coordinate expression of components of the fibrinolytic system. Am. J. Physiol-Lung Cell. Mol. Physiol. 2012, 302, L463–L473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhandary, Y.P.; Shetty, S.K.; Marudamuthu, A.S.; Ji, H.L.; Neuenschwander, P.F.; Boggaram, V.; Morris, G.F.; Fu, J.; Idell, S.; Shetty, S. Regulation of lung injury and fibrosis by p53-mediated changes in urokinase and plasminogen activator inhibitor-1. Am. J. Pathol. 2013, 183, 131–143. [Google Scholar] [CrossRef] [PubMed]
- Bhandary, Y.P.; Shetty, S.K.; Marudamuthu, A.S.; Fu, J.; Pinson, B.M.; Levin, J.; Shetty, S. Role of p53-fibrinolytic system cross-talk in the regulation of quartz-induced lung injury. Toxicol. Appl. Pharm. 2015, 283, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, J.F.; Chang, B.S.; Garzon-Rodriguez, W. Randolph TW. Rational design of stable lyophilized protein formulations: Theory and practice. Pharm. Biotechnol. 2002, 13, 109–133. [Google Scholar] [PubMed]
- Chennamsetty, N.; Voynov, V.; Kayser, V.; Helk, B.; Trout, B.L. Design of therapeutic proteins with enhanced stability. Proc. Natl. Acad. Sci. USA 2009, 106, 11937–11942. [Google Scholar] [CrossRef] [Green Version]
- Manning, M.C.; Chou, D.K.; Murphy, B.M.; Payne, R.W.; Katayama, D.S. Stability of protein pharmaceuticals: An update. Pharm. Res. 2010, 27, 544–575. [Google Scholar] [CrossRef] [PubMed]
- Jameel, F.; Pikal, M.J. Design of a Formulation for Freeze Drying. In Formulation and Process Development Strategies for Manufacturing Biopharmaceuticals; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010; pp. 457–492. [Google Scholar]
- Shalaev, E.Y.; Wang, W.; Gatlin, L.A. Rational choice of excipients for use in lyophilized formulations. In Protein Formulation and Delivery; McNally, E.J., Hastedt, J.E., Eds.; Informa Healthcare: New York, NY, USA, 2008; pp. 197–217. [Google Scholar]
- Gupta, D.; Bhatia, D.; Dave, V.; Sutariya, V.; Varghese Gupta, S. Salts of Therapeutic Agents: Chemical, Physicochemical, and Biological Considerations. Molecules 2018, 23, 1719. [Google Scholar] [CrossRef]
- Sikora, K.; Neubauer, D.; Jaśkiewicz, M.; Kamysz, W. Citropin 1.1 Trifluoroacetate to Chloride Counter-Ion Exchange in HCl-Saturated Organic Solutions: An Alternative Approach. Int. J. Pept. Res. Ther. 2017, 24, 265–270. [Google Scholar] [CrossRef] [Green Version]
- Hengsawas Surasarang, S.; Florova, G.; Komissarov, A.A.; Shetty, S.; Idell, S.; Williams, R.O., 3rd. Formulation for a novel inhaled peptide therapeutic for idiopathic pulmonary fibrosis. Drug Dev. Ind. Pharm. 2018, 44, 184–198. [Google Scholar]
- Andrushchenko, V.V.; Vogel, H.J.; Prenner, E.J. Optimization of the hydrochloric acid concentration used for trifluoroacetate removal from synthetic peptides. J. Pept. Sci. 2007, 13, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Pini, A.; Lozzi, L.; Bernini, A.; Brunetti, J.; Falciani, C.; Scali, S.; Bindi, S.; Di Maggio, T.; Rossolini, G.M.; Niccolai, N.; et al. Efficacy and toxicity of the antimicrobial peptide M33 produced with different counter-ions. Amino Acids 2012, 43, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Cornish, J.; Callon, K.E.; Lin, C.Q.-X.; Xiao, C.L.; Mulvey, T.B.; Cooper, G.J.S.; Reid, I.R. Trifluoroacetate, a contaminant in purified proteins, inhibits proliferation of osteoblasts and chondrocytes. Am. J. Physiol. Endocrinol. Metab. 1999, 277, E779–E783. [Google Scholar] [CrossRef] [PubMed]
- Franks, F. Freeze-drying of bioproducts: Putting principles into practice. Eur. J. Pharm. Biopharm. 1998, 45, 221–229. [Google Scholar] [CrossRef]
- Food and Drug Administration (FDA). Lupron Depot (Leuprolide Acetate for Depot Suspension); AbbVie Inc.: North Chicago, IL, USA, 2014. [Google Scholar]
- Gopalakrishnan, S.; Durai, M.; Kitchens, K.; Tamiz, A.P.; Somerville, R.; Ginski, M.; Paterson, B.M.; Murray, J.A.; Verdu, E.F.; Alkan, S.S.; et al. Larazotide acetate regulates epithelial tight junctions in vitro and in vivo. Peptides 2012, 35, 86–94. [Google Scholar] [CrossRef]
- Andronis, V.; Yoshioka, M.; Zografi, G. Effects of sorbed water on the crystallization of indomethacin from the amorphous state. J. Pharm. Sci. 1997, 86, 346–351. [Google Scholar] [CrossRef]
- Cares-Pacheco, M.G.; Vaca-Medina, G.; Calvet, R.; Espitalier, F.; Letourneau, J.J.; Rouilly, A.; Rodier, E. Physicochemical characterization of d-mannitol polymorphs: The challenging surface energy determination by inverse gas chromatography in the infinite dilution region. Int. J. Pharm 2014, 475, 69–81. [Google Scholar] [CrossRef]
- Haque, M.K.; Roos, Y.H. Crystallization and X-ray diffraction of spray-dried and freeze-dried amorphous lactose. Carbohydr. Res. 2005, 340, 293–301. [Google Scholar] [CrossRef]
- David, S.E.; Timmins, P.; Conway, B.R. Impact of the counterion on the solubility and physicochemical properties of salts of carboxylic acid drugs. Drug Dev. Ind. Pharm. 2012, 38, 93–103. [Google Scholar] [CrossRef]
- Zapadka, K.L.; Becher, F.J.; Gomes Dos Santos, A.L.; Jackson, S.E. Factors affecting the physical stability (aggregation) of peptide therapeutics. Interface Focus 2017, 7, 20170030. [Google Scholar] [CrossRef]
- Marek, P.J.; Patsalo, V.; Green, D.F.; Raleigh, D.P. Ionic strength effects on amyloid formation by amylin are a complicated interplay among Debye screening, ion selectivity, and Hofmeister effects. Biochemistry 2012, 51, 8478–8490. [Google Scholar] [CrossRef] [PubMed]
- Sedlak, E.; Stagg, L.; Wittung-Stafshede, P. Effect of Hofmeister ions on protein thermal stability: Roles of ion hydration and peptide groups? Arch. Biochem. Biophys. 2008, 479, 69–73. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J. Protein-Protein Interactions in Salt Solutions. In Protein-Protein Interactions—Computational and Experimental Tools; Cai, W., Ed.; Intech: Rijeka, Croatia, 2012; pp. 359–376. [Google Scholar]
- Thakral, S.; Suryanarayanan, R. Salt formation during freeze-drying—an approach to enhance indomethacin dissolution. Pharm. Res. 2015, 32, 3722–3731. [Google Scholar] [CrossRef] [PubMed]
- Chemical Book. Ammonium Acetate (631-61-8). Available online: https://www.chemicalbook.com/ChemicalProductProperty_US_CB8438173.aspx (accessed on 27 January 2018).
- Chemical Book. Sodium Acetate (127-09-3). Available online: https://www.chemicalbook.com/ProductMSDSDetailCB1230044_EN.htm (accessed on 27 January 2018).
- TGSC Information System. Ammonium Acetate. Available online: http://www.thegoodscentscompany.com/data/rw1219431.html (accessed on 27 January 2018).
- Oesterle, J.; Franks, F.; Auffret, T. The influence of tertiary butyl alcohol and volatile salts on the sublimation of ice from frozen sucrose solutions: Implications for freeze-drying. Pharm. Dev. Technol. 1998, 3, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Thakral, N.K.; Behme, R.J.; Aburub, A.; Peterson, J.A.; Woods, T.A.; Diseroad, B.A.; Suryanarayanan, R.; Stephenson, G.A. Salt Disproportionation in the Solid State: Role of Solubility and Counterion Volatility. Mol. Pharm. 2016, 13, 4141–4151. [Google Scholar] [CrossRef] [PubMed]
- Roberts, C.J. Therapeutic protein aggregation: Mechanisms, design, and control. Trends Biotechnol. 2014, 32, 372–380. [Google Scholar] [CrossRef]
- Moussa, E.M.; Panchal, J.P.; Moorthy, B.S.; Blum, J.S.; Joubert, M.K.; Narhi, L.O.; Topp, E.M. Immunogenicity of Therapeutic Protein Aggregates. J. Pharm. Sci. 2016, 105, 417–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacKenzie, A.P. Non-equilibrium freezing behaviour of aqueous systems. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 1977, 278, 167–189. [Google Scholar] [CrossRef] [PubMed]
- Ablett, S.; Izzard, M.J.; Lillford, P.J. Differential scanning calorimetric study of frozen sucrose and glycerol solutions. J. Chem. Soc. Faraday Trans. 1992, 88, 789–794. [Google Scholar] [CrossRef]
- Tsinontides, S.C.; Rajniak, P.; Pham, D.; Hunke, W.A.; Placek, J.; Reynolds, S.D. Freeze drying—Principles and practice for successful scale-up to manufacturing. Int. J. Pharm. 2004, 280, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Chang, B.S.; Patro, S.Y. Freeze-drying Process Development for Protein Pharmaceuticals. In Lyophilization of Biopharmaceuticals; Costantino, H.R., Pikal, M.J., Eds.; American Association of Pharmaceutical Scientists: Arlington, VA, USA, 2004; pp. 113–138. [Google Scholar]
- Bell, L.N. Peptide Stability in Solids and Solutions. Biotechnol. Prog. 1997, 13, 342–346. [Google Scholar] [CrossRef]
- Taha, M.; Lee, M.J. Interactions of TRIS [tris(hydroxymethyl)aminomethane] and related buffers with peptide backbone: Thermodynamic characterization. Phys. Chem. Chem. Phys. 2010, 12, 12840–12850. [Google Scholar] [CrossRef] [PubMed]
- Costantino, H.R.; Langer, R.; Klibanov, A.M. Moisture-Induced Aggregation of Lyophilized Insulin. Pharm. Res. 1994, 11, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.L.; Pikal, M.J. Mechanisms of protein stabilization in the solid state. J. Pharm. Sci. 2009, 98, 2886–2908. [Google Scholar] [CrossRef]
- Mensink, M.A.; Frijlink, H.W.; van der Voort Maarschalk, K.; Hinrichs, W.L. How sugars protect proteins in the solid state and during drying (review): Mechanisms of stabilization in relation to stress conditions. Eur. J. Pharm. Biopharm. 2017, 114, 288–295. [Google Scholar] [CrossRef]
- Mensink, M.A.; Nethercott, M.J.; Hinrichs, W.L.; van der Voort Maarschalk, K.; Frijlink, H.W.; Munson, E.J.; Pikal, M.J. Influence of Miscibility of Protein-Sugar Lyophilizates on Their Storage Stability. AAPS J. 2016, 18, 1225–1232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Izutsu, K.; Kojima, S. Excipient crystallinity and its protein-structure-stabilizing effect during freeze-drying. J. Pharm. Pharm. 2002, 54, 1033–1039. [Google Scholar] [CrossRef]
- Izutsu, K.-I.; Yoshioka, S.; Terao, T. Decreased Protein-Stabilizing Effects of Cryoprotectants Due to Crystallization. Pharm. Res. 1993, 10, 1232–1237. [Google Scholar] [CrossRef] [PubMed]
- Cleland, J.L.; Lam, X.; Kendrick, B.; Yang, J.; Yang, T.-h.; Overcashier, D.; Brooks, D.; Hsu, C.; Carpenter, J.F. A specific molar ratio of stabilizer to protein is required for storage stability of a lyophilized monoclonal antibody. J. Pharm. Sci. 2001, 90, 310–321. [Google Scholar] [CrossRef]
- Oliyai, C.; Patel, J.P.; Carr, L.; Borchardt, R.T. Chemical Pathways of Peptide Degradation. VII. Solid State Chemical Instability of an Aspartyl Residue in a Model Hexapeptide. Pharm. Res. 1994, 11, 901–908. [Google Scholar] [CrossRef]
Formation No. | Concentration of CSP7 | Counterion of CSP7 | Bulking Agent | Molar Ratio of CSP7 to Bulking | Buffer | pH Modifier | Vacuum Pressure (mTorr) |
---|---|---|---|---|---|---|---|
1 | 0.5 mg/mL | TFA | - | - | DPBS | NH4OH | 100 |
2 | 0.5 mg/mL | TFA | Mannitol | 1:140 | DPBS | NH4OH | 100 |
3 | 0.5 mg/mL | Acetate | - | - | DPBS | NH4OH | 100 |
4 | 0.5 mg/mL | Acetate | - | - | TBS | NH4OH | 100 |
5 | 0.5 mg/mL | Acetate | Mannitol | 1:5 | DPBS | NH4OH | 100 |
6 | 0.5 mg/mL | Acetate | Mannitol | 1:70 | DPBS | NH4OH | 100 |
7 | 0.5 mg/mL | Acetate | Mannitol | 1:140 | DPBS | NH4OH | 100 |
8 | 0.5 mg/mL | Acetate | Mannitol | 1:320 | DPBS | NH4OH | 100 |
9 | 0.5 mg/mL | Acetate | Mannitol | 1:5 | TBS | NH4OH | 100 |
10 | 0.5 mg/mL | Acetate | Mannitol | 1:70 | TBS | NH4OH | 100 |
11 | 0.5 mg/mL | Acetate | Mannitol | 1:140 | TBS | NH4OH | 100 |
12 | 0.5 mg/mL | Acetate | Mannitol | 1:320 | TBS | NH4OH | 100 |
13 | 0.5 mg/mL | Acetate | Lactose | 1:5 | DPBS | NH4OH | 100 |
14 | 0.5 mg/mL | Acetate | Lactose | 1:70 | DPBS | NH4OH | 100 |
15 | 0.5 mg/mL | Acetate | Lactose | 1:140 | DPBS | NH4OH | 100 |
16 | 0.5 mg/mL | Acetate | Lactose | 1:320 | DPBS | NH4OH | 100 |
17 | 0.5 mg/mL | Acetate | Lactose | 1:5 | TBS | NH4OH | 100 |
18 | 0.5 mg/mL | Acetate | Lactose | 1:70 | TBS | NH4OH | 100 |
19 | 0.5 mg/mL | Acetate | Lactose | 1:140 | TBS | NH4OH | 100 |
20 | 0.5 mg/mL | Acetate | Lactose | 1:320 | TBS | NH4OH | 100 |
21 | 0.5 mg/mL | Acetate | Trehalose | 1:5 | DPBS | NH4OH | 100 |
22 | 0.5 mg/mL | Acetate | Trehalose | 1:70 | DPBS | NH4OH | 100 |
23 | 0.5 mg/mL | Acetate | Trehalose | 1:140 | DPBS | NH4OH | 100 |
24 | 0.5 mg/mL | Acetate | Trehalose | 1:320 | DPBS | NH4OH | 100 |
25 | 0.5 mg/mL | Acetate | Trehalose | 1:5 | TBS | NH4OH | 100 |
26 | 0.5 mg/mL | Acetate | Trehalose | 1:70 | TBS | NH4OH | 100 |
27 | 0.5 mg/mL | Acetate | Trehalose | 1:140 | TBS | NH4OH | 100 |
28 | 0.5 mg/mL | Acetate | Trehalose | 1:320 | TBS | NH4OH | 100 |
29 | 0.5 mg/mL | Acetate | - | - | DPBS | NH4OH | 350 |
30 | 0.5 mg/mL | Acetate | Mannitol | 1:140 | DPBS | NH4OH | 350 |
31 | 0.5 mg/mL | Acetate | Lactose | 1:70 | DPBS | NH4OH | 350 |
32 | 0.5 mg/mL | Acetate | Trehalose | 1:70 | DPBS | NH4OH | 350 |
33 | 0.5 mg/mL | Acetate | - | - | DPBS | NaOH | 100 |
34 | 0.5 mg/mL | Acetate | Mannitol | 1:140 | DPBS | NaOH | 100 |
35 | 0.5 mg/mL | Acetate | Lactose | 1:70 | DPBS | NaOH | 100 |
36 | 0.5 mg/mL | Acetate | Trehalose | 1:70 | DPBS | NaOH | 100 |
Step | Mode | Rate (°C /min) | Temperature (°C) | Vacuum Pressure (mTorr) | Time (min) |
---|---|---|---|---|---|
Load | Hold | - | 5 | - | 60 |
Freeze | Ramp | 0.5 | −55 | - | 120 |
Hold | - | −55 | - | 120 | |
Anneal | Ramp | 0.5 | −15 | - | 80 |
Hold | - | −15 | - | 120 | |
Freeze | Ramp | 0.5 | −55 | - | 80 |
Hold | - | −55 | - | 240 | |
Evacuate | Hold | - | −55 | 100 or 350 | 30 |
Primary drying | Ramp | 0.1 | −30 | 100 or 350 | 250 |
Hold | - | −30 | 100 or 350 | 660 | |
Secondary drying | Ramp | 0.08 | 30 | 100 or 350 | 720 |
Hold | - | 30 | 100 or 350 | 240 |
Buffer | Time Points (Hours) | Temperature | |||
---|---|---|---|---|---|
−80 °C | −20 °C | 5 °C | 25 °C | ||
DPBS | 24 | 100.0 ± 0.1 | 100.2 ± 0.8 | 99.9 ± 0.1 | 100.1 ± 0.1 |
48 | 100.0 ± 0.1 | 100.3 ± 0.7 | 99.9 ± 0.1 | 99.9 ± 0.3 | |
TBS | 24 | 100.1 ± 0.2 | 100.2 ± 0.2 | 100.1 ± 0.2 | 100.2 ± 0.3 |
48 | 100.5 ± 0.4 | 100.5 ± 0.2 | 100.1 ± 0.1 | 100.3 ± 0.1 |
Buffer | Temperature (°C) | Cycle | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
DPBS | −20 | 100.3 ± 0.2 | 100.7 ± 0.1 | 100.7 ± 0.1 | 101.0 ± 0.2 | 101.3 ± 0.2 |
−80 | 99.8 ± 0.2 | 100.1 ± 0.1 | 100.2 ± 0.2 | 100.4 ± 0.1 | 100.9 ± 0.1 | |
TBS | −20 | 99.4 ± 0.3 | 99.6 ± 0.1 | 99.7 ± 0.2 | 99.8 ± 0.2 | 100.2 ± 0.1 |
−80 | 99.9 ± 0.3 | 100.3 ± 0.2 | 100.4 ± 0.2 | 100.7 ± 0.2 | 100.6 ± 0.4 |
Formulation No. | Conditions | 0 M | 1 M | 3 M | 6 M |
---|---|---|---|---|---|
2 | 5 °C | 7.72 ± 0.04 | - | - | 7.63 ± 0.05 |
25 °C, 60% RH | 7.64 ± 0.05 | - | - | ||
7 | 5 °C | 7.60 ± 0.02 | - | 7.60 ± 0.02 | 7.56 ± 0.03 |
25 °C, 60% RH | 7.48 ± 0.03 | 7.45 ± 0.03 | - | ||
14 | 5 °C | 7.84 ± 0.05 | - | 7.81 ± 0.04 | 7.83 ± 0.05 |
25 °C, 60% RH | 7.81 ± 0.03 | 7.74 ± 0.08 | - | ||
22 | 5 °C | 7.81 ± 0.07 | - | 7.80 ± 0.09 | 7.81 ± 0.08 |
25 °C, 60% RH | 7.81 ± 0.04 | 7.77 ± 0.03 | - | ||
34 | 5 °C | 8.06 ± 0.04 | - | 7.98 ± 0.05 | 7.94 ± 0.05 |
25 °C, 60% RH | 8.00 ± 0.07 | 8.02 ±0.08 | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sahakijpijarn, S.; Moon, C.; Koleng, J.J.; Williams, R.O., III. Formulation Composition and Process Affect Counterion for CSP7 Peptide. Pharmaceutics 2019, 11, 498. https://doi.org/10.3390/pharmaceutics11100498
Sahakijpijarn S, Moon C, Koleng JJ, Williams RO III. Formulation Composition and Process Affect Counterion for CSP7 Peptide. Pharmaceutics. 2019; 11(10):498. https://doi.org/10.3390/pharmaceutics11100498
Chicago/Turabian StyleSahakijpijarn, Sawittree, Chaeho Moon, John J. Koleng, and Robert O. Williams, III. 2019. "Formulation Composition and Process Affect Counterion for CSP7 Peptide" Pharmaceutics 11, no. 10: 498. https://doi.org/10.3390/pharmaceutics11100498
APA StyleSahakijpijarn, S., Moon, C., Koleng, J. J., & Williams, R. O., III. (2019). Formulation Composition and Process Affect Counterion for CSP7 Peptide. Pharmaceutics, 11(10), 498. https://doi.org/10.3390/pharmaceutics11100498