Re-Assembly and Analysis of an Ancient Variola Virus Genome
Abstract
1. Introduction
2. Materials and Methods
2.1. Retrieval of Genome Sequences and Alignment
2.2. Visual Examination of the MSA
2.3. Phylogenetic Tree Construction and Evolutionary Analyses
3. Results
3.1. Re-Assembly of the VARV-VD21 Genome
3.2. Phylogenetic History of VARV
3.3. Drift in Nucleotide Composition
3.4. Evolution of the VARV Ortholog of VACV-Cop-O1L
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Duggan, A.T.; Perdomo, M.F.; Piombino-Mascali, D.; Marciniak, S.; Poinar, D.; Emery, M.V.; Buchmann, J.P.; Duchêne, S.; Jankauskas, R.; Humphreys, M.; et al. 17th century variola virus reveals the recent history of smallpox. Curr. Biol. 2016, 26, 3407–3412. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, B.L.; Langland, J.O.; Kibler, K.V.; Denzler, K.L.; White, S.D.; Holechek, S.A.; Wong, S.; Huynh, T.; Baskin, C.R. Vaccinia virus vaccines: Past, present and future. Antivir. Res. 2009, 84, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Sampedro, L.; Perdiguero, B.; Mejías-Pérez, E.; García-Arriaza, J.; di Pilato, M.; Esteban, M. The evolution of poxvirus vaccines. Viruses 2015, 7, 1726–1803. [Google Scholar] [CrossRef] [PubMed]
- Thèves, C.; Crubézy, E.; Biagini, P. History of smallpox and its spread in human populations. Microbiol. Spectr. 2016, 4, 161–172. [Google Scholar]
- McCollum, A.M.; Damon, I.K. Human monkeypox. Clin. Infect. Dis. 2014, 58, 260–267. [Google Scholar] [CrossRef] [PubMed]
- Esteban, D.J.; Buller, R.M.L. Ectromelia virus: The causative agent of mousepox. J. Gen. Virol. 2005, 86, 2645–2659. [Google Scholar] [CrossRef] [PubMed]
- Nalca, A.; Nichols, D.K. Rabbitpox: A model of airborne transmission of smallpox. J. Gen. Virol. 2011, 92, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Chen, N.; Roper, R.L.; Feng, Z.; Hunter, A.; Danila, M.I.; Lefkowitz, E.J.; Buller, R.M.L.; Upton, C. Complete coding sequences of the rabbitpox virus genome. J. Gen. Virol. 2005, 86, 2969–2977. [Google Scholar] [CrossRef] [PubMed]
- Franke, A.; Pfaff, F.; Jenckel, M.; Hoffmann, B.; Höper, D.; Antwerpen, M.; Meyer, H.; Beer, M.; Hoffmann, D. Classification of cowpox viruses into several distinct clades and identification of a novel lineage. Viruses 2017, 9, 142. [Google Scholar] [CrossRef] [PubMed]
- Mauldin, M.; Antwerpen, M.; Emerson, G.; Li, Y.; Zoeller, G.; Carroll, D.; Meyer, H. Cowpox virus: What’s in a name? Viruses 2017, 9, 101. [Google Scholar] [CrossRef] [PubMed]
- Dabrowski, P.W.; Radonić, A.; Kurth, A.; Nitsche, A. Genome-wide comparison of cowpox viruses reveals a new clade related to variola virus. PLoS ONE 2013, 8, e79953. [Google Scholar] [CrossRef] [PubMed]
- Tu, S.-L.; Nakazawa, Y.; Gao, J.; Wilkins, K.; Gallardo-Romero, N.; Li, Y.; Emerson, G.L.; Carroll, D.S.; Upton, C. Characterization of eptesipoxvirus, a novel poxvirus from a microchiropteran bat. Virus Genes 2017, 161, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Gershon, P.D.; Kitching, R.P.; Hammond, J.M.; Black, D.N. Poxvirus genetic recombination during natural virus transmission. J. Gen. Virol. 1989, 70, 485–489. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.; Evans, D.H. Genome scale patterns of recombination between co-infecting vaccinia viruses. J. Virol. 2014, 88, 5277–5286. [Google Scholar] [CrossRef] [PubMed]
- Smithson, C.; Kampman, S.; Hetman, B.; Upton, C. Incongruencies in vaccinia virus phylogenetic trees. Computation 2014, 2, 182–198. [Google Scholar] [CrossRef]
- Smithson, C.; Purdy, A.; Verster, A.J.; Upton, C. Prediction of steps in the evolution of variola virus host range. PLoS ONE 2014, 9, e91520. [Google Scholar] [CrossRef] [PubMed]
- Kazutaka, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar]
- Hillary, W.; Lin, S.-H.; Upton, C. Base-by-base version 2: Single nucleotide-level analysis of whole viral genome alignments. Microb. Inform. Exp. 2011, 1, 2. [Google Scholar] [CrossRef] [PubMed]
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef] [PubMed]
- Bouckaert, R.; Heled, J.; Kühnert, D.; Vaughan, T.; Wu, C.-H.; Xie, D.; Suchard, M.A.; Rambaut, A.; Drummond, A.J. BEAST 2: A software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 2014, 10, e1003537. [Google Scholar] [CrossRef] [PubMed]
- Pajer, P.; Dresler, J.; Kabíckova, H.; Písa, L.; Aganov, P.; Fucik, K.; Elleder, D.; Hron, T.; Kuzelka, V.; Velemínsky, P.; et al. Characterization of two historic smallpox specimens from a Czech museum. Viruses 2017, 9, 200. [Google Scholar] [CrossRef] [PubMed]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Chevreux, B.; Pfisterer, T.; Drescher, B.; Driesel, A.J.; Müller, W.E.G.; Wetter, T.; Suhai, S. Using the miraEST assembler for reliable and automated mRNA transcript assembly and SNP detection in sequenced ESTs. Genome Res. 2004, 14, 1147–1159. [Google Scholar] [CrossRef] [PubMed]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [PubMed]
- Milne, I.; Stephen, G.; Bayer, M.; Cock, P.J.A.; Pritchard, L.; Cardle, L.; Shaw, P.D.; Marshall, D. Using tablet for visual exploration of second-generation sequencing data. Brief. Bioinform. 2013, 14, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Carroll, D.S.; Gardner, S.N.; Walsh, M.C.; Vitalis, E.A.; Damon, I.K. On the origin of smallpox: Correlating variola phylogenics with historical smallpox records. Proc. Natl. Acad. Sci. USA 2007, 104, 15787–15792. [Google Scholar] [CrossRef] [PubMed]
- Schweneker, M.; Lukassen, S.; Späth, M.; Wolferstätter, M.; Babel, E.; Brinkmann, K.; Wielert, U.; Chaplin, P.; Suter, M.; Hausmann, J. The vaccinia virus O1 protein is required for sustained activation of extracellular signal-regulated kinase 1/2 and promotes viral virulence. J. Virol. 2012, 86, 2323–2336. [Google Scholar] [CrossRef] [PubMed]
- Bonjardim, C.A. Viral exploitation of the MEK/ERK pathway—A tale of vaccinia virus and other viruses. Virology 2017, 507, 267–275. [Google Scholar] [CrossRef] [PubMed]
- Martin, D.P.; Murrell, B.; Golden, M.; Khoosal, A.; Muhire, B. RDP4: Detection and analysis of recombination patterns in virus genomes. Virus Evol. 2015, 1, vev003. [Google Scholar] [CrossRef] [PubMed]
- Senkevich, T.G.; Koonin, E.V.; Bugert, J.J.; Darai, G.; Moss, B. The genome of molluscum contagiosum virus: Analysis and comparison with other poxviruses. Virology 1997, 233, 19–42. [Google Scholar] [CrossRef] [PubMed]
- Lakis, N.S.; Li, Y.; Abraham, J.L.; Upton, C.; Blair, D.C.; Smith, S.; Zhao, H.; Damon, I.K. Novel poxvirus infection in an immune suppressed patient. Clin. Infect. Dis. 2015, 61, 1543–1548. [Google Scholar] [CrossRef] [PubMed]
- Miranda, J.B.; Borges, I.A.; Campos, S.P.S.; Vieira, F.N.; de Ázara, T.M.F.; Marques, F.A.; Costa, G.B.; Luis, A.P.M.F.; de Oliveira, J.S.; Ferreira, P.C.P.; et al. Serologic and molecular evidence of vaccinia virus circulation among small mammals from different biomes, Brazil. Emerg. Infect. Dis. 2017, 23, 931–938. [Google Scholar] [CrossRef] [PubMed]
- Fleming, S.; Wise, L.; Mercer, A. Molecular genetic analysis of orf virus: A poxvirus that has adapted to skin. Viruses 2015, 7, 1505–1539. [Google Scholar] [CrossRef] [PubMed]
- Springer, Y.P.; Hsu, C.H.; Werle, Z.R.; Olson, L.E.; Cooper, M.P.; Castrodale, L.J.; Fowler, N.; McCollum, A.M.; Goldsmith, C.S.; Emerson, G.L.; et al. Novel orthopoxvirus infection in an Alaska resident. Clin. Infect. Dis. 2017, 64, 1737–1741. [Google Scholar] [CrossRef] [PubMed]
- Sawyer, S.L.; Elde, N.C. A cross-species view on viruses. Curr. Opin. Virol. 2012, 2, 561–568. [Google Scholar] [CrossRef] [PubMed]
- Vellozzi, C.; Lane, J.M.; Averhoff, F.; Maurer, T.; Norton, S.; Damon, I.; Casey, C. Generalized vaccinia, progressive vaccinia, and eczema vaccinatum are rare following smallpox (vaccinia) vaccination: United States surveillance, 2003. Clin. Infect. Dis. 2005, 41, 689–697. [Google Scholar] [CrossRef] [PubMed]
- Roy Choudhury, S.; Pan, A.; Mukherjee, D. Genus specific evolution of codon usage and nucleotide compositional traits of poxviruses. Virus Genes 2011, 42, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, M.; Upton, C. Using purine skews to predict genes in AT-rich poxviruses. BMC Genom. 2005, 6, 22. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, M.; Upton, C. Host-derived pathogenicity islands in poxviruses. Virol. J. 2005, 2, 30. [Google Scholar] [CrossRef] [PubMed]
- Monier, A.; Claverie, J.-M.; Ogata, H. Horizontal gene transfer and nucleotide compositional anomaly in large DNA viruses. BMC Genom. 2007, 8, 456. [Google Scholar] [CrossRef] [PubMed]
- Gammon, D.B.; Gowrishankar, B.; Duraffour, S.; Andrei, G.; Upton, C.; Evans, D.H. Vaccinia virus-encoded ribonucleotide reductase subunits are differentially required for replication and pathogenesis. PLoS Pathog. 2010, 6, e1000984. [Google Scholar] [CrossRef] [PubMed]
- Mo, M.; Fleming, S.B.; Mercer, A.A. Orf virus cell cycle regulator, PACR, competes with subunit 11 of the anaphase promoting complex for incorporation into the complex. J. Gen. Virol. 2010, 91, 3010–3015. [Google Scholar] [CrossRef] [PubMed]








| Species | Strain Name | Year | Country | Host | Accession |
|---|---|---|---|---|---|
| CMLV | CMLV-CMS | 1970 | Iran | Dromedary | AY009089 |
| CPXV (CPXV-like 1) | CPXV-GER_1980_EP4 | 1980 | Germany | Elephant | HQ420895 |
| CPXV (CPXV-like 1) | CPXV-HumBer07/1 | 2007 | Germany | Human | KC813509 |
| CPXV (CPXV-like 1) | CPXV-HumGri07/1 | 2007 | Germany | Human | KC813511 |
| CPXV (CPXV-like 1) | CPXV-HumLan08/1 | 2008 | Germany | Human | KC813492 |
| CPXV (CPXV-like 2) | CPXV-BR | 1939 | UK | Human | NC_003663 |
| CPXV (CPXV-like 2) | CPXV-FRA_2001_Nancy | 2001 | France | Human | HQ420894 |
| CPXV (CPXV-like 2) | CPXV-GER_1990_2 | 1990 | Germany | Human | HQ420896 |
| CPXV (CPXV-like 2) | CPXV-GER91 | 1991 | Germany | Human | DQ437593 |
| CPXV (CPXV-like 2) | CPXV-NOR_1994_MAN | 1994 | Norway | Human | HQ420899 |
| CPXV (Unassigned) | CPXV-GER_1998_2 | 1998 | Germany | Human | HQ420897 |
| CPXV (Unassigned) | CPXV-HumLit08/1 | 2008 | Germany | Human | KC813493 |
| CPXV (VACV-like) | CPXV-FIN_2000_MAN | 2000 | Finland | Human | HQ420893 |
| CPXV (VACV-like) | CPXV-GRI | 1990 | Russia | Human | X94355 |
| CPXV (VARV-like) | CPXV-HumAac09/1 | 2009 | Germany | Human | KC813508 |
| ECTV | ECTV-Mos | 1947 | Russia | Mouse | NC_004105 |
| TATV | TATV-DAH68 | 1968 | Benin | Gerbil | NC_008291 |
| VACV | VACV-Acam3 | 2003 | US | Unknown | AY313848 |
| VACV | VACV-BRA_Serro | 2005 | Brazil | Unknown | KF179385 |
| VACV | VACV-Cop | 1990 | US | Unknown | M35027 |
| VACV | VACV-CVA | 2007 | Germany | Unknown | AM501482 |
| VACV | VACV-IHDW1 | 2013 | Canada | Unknown | KJ125439 |
| VACV | VACV-TT1 | 2012 | China | Unknown | JX489138 |
| VACV | VACV-WR | 1982 | US | Unknown | NC_006998 |
| VARV | VARV-VD21 | 2011 | Lithuania | Human | KY358055 |
| VARV (major) | VARV-V563 | 1954 | Czech Republic | Human | LT706528 |
| VARV (major) | VARV-BGD75maj | 1975 | Bangladesh | Human | L22579 |
| VARV (major) | VARV-CHN48 | 1948 | China | Human | DQ437582 |
| VARV (major) | VARV-COG70_46 | 1970 | Congo | Human | DQ437583 |
| VARV (major) | VARV-ETH72_17 | 1972 | Ethiopia | Human | DQ441425 |
| VARV (major) | VARV-GBR44_harv | 1944 | UK | Human | DQ441444 |
| VARV (major) | VARV-IND64_vel4 | 1964 | India | Human | DQ437585 |
| VARV (major) | VARV-JPN51_hrpr | 1951 | Japan | Human | DQ441430 |
| VARV (major) | VARV-KOR47 | 1947 | Korea | Human | DQ441432 |
| VARV (major) | VARV-SOM77_1252 | 1977 | Somalia | Human | DQ441438 |
| VARV (major) | VARV-SUM70_222 | 1970 | Sumatra | Human | DQ437591 |
| VARV (major) | VARV-India 1967 | 1967 | India | Human | NC_001611 |
| VARV (minor) | VARV-V1588 | 1849 | Czech Republic | Human | LT706529 |
| VARV (minor) | VARV-SLE68 | 1969 | Sierra Leone | Human | DQ441437 |
| VARV (minor) | VARV-Gar_1966 | 1966 | Brazil | Human | X72086 |
| Starting nt in VARV VD21-Uvic | New nt in Modern Sequence | Major (BGD75maj) | Minor (Gar_1966) |
|---|---|---|---|
| A | C | 2 | 1 |
| G | 35 | 41 | |
| T | 3 | 5 | |
| C | A | 9 | 9 |
| G | 0 | 2 | |
| T | 78 | 70 | |
| G | A | 66 | 64 |
| C | 1 | 2 | |
| T | 4 | 5 | |
| T | A | 8 | 6 |
| C | 36 | 45 | |
| G | 6 | 2 | |
| Total # SNPs | 248 | 252 | |
| SNPs that increase A + T% | 157 | 148 | |
| SNPs that increase G + C% | 79 | 89 | |
| Ancestral | New nt in CMLV Sequence | CMLV |
|---|---|---|
| A | C | 9 |
| G | 35 | |
| T | 12 | |
| C | A | 54 |
| G | 5 | |
| T | 126 | |
| G | A | 107 |
| C | 7 | |
| T | 52 | |
| T | A | 11 |
| C | 27 | |
| G | 12 | |
| Total # SNPs | 457 | |
| SNPs that increase A + T% | 339 | |
| SNPs that increase G + C% | 83 | |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smithson, C.; Imbery, J.; Upton, C. Re-Assembly and Analysis of an Ancient Variola Virus Genome. Viruses 2017, 9, 253. https://doi.org/10.3390/v9090253
Smithson C, Imbery J, Upton C. Re-Assembly and Analysis of an Ancient Variola Virus Genome. Viruses. 2017; 9(9):253. https://doi.org/10.3390/v9090253
Chicago/Turabian StyleSmithson, Chad, Jacob Imbery, and Chris Upton. 2017. "Re-Assembly and Analysis of an Ancient Variola Virus Genome" Viruses 9, no. 9: 253. https://doi.org/10.3390/v9090253
APA StyleSmithson, C., Imbery, J., & Upton, C. (2017). Re-Assembly and Analysis of an Ancient Variola Virus Genome. Viruses, 9(9), 253. https://doi.org/10.3390/v9090253

