Baculovirus-mediated Gene Delivery and RNAi Applications
Abstract
:1. Introduction
2. Autographa californica Multiple Nucleopolyhedrovirus
3. Baculovirus Applications in Vertebrate Cells
5. Animal Studies
6. Baculovirus and RNAi
Cell/Tissue | Promoter | RNAi/Target | In Vitro/In Vivo | Ref., Year |
---|---|---|---|---|
Saos2, HepG2, Huh7, primary hepatic stellate cells | U6 | shRNA; Lamin A/C | In vitro | [245], 2005 |
C6, NT2, rat brain | CMV enhancer/H1 promoter | shRNA; Luciferase | In vitro, in vivo | [246], 2005 |
Marc145 | U6 | shRNA; PRRSV nucleoprotein | In vitro | [252], 2006 |
HeLa CD4+ | tRNAiMet | Ribozyme; U5 region of HIV LTR | In vitro | [257], 2006 |
NNC#2 | U6 | shRNA; HCV core protein | In vitro | [253], 2008 |
NNC#2 | U6 | shRNA; HCV core protein. EBNA1 and OriP for prolonged expression. | In vitro | [254], 2009 |
MDCK | U6 | shRNA; influenza nucleoproteins | In vitro | [256], 2009 |
HepG2 | U6 | shRNA; HBV genome | In vitro | [255], 2009 |
HEK293, synoviocytes | CMV | miRNA; EGFP, TNF-α. Sleeping Beauty for prolonged expression. | In vitro | [247], 2011 |
Vero | U6 | shRNA; nucleoprotein of PPRV. | In vitro | [251], 2011 |
U87-M21, U87-M21 tumor in mice | CMV | miRNA-10b for inhibition of growth, invasion and angiogenesis. | In vitro, in vivo | [249], 2012 |
ASC, calvarial bone defects in mice | CMV | miRNA-26a, -29b, -148b, -196a for promoting osteogenic differentiation. | In vitro, in vivo | [250], 2014 |
HCC Mahlavu, HCC tumor in mice | CMV | lncRNA; PTENP1. Sleeping Beauty for prolonged expression. | In vitro, in vivo | [248], 2015 |
HCC Mahlavu, HCC tumor in mice | CMV | miRNA-122, -151 to combat HCC tumorigenity/metastasis. Sleeping Beauty for prolonged expression. | In vitro, in vivo | [197], 2015 |
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Summers, M.D. Milestones leading to the genetic engineering of baculoviruses as expression vector systems and viral pesticides. Adv. Virus Res. 2006, 68, 3–73. [Google Scholar] [PubMed]
- Miller, L.K. The Baculoviruses; Plenum Press: New York, NY, USA, 1997. [Google Scholar]
- Kost, T.A.; Condreay, J.P. Innovations-Biotechnology: Baculovirus vectors as gene transfer vectors for mammalian cells: Biosafety considerations. J. Am. Biol. Saf. Assoc. 2002, 7, 167–169. [Google Scholar]
- Burges, H.; Croizier, G.; Huger, J. A rewiew of safety tests on baculoviruses. Entomaphaga 1980, 25, 329–339. [Google Scholar] [CrossRef]
- Black, B.C.; Brennan, L.A.; Dierks, P.M.; Gard, I.E. Commercialization of baculoviral insecticides. In The Baculoviruses; Miller, L.K., Ed.; Plenum Press: New York, NY, USA, 1997; p. 341. [Google Scholar]
- Herniou, E.; Arif, B.; Becnel, J.; Blissard, G.; Bonning, B.; Harrison, R.; Jehle, J.; Theilmann, D.; Vlak, J. Virus Taxonomy: Classification and Nomenclature of Viruses Ninth Report of the International Committee on Taxonomy of Viruses; King, A., Adams, M., Carstens, E., Lefkowitz, E., Eds.; Elsevier: London, UK, 2012. [Google Scholar]
- Martignoni, M.; Iwai, P. A Catalog of Viral Diseases of Insects, Mites and Ticks, 4th ed.US Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 1986.
- Gröner, A. Specificity and Safety of Baculoviruses; Granados, R., Federici, B., Eds.; CRC Press: Boca Raton, FL, USA, 1977. [Google Scholar]
- Summers, M.D.; Anderson, D.L. Granulosis virus deoxyribonucleic acid: A closed, double-stranded molecule. J. Virol. 1972, 9, 710–713. [Google Scholar] [PubMed]
- Burgess, S. Molecular weights of lepidopteran baculovirus DNAs: Derivation by electron microscopy. J. Gen. Virol. 1977, 37, 501–510. [Google Scholar] [CrossRef]
- Herniou, E.A.; Arif, B.M.; Becnel, J.J.; Blissard, G.W.; Bonning, B.; Harrison, R.; Jehle, J.A.; Theilmann, D.A.; Vlak, J.M. Baculoviridae. In Virus Taxonomy: VIIIth Report of the International Committee on Taxonomy of Viruses; Fauquet, C.M., Mayo, M.A., Maniloff, J., Desselberger, U., Ball, L.A., Eds.; Elsevier/Academic Press: London, UK, 2005; pp. 177–185. [Google Scholar]
- Tweeten, K.A.; Bulla, L.A.; Consigli, R.A. Characterization of an extremely basic protein derived from granulosis virus nucleocapsids. J. Virol. 1980, 33, 866–876. [Google Scholar] [PubMed]
- Williams, G.V.; Faulkner, P. Cytological changes and viral morphogenesis during baculovirus infection. In The Baculoviruses; Miller, L.K., Ed.; Plenum Press: New York, NY, USA, 1997; pp. 61–107. [Google Scholar]
- Harrap, K.A. The structure of nuclear polyhedrosis viruses. II. The virus particle. Virology 1972, 50, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Van Loo, N.D.; Fortunati, E.; Ehlert, E.; Rabelink, M.; Grosveld, F.; Scholte, B.J. Baculovirus infection of nondividing mammalian cells: Mechanisms of entry and nuclear transport of capsids. J. Virol. 2001, 75, 961–970. [Google Scholar] [CrossRef] [PubMed]
- Fraser, M.J. Ultrastructural observations of virion maturation in Autographa califomica nuclear polyhedrosis virus-infected Spodoptera frugiperda cell cultures. J. Ultrastruct. Mol. Struct. Res. 1986, 95, 189–195. [Google Scholar] [CrossRef]
- O’Reilly, D.R.; Miller, L.K.; Luckov, V.A. Baculovirus Expression Vectors: A Laboratory Manual; Oxford University Press: New York, NY, USA, 1994. [Google Scholar]
- Jehle, J.A.; Blissard, G.W.; Bonning, B.C.; Cory, J.S.; Herniou, E.A.; Rohrmann, G.F.; Theilmann, D.A.; Thiem, S.M.; Vlak, J.M. On the classification and nomenclature of baculoviruses: A proposal for revision. Arch. Virol. 2006, 151, 1257–1266. [Google Scholar] [CrossRef] [PubMed]
- Miller, L.K. Baculoviruses as gene expression vectors. Annu. Rev. Microbiol. 1988, 42, 177–199. [Google Scholar] [CrossRef] [PubMed]
- Granados, R.R.; Federici, B.A. The Biology of Baculoviruses; CRC Press: Boca Raton, FL, USA, 1986. [Google Scholar]
- Herniou, E.A.; Olszewski, J.A.; Cory, J.S.; O’Reilly, D.R. The genome sequence and evolution of baculoviruses. Annu. Rev. Entomol. 2003, 48, 211–234. [Google Scholar] [CrossRef] [PubMed]
- Szewczyk, B.; Hoyos-Carvajal, L.; Paluszek, M.; Skrzecz, I.; Lobo de Souza, M. Baculoviruses—Re-emerging biopesticides. Biotechnol. Adv. 2006, 24, 143–160. [Google Scholar] [CrossRef] [PubMed]
- Harrap, K.A.; Longworth, J.F. An evaluation of purification methods for baculoviruses. J. Invertebr. Pathol. 1974, 24, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Granados, R.R.; Lawler, K.A. In vivo pathway of Autographa californica baculovirus invasion and infection. Virology 1981, 108, 297–308. [Google Scholar] [CrossRef] [PubMed]
- Keddie, B.A.; Aponte, G.W.; Volkman, L.E. The pathway of infection of Autographa californica nuclear polyhedrosis virus in an insect host. Science 1989, 243, 1728–1730. [Google Scholar] [CrossRef] [PubMed]
- Federici, B. Baculovirus pathogenesis. In The baculoviruses; Miller, L.K., Ed.; Plenum Press: New York, NY, USA, 1997; pp. 33–59. [Google Scholar]
- Ohkawa, T.; Washburn, J.O.; Sitapara, R.; Sid, E.; Volkman, L.E. Specific binding of Autographa californica M nucleopolyhedrovirus occlusion-derived virus to midgut cells of Heliothis virescens larvae is mediated by products of pif genes Ac119 and Ac022 but not by Ac. J. Virol. 2005, 79, 15258–15264. [Google Scholar] [CrossRef] [PubMed]
- Washburn, J.O.; Lyons, E.H.; Haas-Stapleton, E.J.; Volkman, L.E. Multiple nucleocapsid packaging of Autographa californica nucleopolyhedrovirus accelerates the onset of systemic infection in Trichoplusia ni. J. Virol. 1999, 73, 411–416. [Google Scholar] [PubMed]
- Engelhard, E.K.; Kam-Morgan, L.N.; Washburn, J.O.; Volkman, L.E. The insect tracheal system: A conduit for the systemic spread of Autographa californica M nuclear polyhedrosis virus. Proc. Natl. Acad. Sci. USA 1994, 91, 3224–3227. [Google Scholar] [CrossRef] [PubMed]
- Braunagel, S.C.; Summers, M.D. Autographa californica nuclear polyhedrosis virus, PDV, and ECV viral envelopes and nucleocapsids: Structural proteins, antigens, lipid and fatty acid profiles. Virology 1994, 202, 315–328. [Google Scholar] [CrossRef] [PubMed]
- Funk, C.; Braunagel, S.; Rohrmann, G. Baculovirus structure. In The baculoviruses; Miller, L.K., Ed.; Plenum Press: New York, NY, USA, 1997; pp. 33–59. [Google Scholar]
- Wang, P.; Hammer, D.A.; Granados, R.R. Binding and fusion of Autographa californica nucleopolyhedrovirus to cultured insect cells. J. Gen. Virol. 1997, 78, 3081–3089. [Google Scholar] [PubMed]
- Granados, R.R. Early events in the infection of Hiliothis zea midgut cells by a baculovirus. Virology 1978, 90, 170–174. [Google Scholar] [CrossRef] [PubMed]
- Summers, M.D. Electron microscopic observations on granulosis virus entry, uncoating and replication processes during infection of the midgut cells of Trichoplusia ni. J. Ultrastruct. Res. 1971, 35, 606–625. [Google Scholar] [CrossRef]
- Volkman, L.E.; Goldsmith, P.A. Mechanism of neutralization of budded Autographa californica nuclear polyhedrosis virus by a monoclonal antibody: Inhibition of entry by adsorptive endocytosis. Virology 1985, 143, 185–195. [Google Scholar] [CrossRef] [PubMed]
- Ayres, M.D.; Howard, S.C.; Kuzio, J.; Lopez-Ferber, M.; Possee, R.D. The complete DNA sequence of Autographa californica nuclear polyhedrosis virus. Virology 1994, 202, 586–605. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-R.; Zhong, S.; Fei, Z.; Hashimoto, Y.; Xiang, J.Z.; Zhang, S.; Blissard, G.W. The transcriptome of the baculovirus Autographa californica Multiple Nucleopolyhedrovirus (AcMNPV) in Trichoplusia ni cells. J. Virol. 2013, 87, 6391–6405. [Google Scholar] [CrossRef] [PubMed]
- Hefferon, K.L.; Oomens, A.G.; Monsma, S.A.; Finnerty, C.M.; Blissard, G.W. Host cell receptor binding by baculovirus GP64 and kinetics of virion entry. Virology 1999, 258, 455–468. [Google Scholar] [CrossRef] [PubMed]
- Wilson, M.E.; Consigli, R.A. Characterization of a protein kinase activity associated with purified capsids of the granulosis virus infecting Plodia interpunctella. Virology 1985, 143, 516–525. [Google Scholar] [CrossRef] [PubMed]
- Wilson, M.E.; Consigli, R.A. Functions of a protein kinase activity associated with purified capsids of the granulosis virus infecting Plodia interpunctella. Virology 1985, 143, 526–535. [Google Scholar] [CrossRef] [PubMed]
- Blissard, G.W. Baculovirus-insect cell interactions. Cytotechnology 1996, 20, 73–93. [Google Scholar] [CrossRef] [PubMed]
- Blissard, G.W.; Wenz, J.R. Baculovirus gp64 envelope glycoprotein is sufficient to mediate pH-dependent membrane fusion. J. Virol. 1992, 66, 6829–6835. [Google Scholar] [PubMed]
- Oomens, A.G.; Blissard, G.W. Requirement for GP64 to drive efficient budding of Autographa californica multicapsid nucleopolyhedrovirus. Virology 1999, 254, 297–314. [Google Scholar] [CrossRef] [PubMed]
- Rohrmann, G.F. Baculovirus structural proteins. J. Gen. Virol. 1992, 73, 749–761. [Google Scholar] [CrossRef] [PubMed]
- Kost, T.A.; Condreay, J.P.; Jarvis, D.L. Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nat. Biotechnol. 2005, 23, 567–575. [Google Scholar] [CrossRef] [PubMed]
- Hitchman, R.B.; Possee, R.D.; King, L.A. Baculovirus expression systems for recombinant protein production in insect cells. Recent Pat. Biotechnol. 2009, 3, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.-Y.; Chen, G.-Y.; Hu, Y.-C. Recent patents on the baculovirus systems. Recent Pat. Biotechnol. 2011, 5, 1–11. [Google Scholar] [CrossRef] [PubMed]
- McPherson, C.E. Development of a novel recombinant influenza vaccine in insect cells. Biologicals 2008, 36, 350–353. [Google Scholar] [CrossRef] [PubMed]
- Vaughn, J.L.; Goodwin, R.H.; Tompkins, G.J.; McCawley, P. The establishment of two cell lines from the insect Spodoptera frugiperda (Lepidoptera; Noctuidae). In Vitro 1977, 13, 213–217. [Google Scholar] [CrossRef] [PubMed]
- Ikonomou, L.; Schneider, Y.-J.; Agathos, S.N. Insect cell culture for industrial production of recombinant proteins. Appl. Microbiol. Biotechnol. 2003, 62, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Harrison, R.L.; Jarvis, D.L. Protein N-glycosylation in the baculovirus-insect cell expression system and engineering of insect cells to produce “mammalianized” recombinant glycoproteins. Adv. Virus Res. 2006, 68, 159–191. [Google Scholar] [PubMed]
- Mabashi-Asazuma, H.; Shi, X.; Geisler, C.; Kuo, C.-W.; Khoo, K.-H.; Jarvis, D.L. Impact of a human CMP-sialic acid transporter on recombinant glycoprotein sialylation in glycoengineered insect cells. Glycobiology 2013, 23, 199–210. [Google Scholar] [CrossRef] [PubMed]
- Aumiller, J.J.; Mabashi-Asazuma, H.; Hillar, A.; Shi, X.; Jarvis, D.L. A new glycoengineered insect cell line with an inducibly mammalianized protein N-glycosylation pathway. Glycobiology 2012, 22, 417–428. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y. Baculovirus as a highly efficient expression vector in insect and mammalian cells. Acta Pharmacol. Sin. 2005, 26, 405–416. [Google Scholar] [CrossRef] [PubMed]
- Oker-Blom, C.; Airenne, K.J.; Grabherr, R. Baculovirus display strategies: Emerging tools for eukaryotic libraries and gene delivery. Brief. Funct. Genomic Proteomic. 2003, 2, 244–253. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.-C.C.; Yao, K.; Wu, T.-Y.Y. Baculovirus as an expression and/or delivery vehicle for vaccine antigens. Expert Rev. Vaccines 2008, 7, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Kost, T.A.; Condreay, J.P.; Ames, R.S.; Rees, S.; Romanos, M.A. Implementation of BacMam virus gene delivery technology in a drug discovery setting. Drug Discov. Today 2007, 12, 396–403. [Google Scholar] [CrossRef] [PubMed]
- Noad, R.; Roy, P. Virus-like particles as immunogens. Trends Microbiol. 2003, 11, 438–444. [Google Scholar] [CrossRef] [PubMed]
- Urabe, M.; Ding, C.; Kotin, R.M. Insect cells as a factory to produce adeno-associated virus type 2 vectors. Hum. Gene Ther. 2002, 13, 1935–1943. [Google Scholar] [CrossRef] [PubMed]
- Lesch, H.P.; Turpeinen, S.; Niskanen, E.A.; Mähönen, A.J.; Airenne, K.J.; Ylä-Herttuala, S.; Mahonen, A.J.; Yla-Herttuala, S. Generation of lentivirus vectors using recombinant baculoviruses. Gene Ther. 2008, 15, 1280–1286. [Google Scholar] [CrossRef] [PubMed]
- Volkman, L.E.; Goldsmith, P.A. In Vitro survey of autographa californica nuclear polyhedrosis virus interaction with nontarget vertebrate host cells. Appl. Environ. Microbiol. 1983, 45, 1085–1093. [Google Scholar] [PubMed]
- Hofmann, C.; Sandig, V.; Jennings, G.; Rudolph, M.; Schlag, P.; Strauss, M. Efficient gene transfer into human hepatocytes by baculovirus vectors. Proc. Natl. Acad. Sci. USA 1995, 92, 10099–10103. [Google Scholar] [CrossRef] [PubMed]
- Boyce, F.M.; Bucher, N.L. Baculovirus-mediated gene transfer into mammalian cells. Proc. Natl. Acad. Sci. USA 1996, 93, 2348–2352. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-P.; Chen, Y.-L.; Shen, H.-C.; Lo, W.-H.; Hu, Y.-C. Baculovirus transduction of rat articular chondrocytes: Roles of cell cycle. J. Gene Med. 2007, 9, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Laakkonen, J.P.; Kaikkonen, M.U.; Ronkainen, P.H.A.; Ihalainen, T.O.; Niskanen, E.A.; Häkkinen, M.; Salminen, M.; Kulomaa, M.S.; Ylä-Herttuala, S.; Airenne, K.J.; et al. Baculovirus-mediated immediate-early gene expression and nuclear reorganization in human cells. Cell. Microbiol. 2008, 10, 667–681. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Liu, S.; Wu, H.; Lv, J.; Xu, X.; Zhang, Y. Baculovirus as an ideal radionuclide reporter gene vector: A new strategy for monitoring the fate of human stem cells in vivo. PLOS ONE 2013, 8, e61305. [Google Scholar] [CrossRef] [PubMed]
- Takata, Y.; Kishine, H.; Sone, T.; Andoh, T.; Nozaki, M.; Poderycki, M.; Chesnut, J.D.; Imamoto, F. Generation of iPS cells using a BacMam multigene expression system. Cell Struct. Funct. 2011, 36, 209–222. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Lee, C.-L.; Joo, K.-I.; Zarzar, J.; Liu, Y.; Dai, B.; Fox, V.; Wang, P. Gene editing of human embryonic stem cells via an engineered baculoviral vector carrying zinc-finger nucleases. Mol. Ther. 2011, 19, 942–950. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-Y.; Lin, C.-Y.; Chen, G.-Y.; Hu, Y.-C. Baculovirus as a gene delivery vector: Recent understandings of molecular alterations in transduced cells and latest applications. Biotechnol. Adv. 2011, 29, 618–631. [Google Scholar] [CrossRef] [PubMed]
- Airenne, K.J.; Hu, Y.-C.; Kost, T.A.; Smith, R.H.; Kotin, R.M.; Ono, C.; Matsuura, Y.; Wang, S.; Ylä-Herttuala, S. Baculovirus: An insect-derived vector for diverse gene transfer applications. Mol. Ther. 2013, 21, 739–749. [Google Scholar] [CrossRef] [PubMed]
- Condreay, J.P.; Witherspoon, S.M.; Clay, W.C.; Kost, T.A. Transient and stable gene expression in mammalian cells transduced with a recombinant baculovirus vector. Proc. Natl. Acad. Sci. USA 1999, 96, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Kost, T.A.; Condreay, J.P. Recombinant baculoviruses as mammalian cell gene-delivery vectors. Trends Biotechnol. 2002, 20, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Shoji, I.; Aizaki, H.; Tani, H.; Ishii, K.; Chiba, T.; Saito, I.; Miyamura, T.; Matsuura, Y. Efficient gene transfer into various mammalian cells, including non-hepatic cells, by baculovirus vectors. J. Gen. Virol. 1997, 78, 2657–2664. [Google Scholar] [PubMed]
- Yap, C.C.; Ishii, K.; Aoki, Y.; Aizaki, H.; Tani, H.; Shimizu, H.; Ueno, Y.; Miyamura, T.; Matsuura, Y. A hybrid baculovirus-T7 RNA polymerase system for recovery of an infectious virus from cDNA. Virology 1997, 231, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Barsoum, J.; Brown, R.; McKee, M.; Boyce, F.M. Efficient transduction of mammalian cells by a recombinant baculovirus having the vesicular stomatitis virus G glycoprotein. Hum. Gene Ther. 1997, 8, 2011–2018. [Google Scholar] [CrossRef] [PubMed]
- Ping, W.; Ge, J.; Li, S.; Zhou, H.; Wang, K.; Feng, Y.; Lou, Z. Baculovirus-mediated gene expression in chicken primary cells. Avian Dis. 2006, 50, 59–63. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, C.; Wolfgang, L.; Strauss, M. The baculovirus vector system for gene delivery into hepatocytes. Gene Ther. Mol. Biol. 1998, 1, 231–239. [Google Scholar]
- Matsuo, E.; Tani, H.; Lim, C.K.; Komoda, Y.; Okamoto, T.; Miyamoto, H.; Moriishi, K.; Yagi, S.; Patel, A.H.; Miyamura, T.; et al. Characterization of HCV-like particles produced in a human hepatoma cell line by a recombinant baculovirus. Biochem. Biophys. Res. Commun. 2006, 340, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Mähönen, A.J.; Airenne, K.J.; Purola, S.; Peltomaa, E.; Kaikkonen, M.U.; Riekkinen, M.S.; Heikura, T.; Kinnunen, K.; Roschier, M.M.; Wirth, T.; et al. Post-transcriptional regulatory element boosts baculovirus-mediated gene expression in vertebrate cells. J. Biotechnol. 2007, 131, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Mähönen, A.J.; Makkonen, K.-E.E.; Laakkonen, J.P.; Ihalainen, T.O.; Kukkonen, S.P.; Kaikkonen, M.U.; Vihinen-Ranta, M.; Ylä-Herttuala, S.; Airenne, K.J.; Mahonen, A.J.; et al. Culture medium induced vimentin reorganization associates with enhanced baculovirus-mediated gene delivery. J. Biotechnol. 2010, 145, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Airenne, K. Optimization of baculovirus-mediated gene delivery into vertebrate cells. BioProcess J. 2009, 8, 54–59. [Google Scholar]
- Dukkipati, A.; Park, H.H.; Waghray, D.; Fischer, S.; Garcia, K.C. BacMam system for high-level expression of recombinant soluble and membrane glycoproteins for structural studies. Protein Expr. Purif. 2008, 62, 160–170. [Google Scholar] [CrossRef] [PubMed]
- Airenne, K.J.; Laitinen, O.H.; Mähönen, A.J.; Ylä-Herttuala, S. Safe, simple, and high-capacity gene delivery into insect and vertebrate cells by recombinant baculoviruses. In Gene Transfer: Delivery and Expression of DNA and RNA; Friedmann, T., Rossi, J., Eds.; Cold Spring Harbor Laboratory Press: New York, NY, USA, 2007; pp. 313–325. [Google Scholar]
- Leisy, D.J.; Lewis, T.D.; Leong, J.-A.C.; Rohrmann, G.F. Transduction of cultured fish cells with recombinant baculoviruses. J. Gen. Virol. 2003, 84, 1173–1178. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.-S.; Ho, Y.-C.; Wang, K.-C.; Hu, Y.-C. Investigation of optimal transduction conditions for baculovirus-mediated gene delivery into mammalian cells. Biotechnol. Bioeng. 2004, 88, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Ramos, L.; Kopec, L.A.; Sweitzer, S.M.; Fornwald, J.A.; Zhao, H.; McAllister, P.; McNulty, D.E.; Trill, J.J.; Kane, J.F. Rapid expression of recombinant proteins in modified CHO cells using the baculovirus system. Cytotechnology 2002, 38, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.-C.; Tsai, C.-T.; Chang, Y.-J.; Huang, J.-H. Enhancement and prolongation of baculovirus-mediated expression in mammalian cells: Focuses on strategic infection and feeding. Biotechnol. Prog. 2003, 19, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Cheng, T.; Xu, C.-Y.; Wang, Y.-B.; Chen, M.; Wu, T.; Zhang, J.; Xia, N.-S. A rapid and efficient method to express target genes in mammalian cells by baculovirus. World J. Gastroenterol. 2004, 10, 1612–1618. [Google Scholar] [PubMed]
- Wang, K.-C.; Wu, J.-C.; Chung, Y.-C.; Ho, Y.-C.; Chang, M.D.-T.; Hu, Y.-C. Baculovirus as a highly efficient gene delivery vector for the expression of hepatitis delta virus antigens in mammalian cells. Biotechnol. Bioeng. 2005, 89, 464–473. [Google Scholar] [CrossRef] [PubMed]
- Turkki, P.; Makkonen, K.-E.; Huttunen, M.; Laakkonen, J.P.; Ylä-Herttuala, S.; Airenne, K.J.; Marjomäki, V. Cell susceptibility to baculovirus transduction and echovirus infection is modified by PKC phosphorylation and vimentin organization. J. Virol. 2013, 87, 9822–9835. [Google Scholar] [CrossRef] [PubMed]
- Kukkonen, S.P.; Airenne, K.J.; Marjomaki, V.; Laitinen, O.H.; Lehtolainen, P.; Kankaanpaa, P.; Mahonen, A.J.; Raty, J.K.; Nordlund, H.R.; Oker-Blom, C.; et al. Baculovirus capsid display: A novel tool for transduction imaging. Mol. Ther. 2003, 8, 853–862. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.-C.; Lee, H.-P.; Lo, W.-H.; Yang, D.-G.; Hu, Y.-C. Baculovirus-mediated gene transfer is attenuated by sodium bicarbonate. J. Gene Med. 2007, 9, 470–478. [Google Scholar] [CrossRef] [PubMed]
- Airenne, K.J.; Hiltunen, M.O.; Turunen, M.P.; Turunen, A.M.; Laitinen, O.H.; Kulomaa, M.S.; Yla-Herttuala, S.; Ylä-Herttuala, S. Baculovirus-mediated periadventitial gene transfer to rabbit carotid artery. Gene Ther. 2009, 7, 1499–1504. [Google Scholar] [CrossRef]
- Salminen, M.; Airenne, K.J.; Rinnankoski, R.; Reimari, J.; Välilehto, O.; Rinne, J.; Suikkanen, S.; Kukkonen, S.; Ylä-Herttuala, S.; Kulomaa, M.S.; et al. Improvement in nuclear entry and transgene expression of baculoviruses by disintegration of microtubules in human hepatocytes. J. Virol. 2005, 79, 2720–2728. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yin, J.; Huang, X.; Zhong, J. DNA methyltransferase inhibitors increase baculovirus-mediated gene expression in mammalian cells when applied before infection. Anal. Biochem. 2010, 396, 322–324. [Google Scholar] [CrossRef] [PubMed]
- Hunt, L.; Batard, P.; Jordan, M.; Wurm, F.M. Fluorescent proteins in animal cells for process development: Optimization of sodium butyrate treatment as an example. Biotechnol. Bioeng. 2002, 77, 528–537. [Google Scholar] [CrossRef] [PubMed]
- Mäkelä, A.R.; Oker-Blom, C. Baculovirus display: A multifunctional technology for gene delivery and eukaryotic library development. Adv. Virus Res. 2006, 68, 91–112. [Google Scholar] [PubMed]
- Liang, C.; Song, J.; Chen, X. The GP64 protein of Autographa californica multiple nucleopolyhedrovirus rescues Helicoverpa armigera nucleopolyhedrovirus transduction in mammalian cells. J. Gen. Virol. 2005, 86, 1629–1635. [Google Scholar] [CrossRef] [PubMed]
- Tani, H.; Limn, C.K.; Yap, C.C.; Onishi, M.; Nozaki, M.; Nishimune, Y.; Okahashi, N.; Kitagawa, Y.; Watanabe, R.; Mochizuki, R.; et al. In vitro and in vivo gene delivery by recombinant baculoviruses. J. Virol. 2003, 77, 9799–9808. [Google Scholar] [CrossRef] [PubMed]
- Boublik, Y.; Di Bonito, P.; Jones, I.M. Eukaryotic virus display: Engineering the major surface glycoprotein of the Autographa californica nuclear polyhedrosis virus (AcNPV) for the presentation of foreign proteins on the virus surface. Biotechnology 1995, 13, 1079–1084. [Google Scholar] [CrossRef] [PubMed]
- Chapple, S.D.J.; Jones, I.M. Non-polar distribution of green fluorescent protein on the surface of Autographa californica nucleopolyhedrovirus using a heterologous membrane anchor. J. Biotechnol. 2002, 95, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Tani, H.; Nishijima, M.; Ushijima, H.; Miyamura, T.; Matsuura, Y. Characterization of cell-surface determinants important for baculovirus infection. Virology 2001, 279, 343–353. [Google Scholar] [CrossRef] [PubMed]
- Kaikkonen, M.U.; Räty, J.K.; Airenne, K.J.; Wirth, T.; Heikura, T.; Ylä-Herttuala, S.; Raty, J.K.; Yla-Herttuala, S. Truncated vesicular stomatitis virus G protein improves baculovirus transduction efficiency in vitro and in vivo. Gene Ther. 2006, 13, 304–312. [Google Scholar] [CrossRef] [PubMed]
- Kitagawa, Y.; Tani, H.; Limn, C.K.; Matsunaga, T.M.; Moriishi, K.; Matsuura, Y. Ligand-directed gene targeting to mammalian cells by pseudotype baculoviruses. J. Virol. 2005, 79, 3639–3652. [Google Scholar] [CrossRef] [PubMed]
- Pieroni, L.; Maione, D.; La Monica, N. In vivo gene transfer in mouse skeletal muscle mediated by baculovirus vectors. Hum. Gene Ther. 2001, 12, 871–881. [Google Scholar] [CrossRef] [PubMed]
- Matilainen, H.; Mäkelä, A.R.; Riikonen, R.; Saloniemi, T.; Korhonen, E.; Hyypiä, T.; Heino, J.; Grabherr, R.; Oker-Blom, C. RGD motifs on the surface of baculovirus enhance transduction of human lung carcinoma cells. J. Biotechnol. 2006, 125, 114–126. [Google Scholar] [CrossRef] [PubMed]
- Mäkelä, A.R.; Matilainen, H.; White, D.J.; Ruoslahti, E.; Oker-Blom, C. Enhanced baculovirus-mediated transduction of human cancer cells by tumor-homing peptides. J. Virol. 2006, 80, 6603–6611. [Google Scholar] [CrossRef] [PubMed]
- Ojala, K.; Mottershead, D.G.; Suokko, A.; Oker-Blom, C. Specific binding of baculoviruses displaying gp64 fusion proteins to mammalian cells. Biochem. Biophys. Res. Commun. 2001, 284, 777–784. [Google Scholar] [CrossRef] [PubMed]
- Ojala, K.; Koski, J.; Ernst, W.; Grabherr, R.; Jones, I.; Oker-Blom, C. Improved display of synthetic IgG-binding domains on the baculovirus surface. Technol. Cancer Res. Treat. 2004, 3, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Riikonen, R.; Sc, M.; Matilainen, H.; Rajala, N.; Pentikäinen, O.; Johnson, M.; Heino, J.; Oker-blom, C.; Pentikainen, O. Functional Display of an α 2 Integrin-Specific Motif ( RKK ) on the Surface of Baculovirus Particles. Technol. Cancer Res. Treat. 2005, 4, 437–445. [Google Scholar] [CrossRef] [PubMed]
- Räty, J.K.; Airenne, K.J.; Marttila, A.T.; Marjomäki, V.; Hytönen, V.P.; Lehtolainen, P.; Laitinen, O.H.; Mähönen, A.J.; Kulomaa, M.S.; Ylä-Herttuala, S. Enhanced gene delivery by avidin-displaying baculovirus. Mol. Ther. 2004, 9, 282–291. [Google Scholar] [CrossRef] [PubMed]
- Kaikkonen, M.U.; Viholainen, J.I.; Närvänen, A.; Ylä-Herttuala, S.; Airenne, K.J. Targeting and purification of metabolically biotinylated baculovirus. Hum. Gene Ther. 2008, 19, 589–600. [Google Scholar] [CrossRef] [PubMed]
- Mäkelä, A.R.; Enbäck, J.; Laakkonen, J.P.; Vihinen-Ranta, M.; Laakkonen, P.; Oker-Blom, C. Tumor targeting of baculovirus displaying a lymphatic homing peptide. J. Gene Med. 2008, 10, 1019–1031. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-K.; Park, I.-K.; Jiang, H.-L.; Choi, J.-Y.; Je, Y.-H.; Jin, H.; Kim, H.-W.; Cho, M.-H.; Cho, C.-S. Regulation of transduction efficiency by pegylation of baculovirus vector in vitro and in vivo. J. Biotechnol. 2006, 125, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-K.; Choi, J.Y.; Jiang, H.-L.; Arote, R.; Jere, D.; Cho, M.-H.; Je, Y.H.; Cho, C.-S. Hybrid of baculovirus and galactosylated PEI for efficient gene carrier. Virology 2009, 387, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-K.; Choi, J.Y.; Yoo, M.-K.; Jiang, H.-L.; Arote, R.; Je, Y.H.; Cho, M.-H.; Cho, C.-S. Receptor-mediated gene delivery by folate-PEG-baculovirus in vitro. J. Biotechnol. 2007, 131, 353–361. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-K.; Kwon, J.-T.; Choi, J.Y.; Jiang, H.-L.; Arote, R.; Jere, D.; Je, Y.H.; Cho, M.-H.; Cho, C.-S. Suppression of tumor growth in xenograft model mice by programmed cell death 4 gene delivery using folate-PEG-baculovirus. Cancer Gene Ther. 2010, 17, 751–760. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Lo, S.-L.; Yang, J.; Yang, J.; Goh, S.S.L.; Wu, C.; Feng, S.-S.; Wang, S. Polyethylenimine coating to produce serum-resistant baculoviral vectors for in vivo gene delivery. Biomaterials 2009, 30, 5767–5774. [Google Scholar] [CrossRef] [PubMed]
- Spenger, A.; Ernst, W.; Condreay, J.P.; Kost, T.A.; Grabherr, R. Influence of promoter choice and trichostatin A treatment on expression of baculovirus delivered genes in mammalian cells. Protein Expr. Purif. 2004, 38, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Park, S.W.; Lee, H.K.; Kim, T.G.; Yoon, S.K.; Paik, S.Y. Hepatocyte-specific gene expression by baculovirus pseudotyped with vesicular stomatitis virus envelope glycoprotein. Biochem. Biophys. Res. Commun. 2001, 289, 444–450. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yang, Y.; Wang, S. Neuronal gene transfer by baculovirus-derived vectors accommodating a neurone-specific promoter. Exp. Physiol. 2005, 90, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.Y.; Wang, S. Astrocytic expression of transgene in the rat brain mediated by baculovirus vectors containing an astrocyte-specific promoter. Gene Ther. 2006, 13, 1447–1456. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.; Tian, L.; Han, B.; Xu, H.; Zhang, M.; Li, B. Feasibility of a novel positive feedback effect of 131I-promoted Bac-Egr1-hNIS expression in malignant glioma via baculovirus. Nucl. Med. Biol. 2011, 38, 599–604. [Google Scholar] [CrossRef] [PubMed]
- McCormick, C.J.; Challinor, L.; Macdonald, A.; Rowlands, D.J.; Harris, M. Introduction of replication-competent hepatitis C virus transcripts using a tetracycline-regulable baculovirus delivery system. J. Gen. Virol. 2004, 85, 429–439. [Google Scholar] [CrossRef] [PubMed]
- Palombo, F.; Monciotti, A.; Recchia, A.; Cortese, R.; Ciliberto, G.; La Monica, N. Site-specific integration in mammalian cells mediated by a new hybrid baculovirus-adeno-associated virus vector. J. Virol. 1998, 72, 5025–5034. [Google Scholar] [PubMed]
- Wang, C.-Y.; Wang, S. Adeno-associated virus inverted terminal repeats improve neuronal transgene expression mediated by baculoviral vectors in rat brain. Hum. Gene Ther. 2005, 16, 1219–1226. [Google Scholar] [CrossRef] [PubMed]
- Shan, L.; Wang, L.; Yin, J.; Zhong, P.; Zhong, J. An OriP/EBNA-1-based baculovirus vector with prolonged and enhanced transgene expression. J. Gene Med. 2006, 8, 1400–1406. [Google Scholar] [CrossRef] [PubMed]
- Luo, W.-Y.; Shih, Y.-S.; Hung, C.-L.; Lo, K.-W.; Chiang, C.-S.; Lo, W.-H.; Huang, S.-F.; Wang, S.-C.; Yu, C.-F.; Chien, C.-H.; et al. Development of the hybrid Sleeping Beauty: Baculovirus vector for sustained gene expression and cancer therapy. Gene Ther. 2012, 19, 844–851. [Google Scholar] [CrossRef] [PubMed]
- Abe, T.; Takahashi, H.; Hamazaki, H.; Miyano-Kurosaki, N.; Matsuura, Y.; Takaku, H. Baculovirus induces an innate immune response and confers protection from lethal influenza virus infection in mice. J. Immunol. 2003, 171, 1133–1139. [Google Scholar] [CrossRef] [PubMed]
- Beck, N.B.; Sidhu, J.S.; Omiecinski, C.J. Baculovirus vectors repress phenobarbital-mediated gene induction and stimulate cytokine expression in primary cultures of rat hepatocytes. Gene Ther. 2000, 7, 1274–1283. [Google Scholar] [CrossRef] [PubMed]
- Gronowski, A.M.; Hilbert, D.M.; Sheehan, K.C.; Garotta, G.; Schreiber, R.D. Baculovirus stimulates antiviral effects in mammalian cells. J. Virol. 1999, 73, 9944–9951. [Google Scholar] [PubMed]
- Abe, T.; Hemmi, H.; Miyamoto, H.; Moriishi, K.; Tamura, S.; Takaku, H.; Akira, S.; Matsuura, Y. Involvement of the Toll-like receptor 9 signaling pathway in the induction of innate immunity by baculovirus. J. Virol. 2005, 79, 2847–2858. [Google Scholar] [CrossRef] [PubMed]
- Abe, T.; Kaname, Y.; Wen, X.; Tani, H.; Moriishi, K.; Uematsu, S.; Takeuchi, O.; Ishii, K.J.; Kawai, T.; Akira, S.; et al. Baculovirus induces type I interferon production through toll-like receptor-dependent and -independent pathways in a cell-type-specific manner. J. Virol. 2009, 83, 7629–7640. [Google Scholar] [CrossRef] [PubMed]
- Boulaire, J.; Zhao, Y.; Wang, S. Gene expression profiling to define host response to baculoviral transduction in the brain. J. Neurochem. 2009, 109, 1203–1214. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.-Y.; Shiah, H.-C.; Su, H.-J.; Chen, C.-Y.; Chuang, Y.-J.; Lo, W.-H.; Huang, J.-L.; Chuang, C.-K.; Hwang, S.-M.; Hu, Y.-C. Baculovirus transduction of mesenchymal stem cells triggers the toll-like receptor 3 pathway. J. Virol. 2009, 83, 10548–10556. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Niu, M.; An, L.; Li, W. Upregulation of proinflammatory cytokines and NO production in BV-activated avian macrophage-like cell line (HD11) requires MAPK and NF-kappaB pathways. Int. Immunopharmacol. 2009, 9, 817–823. [Google Scholar] [CrossRef] [PubMed]
- Wilson, S.; Baird, M.; Ward, V.K. Delivery of vaccine peptides by rapid conjugation to baculovirus particles. Vaccine 2008, 26, 2451–2456. [Google Scholar] [CrossRef] [PubMed]
- Abe, T. Analysis of the application of host innate immune response to control and prevent infection. Uirusu 2012, 62, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Chang, M.O.; Kitajima, M.; Takaku, H. Baculovirus activates murine dendritic cells and induces non-specific NK cell and T cell immune responses. Cell. Immunol. 2010, 262, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Li, K.-C.; Chang, Y.-H.; Lin, C.-Y.; Hwang, S.-M.; Wang, T.-H.; Hu, Y.-C. Preclinical safety evaluation of ASCs engineered by FLPo/Frt-based hybrid baculovirus: In Vitro and large animal studies. Tissue Eng. A 2015. [Google Scholar] [CrossRef]
- Wickham, T.J.; Shuler, M.L.; Hammer, D.A.; Granados, R.R.; Wood, H.A. Equilibrium and kinetic analysis of Autographa californica nuclear polyhedrosis virus attachment to different insect cell lines. J. Gen. Virol. 1992, 73, 3185–3194. [Google Scholar] [CrossRef] [PubMed]
- Matilainen, H.; Rinne, J.; Gilbert, L.; Marjomäki, V.; Reunanen, H.; Oker-Blom, C. Baculovirus entry into human hepatoma cells. J. Virol. 2005, 79, 15452–15459. [Google Scholar] [CrossRef] [PubMed]
- Long, G.; Pan, X.; Kormelink, R.; Vlak, J.M. Functional entry of baculovirus into insect and mammalian cells is dependent on clathrin-mediated endocytosis. J. Virol. 2006, 80, 8830–8833. [Google Scholar] [CrossRef] [PubMed]
- Kataoka, C.; Kaname, Y.; Taguwa, S.; Abe, T.; Fukuhara, T.; Tani, H.; Moriishi, K.; Matsuura, Y. Baculovirus GP64-mediated entry into mammalian cells. J. Virol. 2012, 86, 2610–2620. [Google Scholar] [CrossRef] [PubMed]
- Moller-Tank, S.; Kondratowicz, A.S.; Davey, R.A.; Rennert, P.D.; Maury, W. Role of the phosphatidylserine receptor TIM-1 in enveloped-virus entry. J. Virol. 2013, 87, 8327–8341. [Google Scholar] [CrossRef] [PubMed]
- Laakkonen, J.P.; Makela, A.R.; Kakkonen, E.; Turkki, P.; Kukkonen, S.; Peranen, J.; Yla-Herttuala, S.; Airenne, K.J.; Oker-Blom, C.; Vihinen-Ranta, M.; et al. Clathrin-independent entry of baculovirus triggers uptake of E. coli in non-phagocytic human cells. PLOS ONE 2009, 4, e5093. [Google Scholar] [CrossRef] [PubMed]
- Marsh, M.; Helenius, A. Virus entry: Open sesame. Cell 2006, 124, 729–740. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Wang, S. A pH-sensitive heparin-binding sequence from baculovirus gp64 protein is important for binding to mammalian cells but not to Sf. J. Virol. 2012, 86, 484–491. [Google Scholar] [CrossRef] [PubMed]
- O’Flynn, N.M.J.; Patel, A.; Kadlec, J.; Jones, I.M. Improving promiscuous mammalian cell entry by the baculovirus Autographa californica multiple nuclear polyhedrosis virus. Biosci. Rep. 2013, 33, 23–36. [Google Scholar]
- Duisit, G.; Saleun, S.; Douthe, S.; Barsoum, J.; Chadeuf, G.; Moullier, P. Baculovirus vector requires electrostatic interactions including heparan sulfate for efficient gene transfer in mammalian cells. J. Gene Med. 1999, 1, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Makkonen, K.-E.; Turkki, P.; Laakkonen, J.P.; Ylä-Herttuala, S.; Marjomäki, V.; Airenne, K.J. 6-O sulfated and N-sulfated Syndecan-1 promotes baculovirus binding and entry into mammalian cells. J. Virol. 2013, 87, 11148–11159. [Google Scholar] [CrossRef] [PubMed]
- Kamiya, K.; Kobayashi, J.; Yoshimura, T.; Tsumoto, K. Confocal microscopic observation of fusion between baculovirus budded virus envelopes and single giant unilamellar vesicles. Biochim. Biophys. Acta 2010, 1798, 1625–1631. [Google Scholar] [CrossRef] [PubMed]
- Backovic, M.; Jardetzky, T.S. Class III viral membrane fusion proteins. Adv. Exp. Med. Biol. 2011, 714, 91–101. [Google Scholar] [PubMed]
- Goley, E.D.; Ohkawa, T.; Mancuso, J.; Woodruff, J.B.; D’Alessio, J.A.; Cande, W.Z.; Volkman, L.E.; Welch, M.D. Dynamic nuclear actin assembly by Arp2/3 complex and a baculovirus WASP-like protein. Science 2006, 314, 464–467. [Google Scholar] [CrossRef] [PubMed]
- Ohkawa, T.; Volkman, L.E.; Welch, M.D. Actin-based motility drives baculovirus transit to the nucleus and cell surface. J. Cell Biol. 2010, 190, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Au, S.; Panté, N.; Pante, N. Nuclear transport of baculovirus: Revealing the nuclear pore complex passage. J. Struct. Biol. 2012, 177, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Strauss, R.; Hüser, A.; Ni, S.; Tuve, S.; Kiviat, N.; Sow, P.S.; Hofmann, C.; Lieber, A.; Huser, A. Baculovirus-based vaccination vectors allow for efficient induction of immune responses against plasmodium falciparum circumsporozoite protein. Mol. Ther. 2007, 15, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, C.; Strauss, M. Baculovirus-mediated gene transfer in the presence of human serum or blood facilitated by inhibition of the complement system. Gene Ther. 1998, 5, 531–536. [Google Scholar] [CrossRef] [PubMed]
- Georgopoulos, L.J.; Elgue, G.; Sanchez, J.; Dussupt, V.; Magotti, P.; Lambris, J.D.; Tötterman, T.H.; Maitland, N.J.; Nilsson, B. Preclinical evaluation of innate immunity to baculovirus gene therapy vectors in whole human blood. Mol. Immunol. 2009, 46, 2911–2917. [Google Scholar] [CrossRef] [PubMed]
- Hoare, J.; Waddington, S.; Thomas, H.C.; Coutelle, C.; McGarvey, M.J. Complement inhibition rescued mice allowing observation of transgene expression following intraportal delivery of baculovirus in mice. J. Gene Med. 2005, 7, 325–333. [Google Scholar] [CrossRef] [PubMed]
- Sandig, V.; Hofmann, C.; Steinert, S.; Jennings, G.; Schlag, P.; Strauss, M. Gene transfer into hepatocytes and human liver tissue by baculovirus vectors. Hum. Gene Ther. 1996, 7, 1937–1945. [Google Scholar] [CrossRef] [PubMed]
- Kinnunen, K.; Kalesnykas, G.; Mahonen, A.J.; Laidinen, S.; Holma, L.; Heikura, T.; Airenne, K.; Uusitalo, H.; Yla-Herttuala, S. Baculovirus is an efficient vector for the transduction of the eye: Comparison of baculovirus- and adenovirus-mediated intravitreal vascular endothelial growth factor D gene transfer in the rabbit eye. J. Gene Med. 2009, 11, 382–389. [Google Scholar] [CrossRef] [PubMed]
- Lehtolainen, P.; Tyynela, K.; Kannasto, J.; Airenne, K.J.; Yla-Herttuala, S. Baculoviruses exhibit restricted cell type specificity in rat brain: A comparison of baculovirus- and adenovirus-mediated intracerebral gene transfer in vivo. Gene Ther. 2002, 9, 1693–1699. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Lin, J.; Hong, M.; Choudhury, Y.; Balani, P.; Leung, D.; Dang, L.H.; Zhao, Y.; Zeng, J.; Wang, S. Combinatorial control of suicide gene expression by tissue-specific promoter and microRNA regulation for cancer therapy. Mol. Ther. 2009, 17, 2058–2066. [Google Scholar] [CrossRef] [PubMed]
- Park, H.J.; Lee, W.Y.; Kim, J.H.; Kim, J.H.; Jung, H.J.; Kim, N.H.; Kim, B.K.; Song, H. Interstitial tissue-specific gene expression in mouse testis by intra-tunica albuguineal injection of recombinant baculovirus. Asian J. Androl. 2009, 11, 342–350. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, C.; Zeng, J.; Xu, X.; Hwang, P.Y.K.; Yee, W.-C.; Ng, Y.-K.; Wang, S. Gene transfer to dorsal root ganglia by intrathecal injection: Effects on regeneration of peripheral nerves. Mol. Ther. 2005, 12, 314–320. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Li, K.; Song, J.; Liang, C.; Wang, X.; Chen, X. Efficient and stable gene expression in rabbit intervertebral disc cells transduced with a recombinant baculovirus vector. Spine 2006, 31, 732–735. [Google Scholar] [CrossRef] [PubMed]
- Airenne, K.J.; Makkonen, K.-E.; Mähönen, A.J.; Ylä-Herttuala, S. In vivo application and tracking of baculovirus. Curr. Gene Ther. 2010, 10, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Sarkis, C.; Serguera, C.; Petres, S.; Buchet, D.; Ridet, J.L.; Edelman, L.; Mallet, J. Efficient transduction of neural cells in vitro and in vivo by a baculovirus-derived vector. Proc. Natl. Acad. Sci. USA 2000, 97, 14638–14643. [Google Scholar] [CrossRef] [PubMed]
- Huser, A.; Rudolph, M.; Hofmann, C. Incorporation of decay-accelerating factor into the baculovirus envelope generates complement-resistant gene transfer vectors. Nat. Biotechnol. 2001, 19, 451–455. [Google Scholar] [CrossRef] [PubMed]
- Kaikkonen, M.U.; Maatta, A.I.; Yla-Herttuala, S.; Airenne, K.J.; Ylä-Herttuala, S. Screening of complement inhibitors: Shielded baculoviruses increase the safety and efficacy of gene delivery. Mol. Ther. 2010, 18, 987–992. [Google Scholar] [CrossRef] [PubMed]
- Kircheis, R.; Wightman, L.; Schreiber, A.; Robitza, B.; Rössler, V.; Kursa, M.; Wagner, E. Polyethylenimine/DNA complexes shielded by transferrin target gene expression to tumors after systemic application. Gene Ther. 2001, 8, 28–40. [Google Scholar] [CrossRef] [PubMed]
- Laitinen, O.H.; Airenne, K.J.; Hytönen, V.P.; Peltomaa, E.; Mähönen, A.J.; Wirth, T.; Lind, M.M.; Mäkelä, K.A.; Toivanen, P.I.; Schenkwein, D.; et al. A multipurpose vector system for the screening of libraries in bacteria, insect and mammalian cells and expression in vivo. Nucleic Acids Res. 2005, 33, e42. [Google Scholar] [CrossRef] [PubMed]
- Räty, J.K.; Liimatainen, T.; Wirth, T.; Airenne, K.J.; Ihalainen, T.O.; Huhtala, T.; Hamerlynck, E.; Vihinen-Ranta, M.; Närvänen, A.; Ylä-Herttuala, S.; et al. Magnetic resonance imaging of viral particle biodistribution in vivo. Gene Ther. 2006, 13, 1440–1446. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.H.; Yang, Y.; Paton, J.F.R.; Li, F.; Boulaire, J.; Kasparov, S.; Wang, S. GAL4-NF-kappaB fusion protein augments transgene expression from neuronal promoters in the rat brain. Mol. Ther. 2006, 14, 872–882. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, X.; Guo, H.; Wang, S. Axonal transport of recombinant baculovirus vectors. Mol. Ther. 2004, 10, 1121–1129. [Google Scholar] [CrossRef] [PubMed]
- Haeseleer, F.; Imanishi, Y.; Saperstein, D.A.; Palczewski, K. Gene transfer mediated by recombinant baculovirus into mouse eye. Invest. Ophthalmol. Vis. Sci. 2001, 42, 3294–3300. [Google Scholar] [PubMed]
- Turunen, T.A.K.; Laakkonen, J.P.; Alasaarela, L.; Airenne, K.J.; Ylä-Herttuala, S. Sleeping Beauty baculovirus hybrid vectors for long-term gene expression in the eye. J. Gene Med. 2014, 16, 40–53. [Google Scholar] [CrossRef] [PubMed]
- Luz-Madrigal, A.; Clapp, C.; Aranda, J.; Vaca, L. In vivo transcriptional targeting into the retinal vasculature using recombinant baculovirus carrying the human flt-1 promoter. Virol. J. 2007, 4, e88. [Google Scholar] [CrossRef]
- Torres-Vega, M.A.; Vargas-Jerónimo, R.Y.; Montiel-Martínez, A.G.; Muñoz-Fuentes, R.M.; Zamorano-Carrillo, A.; Pastor, A.R.; Palomares, L.A. Delivery of glutamine synthetase gene by baculovirus vectors: A proof of concept for the treatment of acute hyperammonemia. Gene Ther. 2015, 22, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Heikura, T.; Nieminen, T.; Roschier, M.M.; Karvinen, H.; Kaikkonen, M.U.; Mähönen, A.J.; Lesch, H.P.; Rissanen, T.T.; Laitinen, O.H.; Airenne, K.J.; et al. Baculovirus-mediated vascular endothelial growth factor-D(ΔNΔC) gene transfer induces angiogenesis in rabbit skeletal muscle. J. Gene Med. 2012, 14, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Yanev, P.; Jolkkonen, J.; Airenne, K.; Ylä-Herttuala, S.; Wirth, T. Enhanced angiogenesis and reduced infarct size by vascular endothelial growth factor D is not translated to behavioral outcome in a rat model of ischemic stroke. J. Exp. Stroke Transl. Med. 2010, 3, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Paul, A.; Nayan, M.; Khan, A.A.; Shum-Tim, D.; Prakash, S. Angiopoietin-1-expressing adipose stem cells genetically modified with baculovirus nanocomplex: Investigation in rat heart with acute infarction. Int. J. Nanomed. 2012, 7, 663–682. [Google Scholar] [CrossRef]
- Paul, A.; Binsalamah, Z.M.; Khan, A.A.; Abbasia, S.; Elias, C.B.; Shum-Tim, D.; Prakash, S. A nanobiohybrid complex of recombinant baculovirus and Tat/DNA nanoparticles for delivery of Ang-1 transgene in myocardial infarction therapy. Biomaterials 2011, 32, 8304–8318. [Google Scholar] [CrossRef] [PubMed]
- Paul, A.; Elias, C.B.; Shum-Tim, D.; Prakash, S. Bioactive baculovirus nanohybrids for stent based rapid vascular re-endothelialization. Sci. Rep. 2013, 3, 2366. [Google Scholar] [CrossRef] [PubMed]
- Nishibe, Y.; Kaneko, H.; Suzuki, H.; Abe, T.; Matsuura, Y.; Takaku, H. Baculovirus-mediated interferon alleviates dimethylnitrosamine-induced liver cirrhosis symptoms in a murine model. Gene Ther. 2008, 15, 990–997. [Google Scholar] [CrossRef] [PubMed]
- Räty, J.K.; Liimatainen, T.; Huhtala, T.; Kaikkonen, M.U.; Airenne, K.J.; Hakumäki, J.M.; Närvänen, A.; Ylä-Herttuala, S. SPECT/CT imaging of baculovirus biodistribution in rat. Gene Ther. 2007, 14, 930–938. [Google Scholar] [CrossRef] [PubMed]
- Corridon, P.R.; Rhodes, G.J.; Leonard, E.C.; Basile, D.P.; Gattone, V.H.; Bacallao, R.L.; Atkinson, S.J. A method to facilitate and monitor expression of exogenous genes in the rat kidney using plasmid and viral vectors. Am. J. Physiol. Renal Physiol. 2013, 304, F1217–F1229. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.-Y.; Li, F.; Yang, Y.; Guo, H.-Y.; Wu, C.-X.; Wang, S. Recombinant baculovirus containing the diphtheria toxin A gene for malignant glioma therapy. Cancer Res. 2006, 66, 5798–5806. [Google Scholar] [CrossRef] [PubMed]
- Balani, P.; Boulaire, J.; Zhao, Y.; Zeng, J.; Lin, J.; Wang, S. High mobility group box2 promoter-controlled suicide gene expression enables targeted glioblastoma treatment. Mol. Ther. 2009, 17, 1003–1011. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Choudhury, Y.; Yang, J.; Chen, C.; Tay, F.C.; Lim, T.M.; Wang, S. Antiglioma effects of combined use of a baculovirual vector expressing wild-type p53 and sodium butyrate. J. Gene Med. 2011, 13, 26–36. [Google Scholar] [CrossRef] [PubMed]
- Luo, W.-Y.; Shih, Y.-S.; Lo, W.-H.; Chen, H.-R.; Wang, S.-C.; Wang, C.-H.; Chien, C.-H.; Chiang, C.-S.; Chuang, Y.-J.; Hu, Y.-C. Baculovirus vectors for antiangiogenesis-based cancer gene therapy. Cancer Gene Ther. 2011, 18, 637–645. [Google Scholar] [CrossRef] [PubMed]
- Swift, S.L.; Rivera, G.C.; Dussupt, V.; Leadley, R.M.; Hudson, L.C.; Ma de Ridder, C.; Kraaij, R.; Burns, J.E.; Maitland, N.J.; Georgopoulos, L.J. Evaluating baculovirus as a vector for human prostate cancer gene therapy. PLOS ONE 2013, 8, e65557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, M.; Guo, R.; Shi, S.; Miao, Y.; Zhang, Y.; Li, B. Baculovirus vector-mediated transfer of sodium iodide symporter and plasminogen kringle 5 genes for tumor radioiodide therapy. PLOS ONE 2014, 9, e92326. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Tian, X.-L.; Wu, Y.-L.; Zhong, J.; Yu, L.-F.; Hu, S.-P.; Li, B. Suppression of gastric cancer growth by baculovirus vector-mediated transfer of normal epithelial cell specific-1 gene. World J. Gastroenterol. 2008, 14, 5810–5815. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Fang, L.; Fan, H.; Luo, R.; Zhao, Q.; Chen, H.; Xiao, S. Antitumor effects of a recombinant pseudotype baculovirus expressing Apoptin in vitro and in vivo. Int. J. Cancer 2010, 126, 2741–2751. [Google Scholar] [PubMed]
- Chen, C.-L.; Wu, J.-C.; Chen, G.-Y.; Yuan, P.-H.; Tseng, Y.-W.; Li, K.-C.; Hwang, S.-M.; Hu, Y.-C. Baculovirus-mediated mirna regulation to suppress hepatocellular carcinoma tumorigenicity and metastasis. Mol. Ther. 2015, 23, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Kitajima, M.; Abe, T.; Miyano-Kurosaki, N.; Taniguchi, M.; Nakayama, T.; Takaku, H. Induction of natural killer cell-dependent antitumor immunity by the Autographa californica multiple nuclear polyhedrosis virus. Mol. Ther. 2008, 16, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Oo Chang, M.; Kitajima, M.; Takaku, H. Induction of antitumor immunity against mouse carcinoma by baculovirus-infected dendritic cells. Cell. Mol. Immunol. 2010, 7, 440–446. [Google Scholar] [CrossRef] [PubMed]
- Molinari, P.; Crespo, M.I.; Gravisaco, M.J.; Taboga, O.; Morón, G. Baculovirus capsid display potentiates OVA cytotoxic and innate immune responses. PLOS ONE 2011, 6, e24108. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Shan, L.; Lo, K.W.; Yin, J.; Zhang, Y.; Sun, R.; Zhong, J. Inhibition of nasopharyngeal carcinoma growth by RTA-expressing baculovirus vectors containing oriP. J. Gene Med. 2008, 10, 1124–1133. [Google Scholar] [CrossRef] [PubMed]
- Bak, X.Y.; Yang, J.; Wang, S. Baculovirus-transduced bone marrow mesenchymal stem cells for systemic cancer therapy. Cancer Gene Ther. 2010, 17, 721–729. [Google Scholar] [CrossRef] [PubMed]
- Bak, X.Y.; Lam, D.H.; Yang, J.; Ye, K.; Wei, E.L.X.; Lim, S.K.; Wang, S. Human embryonic stem cell-derived mesenchymal stem cells as cellular delivery vehicles for prodrug gene therapy of glioblastoma. Hum. Gene Ther. 2011, 22, 1365–1377. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Lam, D.H.; Yang, J.; Lin, J.; Tham, C.K.; Ng, W.H.; Wang, S. Targeted suicide gene therapy for glioma using human embryonic stem cell-derived neural stem cells genetically modified by baculoviral vectors. 2012, 9, 189–200. [Google Scholar]
- Lee, E.X.; Lam, D.H.; Wu, C.; Yang, J.; Tham, C.K.; Ng, W.H.; Wang, S. Glioma gene therapy using induced pluripotent stem cell derived neural stem cells. Mol. Pharm. 2011, 8, 1515–1524. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Lam, D.H.; Goh, S.S.; Lee, E.X.; Zhao, Y.; Tay, F.C.; Chen, C.; Du, S.; Balasundaram, G.; Shahbazi, M.; et al. Tumor tropism of intravenously injected human-induced pluripotent stem cell-derived neural stem cells and their gene therapy application in a metastatic breast cancer model. Stem Cells 2012, 30, 1021–1029. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.; Chen, C.; Purwanti, Y.I.; Du, S.; Lam, D.H.; Wu, C.; Zeng, J.; Toh, H.C.; Wang, S. Induced pluripotent stem cell-derived neural stem cells transduced with baculovirus encoding CD40 ligand for immunogene therapy in mouse models of breast cancer. Hum. Gene Ther. 2014, 25, 747–758. [Google Scholar] [CrossRef] [PubMed]
- Sung, L.-Y.; Lo, W.-H.; Chiu, H.-Y.; Chen, H.-C.; Chung, C.-K.; Lee, H.-P.; Hu, Y.-C. Modulation of chondrocyte phenotype via baculovirus-mediated growth factor expression. Biomaterials 2007, 28, 3437–3447. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.-C.; Lee, H.-P.; Ho, Y.-C.; Sung, M.-L.; Hu, Y.-C. Combination of baculovirus-mediated gene transfer and rotating-shaft bioreactor for cartilage tissue engineering. Biomaterials 2006, 27, 3154–3162. [Google Scholar] [CrossRef] [PubMed]
- Sung, L.-Y.; Chiu, H.-Y.; Chen, H.-C.; Chen, Y.-L.; Chuang, C.-K.; Hu, Y.-C. Baculovirus-mediated growth factor expression in dedifferentiated chondrocytes accelerates redifferentiation: Effects of combinational transduction. Tissue Eng. A 2009, 15, 1353–1362. [Google Scholar] [CrossRef]
- Chen, H.-C.; Sung, L.-Y.; Lo, W.-H.; Chuang, C.-K.; Wang, Y.-H.; Lin, J.-L.; Hu, Y.-C. Combination of baculovirus-expressed BMP-2 and rotating-shaft bioreactor culture synergistically enhances cartilage formation. Gene Ther. 2008, 15, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.-C.; Chang, Y.-H.; Chuang, C.-K.; Lin, C.-Y.; Sung, L.-Y.; Wang, Y.-H.; Hu, Y.-C. The repair of osteochondral defects using baculovirus-mediated gene transfer with de-differentiated chondrocytes in bioreactor culture. Biomaterials 2009, 30, 674–681. [Google Scholar] [CrossRef] [PubMed]
- Chuang, C.-K.; Lin, K.-J.; Lin, C.-Y.; Chang, Y.-H.; Yen, T.-C.; Hwang, S.-M.; Sung, L.-Y.; Chen, H.-C.; Hu, Y.-C. Xenotransplantation of human mesenchymal stem cells into immunocompetent rats for calvarial bone repair. Tissue Eng. Part A 2010, 16, 479–488. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-Y.; Chang, Y.-H.; Lin, K.-J.; Yen, T.-C.; Tai, C.-L.; Chen, C.-Y.; Lo, W.-H.; Hsiao, I.-T.; Hu, Y.-C. The healing of critical-sized femoral segmental bone defects in rabbits using baculovirus-engineered mesenchymal stem cells. Biomaterials 2010, 31, 3222–3230. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-Y.; Lin, K.-J.; Kao, C.-Y.; Chen, M.-C.; Lo, W.-H.; Yen, T.-C.; Chang, Y.-H.; Hu, Y.-C. The role of adipose-derived stem cells engineered with the persistently expressing hybrid baculovirus in the healing of massive bone defects. Biomaterials 2011, 32, 6505–6514. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-Y.; Chang, Y.-H.; Kao, C.-Y.; Lu, C.-H.; Sung, L.-Y.; Yen, T.-C.; Lin, K.-J.; Hu, Y.-C. Augmented healing of critical-size calvarial defects by baculovirus-engineered MSCs that persistently express growth factors. Biomaterials 2012, 33, 3682–3692. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.-H.; Lin, K.-J.; Chiu, H.-Y.; Chen, C.-Y.; Yen, T.-C.; Hwang, S.-M.; Chang, Y.-H.; Hu, Y.-C. Improved chondrogenesis and engineered cartilage formation from TGF-β3-expressing adipose-derived stem cells cultured in the rotating-shaft bioreactor. Tissue Eng. A 2012, 18, 2114–2124. [Google Scholar] [CrossRef]
- Lu, C.-H.; Yeh, T.-S.; Yeh, C.-L.; Fang, Y.-H.D.; Sung, L.-Y.; Lin, S.-Y.; Yen, T.-C.; Chang, Y.-H.; Hu, Y.-C. Regenerating cartilages by engineered ASCs: Prolonged TGF-β3/BMP-6 expression improved articular cartilage formation and restored zonal structure. Mol. Ther. 2014, 22, 186–195. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-Y.; Wu, H.-H.; Chen, C.-P.; Chern, S.-R.; Hwang, S.-M.; Huang, S.-F.; Lo, W.-H.; Chen, G.-Y.; Hu, Y.-C. Biosafety assessment of human mesenchymal stem cells engineered by hybrid baculovirus vectors. Mol. Pharm. 2011, 8, 1505–1514. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Yin, H.; Lv, J.; Ju, H.; Zhou, X.; Zhang, Y. A novel hybrid baculovirus-adeno-associated viral vector-mediated radionuclide reporter gene imaging system for stem cells transplantation monitoring. Appl. Microbiol. Biotechnol. 2015, 99, 1415–1426. [Google Scholar] [CrossRef] [PubMed]
- Uren, A.G.; Kool, J.; Berns, A.; van Lohuizen, M. Retroviral insertional mutagenesis: Past, present and future. Oncogene 2005, 24, 7656–7672. [Google Scholar] [CrossRef] [PubMed]
- Jooss, K.; Chirmule, N. Immunity to adenovirus and adeno-associated viral vectors: Implications for gene therapy. Gene Ther. 2003, 10, 955–963. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Ang, W. A*STAR Institute of Bioengineering and Nanotechnology. Personal communication, Singapore, Singapore, 2015. [Google Scholar]
- Fewell, G.D.; Schmitt, K. Vector-based RNAi approaches for stable, inducible and genome-wide screens. Drug Discov. Today 2006, 11, 975–982. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Rossi, J.J. Strategies for silencing human disease using RNA interference. Nat. Rev. Genet. 2007, 8, 173–184. [Google Scholar] [CrossRef]
- Mack, G.S. MicroRNA gets down to business. Nat. Biotechnol. 2007, 25, 631–638. [Google Scholar] [CrossRef] [PubMed]
- Davidson, B.L.; McCray, P.B. Current prospects for RNA interference-based therapies. Nat. Rev. Genet. 2011, 12, 329–340. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Shan, L.; Yin, J.; Zhao, M.; Su, D.; Zhong, J. The activation of lytic replication of Epstein-Barr virus by baculovirus-mediated gene transduction. Arch. Virol. 2006, 151, 2047–2053. [Google Scholar] [CrossRef] [PubMed]
- Andersson, M.; Warolén, M.; Nilsson, J.; Selander, M.; Sterky, C.; Bergdahl, K.; Sörving, C.; James, S.R.; Doverskog, M. Baculovirus-mediated gene transfer and recombinant protein expression do not interfere with insulin dependent phosphorylation of PKB/Akt in human SHSY-5Y and C3A cells. BMC Cell Biol. 2007, 8, e6. [Google Scholar] [CrossRef]
- Airenne, K.J. Improved generation of recombinant baculovirus genomes in Escherichia coli. Nucleic Acids Res. 2003, 31, e101. [Google Scholar] [CrossRef] [PubMed]
- Asgari, S. MicroRNA functions in insects. Insect Biochem. Mol. Biol. 2013, 43, 388–397. [Google Scholar] [CrossRef] [PubMed]
- Salem, T.Z.; Maruniak, J.E. A universal transgene silencing approach in baculovirus-insect cell system. J. Virol. Methods 2007, 145, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Marek, M.; van Oers, M.M.; Devaraj, F.F.; Vlak, J.M.; Merten, O.-W. Engineering of baculovirus vectors for the manufacture of virion-free biopharmaceuticals. Biotechnol. Bioeng. 2011, 108, 1056–1067. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.; Singh, C.P.; Bhavani, A.; Nagaraju, J. Discovering microRNAs from Bombyx mori nucleopolyhedrosis virus. Virology 2010, 407, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Mehrabadi, M.; Hussain, M.; Asgari, S. MicroRNAome of Spodoptera frugiperda cells (Sf9) and its alteration following baculovirus infection. J. Gen. Virol. 2013, 94, 1385–1397. [Google Scholar] [CrossRef] [PubMed]
- Jayachandran, B.; Hussain, M.; Asgari, S. Regulation of Helicoverpa armigera ecdysone receptor by miR-14 and its potential link to baculovirus infection. J. Invertebr. Pathol. 2013, 114, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Valdes, V.J.; Sampieri, A.; Sepulveda, J.; Vaca, L. Using double-stranded RNA to prevent in vitro and in vivo viral infections by recombinant baculovirus. J. Biol. Chem. 2003, 278, 19317–19324. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Chen, R.-T.; Lu, Y.; Liang, S.; Wang, M.-X.; Miao, Y.-G. piggyBac transposon-derived targeting shRNA interference against the Bombyx mori nucleopolyhedrovirus (BmNPV). Mol. Biol. Rep. 2014, 41, 8247–8254. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Wang, J.; Lu, Y.; Hu, Y.; Xue, R.; Cao, G.; Gong, C. Resistance of transgenic silkworm to BmNPV could be improved by silencing ie-1 and lef-1 genes. Gene Ther. 2014, 21, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Kanginakudru, S.; Royer, C.; Edupalli, S.V.; Jalabert, A.; Mauchamp, B.; Prasad, S.V.; Chavancy, G.; Couble, P.; Nagaraju, J. Targeting ie-1 gene by RNAi induces baculoviral resistance in lepidopteran cell lines and in transgenic silkworms. Insect Mol. Biol. 2007, 16, 635–644. [Google Scholar] [CrossRef] [PubMed]
- Singh, C.P.; Singh, J.; Nagaraju, J. A baculovirus-encoded MicroRNA (miRNA) suppresses its host miRNA biogenesis by regulating the exportin-5 cofactor Ran. J. Virol. 2012, 86, 7867–7879. [Google Scholar] [CrossRef] [PubMed]
- Singh, C.P.; Singh, J.; Nagaraju, J. bmnpv-miR-3 facilitates BmNPV infection by modulating the expression of viral P6.9 and other late genes in Bombyx mori. Insect Biochem. Mol. Biol. 2014, 49, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Wang, J.; Deng, R.; Xiong, P.; Liang, H.; Wang, X. A microRNA encoded by Autographa californica nucleopolyhedrovirus regulates expression of viral gene ODV-E. J. Virol. 2013, 87, 13029–13034. [Google Scholar] [CrossRef] [PubMed]
- Hebert, C.G.; Valdes, J.J.; Bentley, W.E. In vitro and in vivo RNA interference mediated suppression of Tn-caspase-1 for improved recombinant protein production in High Five cell culture with the baculovirus expression vector system. Biotechnol. Bioeng. 2009, 104, 390–399. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, L.J.; Philippe, M.; Paine, A.J.; Mann, D.A.; Dolphin, C.T. RNA interference mediated in human primary cells via recombinant baculoviral vectors. Mol. Ther. 2005, 11, 638–644. [Google Scholar] [CrossRef] [PubMed]
- Ong, S.T.; Li, F.; Du, J.; Tan, Y.W.; Wang, S. Hybrid cytomegalovirus enhancer-h1 promoter-based plasmid and baculovirus vectors mediate effective RNA interference. Hum. Gene Ther. 2005, 16, 1404–1412. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-L.; Luo, W.-Y.; Lo, W.-H.; Lin, K.-J.; Sung, L.-Y.; Shih, Y.-S.; Chang, Y.-H.; Hu, Y.-C. Development of hybrid baculovirus vectors for artificial MicroRNA delivery and prolonged gene suppression. Biotechnol. Bioeng. 2011, 108, 2958–2967. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-L.; Tseng, Y.-W.; Wu, J.-C.; Chen, G.-Y.; Lin, K.-C.; Hwang, S.-M.; Hu, Y.-C. Suppression of hepatocellular carcinoma by baculovirus-mediated expression of long non-coding RNA PTENP1 and MicroRNA regulation. Biomaterials 2015, 44, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Teo, S.; Lam, D.H.; Jeyaseelan, K.; Wang, S. MicroRNA-10b pleiotropically regulates invasion, angiogenicity and apoptosis of tumor cells resembling mesenchymal subtype of glioblastoma multiforme. Cell Death Dis. 2012, 3, e398. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.-H.; Chang, Y.-H.; Sung, L.-Y.; Li, K.-C.; Yeh, C.-L.; Yen, T.-C.; Hwang, S.-M.; Lin, K.-J.; Hu, Y.-C. Osteogenic differentiation of adipose-derived stem cells and calvarial defect repair using baculovirus-mediated co-expression of BMP-2 and miR-148b. Biomaterials 2014, 35, 4901–4910. [Google Scholar] [CrossRef] [PubMed]
- Nizamani, Z.A.; Keil, G.M.; Albina, E.; Holz, C.; Minet, C.; Kwiatek, O.; Libeau, G.; Servan de Almeida, R. Potential of adenovirus and baculovirus vectors for the delivery of shRNA against morbilliviruses. Antiviral Res. 2011, 90, 98–101. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Ho, Y.; Kwang, J. Suppression of porcine arterivirus replication by baculovirus-delivered shRNA targeting nucleoprotein. Biochem. Biophys. Res. Commun. 2006, 340, 1178–1183. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, H.; Tamai, N.; Habu, Y.; Chang, M.O.O.; Takaku, H. Suppression of hepatitis C virus replication by baculovirus vector-mediated short-hairpin RNA expression. FEBS Lett. 2008, 582, 3085–3089. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, H.; Matsumoto, N.; Suzuki, T.; Chang, M.O.; Takaku, H. Stable replication of the EBNA1/OriP-mediated baculovirus vector and its application to anti-HCV gene therapy. Virol. J. 2009, 6, e156. [Google Scholar] [CrossRef]
- Starkey, J.L.; Chiari, E.F.; Isom, H.C. Hepatitis B virus (HBV)-specific short hairpin RNA is capable of reducing the formation of HBV covalently closed circular (CCC) DNA but has no effect on established CCC DNA in vitro. J. Gen. Virol. 2009, 90, 115–126. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, H.; Saitoh, H.; Suzuki, T.; Takaku, H. Baculovirus-mediated bispecific short-hairpin small-interfering RNAs have remarkable ability to cope with both influenza viruses A and B. Oligonucleotides 2009, 19, 307–316. [Google Scholar] [CrossRef]
- Kaneko, H.; Suzuki, H.; Abe, T.; Miyano-Kurosaki, N.; Takaku, H. Inhibition of HIV-1 replication by vesicular stomatitis virus envelope glycoprotein pseudotyped baculovirus vector-transduced ribozyme in mammalian cells. Biochem. Biophys. Res. Commun. 2006, 349, 1220–1227. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makkonen, K.-E.; Airenne, K.; Ylä-Herttulala, S. Baculovirus-mediated Gene Delivery and RNAi Applications. Viruses 2015, 7, 2099-2125. https://doi.org/10.3390/v7042099
Makkonen K-E, Airenne K, Ylä-Herttulala S. Baculovirus-mediated Gene Delivery and RNAi Applications. Viruses. 2015; 7(4):2099-2125. https://doi.org/10.3390/v7042099
Chicago/Turabian StyleMakkonen, Kaisa-Emilia, Kari Airenne, and Seppo Ylä-Herttulala. 2015. "Baculovirus-mediated Gene Delivery and RNAi Applications" Viruses 7, no. 4: 2099-2125. https://doi.org/10.3390/v7042099