Predicted Structures of Ceduovirus Adhesion Devices Highlight Unique Architectures Reminiscent of Bacterial Secretion System VI
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Predicted Structures of the c2 and bIL67 Host Adhesion Devices
3.1.1. A Short CBM-Containing Tal/VgrG-like Protein
3.1.2. Hcp-like Proteins
3.1.3. The ‘Core’ of the c2 and bIL67 Adhesion Device
3.1.4. The Complete c2 and bIL67 Adhesion Device
3.2. Mapping the Receptor Binding Site
3.3. Quasi-Complete Annotation of the c2 and bIL67 Structural Genes
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HAD | Host adhesion device |
Tal | Tail-associated lysozyme |
Dit | Distal tail |
VgrG | Valine glycine repeat |
Hcp | Hemolysin-coregulated protein |
T6SS | Type VI secretion system |
T7SS | Type VII secretion system |
pLDDT | Predicted local distance difference test |
PAE | Predicted aligned error |
References
- Bebeacua, C.; Tremblay, D.; Farenc, C.; Chapot-Chartier, M.P.; Sadovskaya, I.; van Heel, M.; Veesler, D.; Moineau, S.; Cambillau, C. Structure, Adsorption to Host, and Infection Mechanism of Virulent Lactococcal Phage p2. J. Virol. 2013, 87, 12302–12312. [Google Scholar] [CrossRef] [PubMed]
- Bebeacua, C.; Lai, L.; Vegge, C.S.; Brondsted, L.; van Heel, M.; Veesler, D.; Cambillau, C. Visualizing a Complete Siphoviridae Member by Single-Particle Electron Microscopy: The Structure of Lactococcal Phage TP901-1. J. Virol. 2013, 87, 1061–1068. [Google Scholar] [CrossRef]
- Ofir, G.; Sorek, R. Contemporary Phage Biology: From Classic Models to New Insights. Cell 2018, 172, 1260–1270. [Google Scholar] [CrossRef]
- Mahony, J.; Goulet, A.; van Sinderen, D.; Cambillau, C. Partial Atomic Model of the Tailed Lactococcal Phage TP901-1 as Predicted by AlphaFold2: Revelations and Limitations. Viruses 2023, 15, 2440. [Google Scholar] [CrossRef]
- Cai, C.; Wang, Y.; Liu, Y.; Shao, Q.; Wang, A.; Li, L.; Zheng, Y.; Zhang, T.; Luo, Z.; Yang, C.; et al. Structures of a T1-like siphophage reveal capsid stabilization mechanisms and high structural similarities with a myophage. Structure 2025, 33, 663–676.e2. [Google Scholar] [CrossRef]
- Turner, D.; Kropinski, A.M.; Adriaenssens, E.M. A Roadmap for Genome-Based Phage Taxonomy. Viruses 2021, 13, 506. [Google Scholar] [CrossRef]
- Kizziah, J.L.; Manning, K.A.; Dearborn, A.D.; Dokland, T. Structure of the host cell recognition and penetration machinery of a Staphylococcus aureus bacteriophage. PLoS-Pathog. 2020, 16, e1008314. [Google Scholar] [CrossRef]
- Goulet, A.; Spinelli, S.; Mahony, J.; Cambillau, C. Conserved and Diverse Traits of Adhesion Devices from Siphoviridae Recognizing Proteinaceous or Saccharidic Receptors. Viruses 2020, 12, 512. [Google Scholar] [CrossRef] [PubMed]
- Dieterle, M.E.; Fina Martin, J.; Duran, R.; Nemirovsky, S.I.; Sanchez Rivas, C.; Bowman, C.; Russell, D.; Hatfull, G.F.; Cambillau, C.; Piuri, M. Characterization of prophages containing “evolved” Dit/Tal modules in the genome of Lactobacillus casei BL23. Appl. Microbiol. Biotechnol. 2016, 100, 9201–9215. [Google Scholar] [CrossRef] [PubMed]
- Dieterle, M.E.; Spinelli, S.; Sadovskaya, I.; Piuri, M.; Cambillau, C. Evolved distal tail carbohydrate binding modules of Lactobacillus phage J-1: A novel type of anti-receptor widespread among lactic acid bacteria phages. Mol. Microbiol. 2017, 104, 608–620. [Google Scholar] [CrossRef]
- Hayes, S.; Vincentelli, R.; Mahony, J.; Nauta, A.; Ramond, L.; Lugli, G.A.; Ventura, M.; van Sinderen, D.; Cambillau, C. Functional carbohydrate binding modules identified in evolved dits from siphophages infecting various Gram-positive bacteria. Mol. Microbiol. 2018, 110, 777–795. [Google Scholar] [CrossRef]
- Goulet, A.; Cambillau, C. Structure and Topology Prediction of Phage Adhesion Devices Using AlphaFold2: The Case of Two Oenococcus oeni Phages. Microorganisms 2021, 9, 2151. [Google Scholar] [CrossRef] [PubMed]
- Goulet, A.; Joos, R.; Lavelle, K.; Van Sinderen, D.; Mahony, J.; Cambillau, C. A structural discovery journey of streptococcal phages adhesion devices by AlphaFold2. Front. Mol. Biosci. 2022, 9, 960325. [Google Scholar] [CrossRef]
- Goulet, A.; Cambillau, C. Present Impact of AlphaFold2 Revolution on Structural Biology, and an Illustration With the Structure Prediction of the Bacteriophage J-1 Host Adhesion Device. Front. Mol. Biosci. 2022, 9, 907452. [Google Scholar] [CrossRef]
- Vinga, I.; Baptista, C.; Auzat, I.; Petipas, I.; Lurz, R.; Tavares, P.; Santos, M.A.; Sao-Jose, C. Role of bacteriophage SPP1 tail spike protein gp21 on host cell receptor binding and trigger of phage DNA ejection. Mol. Microbiol. 2012, 83, 289–303. [Google Scholar] [CrossRef]
- Sao-Jose, C.; Lhuillier, S.; Lurz, R.; Melki, R.; Lepault, J.; Santos, M.A.; Tavares, P. The ectodomain of the viral receptor YueB forms a fiber that triggers ejection of bacteriophage SPP1 DNA. J. Biol. Chem. 2006, 281, 11464–11470. [Google Scholar] [CrossRef] [PubMed]
- Sciara, G.; Bebeacua, C.; Bron, P.; Tremblay, D.; Ortiz-Lombardia, M.; Lichiere, J.; van Heel, M.; Campanacci, V.; Moineau, S.; Cambillau, C. Structure of lactococcal phage p2 baseplate and its mechanism of activation. Proc. Natl. Acad. Sci. USA 2010, 107, 6852–6857. [Google Scholar] [CrossRef] [PubMed]
- Degroux, S.; Effantin, G.; Linares, R.; Schoehn, G.; Breyton, C. Deciphering Bacteriophage T5 Host Recognition Mechanism and Infection Trigger. J. Virol. 2023, 97, e0158422. [Google Scholar] [CrossRef]
- Linares, R.; Arnaud, C.A.; Effantin, G.; Darnault, C.; Epalle, N.H.; Boeri Erba, E.; Schoehn, G.; Breyton, C. Structural basis of bacteriophage T5 infection trigger and E. coli cell wall perforation. Sci. Adv. 2023, 9, eade9674. [Google Scholar] [CrossRef]
- Ge, X.; Wang, J. Structural mechanism of bacteriophage lambda tail’s interaction with the bacterial receptor. Nat. Commun. 2024, 15, 4185. [Google Scholar] [CrossRef]
- Valyasevi, R.; Sandine, W.E.; Geller, B.L. A membrane protein is required for bacteriophage c2 infection of Lactococcus lactis subsp. lactis C2. J. Bacteriol. 1991, 173, 6095–6100. [Google Scholar] [CrossRef]
- Lubbers, M.W.; Waterfield, N.R.; Beresford, T.P.; Le Page, R.W.; Jarvis, A.W. Sequencing and analysis of the prolate-headed lactococcal bacteriophage c2 genome and identification of the structural genes. Appl. Environ. Microbiol. 1995, 61, 4348–4356. [Google Scholar] [CrossRef]
- Ainsworth, S.; Zomer, A.; Mahony, J.; van Sinderen, D. Lytic infection of Lactococcus lactis by bacteriophages Tuc2009 and c2 triggers alternative transcriptional host responses. Appl. Environ. Microbiol. 2013, 79, 4786–4798. [Google Scholar] [CrossRef]
- Millen, A.M.; Romero, D.A. Genetic determinants of lactococcal C2viruses for host infection and their role in phage evolution. J. Gen. Virol. 2016, 97, 1998–2007. [Google Scholar] [CrossRef]
- Goulet, A.; Mahony, J.; Cambillau, C.; van Sinderen, D. Exploring Structural Diversity among Adhesion Devices Encoded by Lactococcal P335 Phages with AlphaFold2. Microorganisms 2022, 10, 2278. [Google Scholar] [CrossRef]
- Cambillau, C.; Goulet, A. Exploring Host-Binding Machineries of Mycobacteriophages with AlphaFold2. J. Virol. 2023, 97, e0179322. [Google Scholar] [CrossRef] [PubMed]
- Cambillau, C.; Mignot, T. Structural model of a bacterial focal adhesion complex. Commun. Biol. 2025, 8, 119. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Zidek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Abramson, J.; Adler, J.; Dunger, J.; Evans, R.; Green, T.; Pritzel, A.; Ronneberger, O.; Willmore, L.; Ballard, A.J.; Bambrick, J.; et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 2024, 630, 493–500. [Google Scholar] [CrossRef]
- Holm, L.; Kaariainen, S.; Rosenstrom, P.; Schenkel, A. Searching protein structure databases with DaliLite v.3. Bioinformatics 2008, 24, 2780–2781. [Google Scholar] [CrossRef] [PubMed]
- Holm, L.; Laiho, A.; Toronen, P.; Salgado, M. DALI shines a light on remote homologs: One hundred discoveries. Protein Sci. 2023, 32, e4519. [Google Scholar] [CrossRef]
- van Kempen, M.; Kim, S.S.; Tumescheit, C.; Mirdita, M.; Lee, J.; Gilchrist, C.L.M.; Soding, J.; Steinegger, M. Fast and accurate protein structure search with Foldseek. Nat. Biotechnol. 2024, 42, 243–246. [Google Scholar] [CrossRef]
- Meng, E.C.; Goddard, T.D.; Pettersen, E.F.; Couch, G.S.; Pearson, Z.J.; Morris, J.H.; Ferrin, T.E. UCSF ChimeraX: Tools for structure building and analysis. Protein Sci. 2023, 32, e4792. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Meng, E.C.; Couch, G.S.; Croll, T.I.; Morris, J.H.; Ferrin, T.E. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci. 2021, 30, 70–82. [Google Scholar] [CrossRef]
- Legrand, P.; Collins, B.; Blangy, S.; Murphy, J.; Spinelli, S.; Gutierrez, C.; Richet, N.; Kellenberger, C.; Desmyter, A.; Mahony, J.; et al. The Atomic Structure of the Phage Tuc2009 Baseplate Tripod Suggests that Host Recognition Involves Two Different Carbohydrate Binding Modules. mBio 2016, 7, e01781-15. [Google Scholar] [CrossRef]
- Leiman, P.G.; Basler, M.; Ramagopal, U.A.; Bonanno, J.B.; Sauder, J.M.; Pukatzki, S.; Burley, S.K.; Almo, S.C.; Mekalanos, J.J. Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Proc. Natl. Acad. Sci. USA 2009, 106, 4154–4159. [Google Scholar] [CrossRef]
- Kim, W.; Mirdita, M.; Levy Karin, E.; Gilchrist, C.L.M.; Schweke, H.; Soding, J.; Levy, E.D.; Steinegger, M. Rapid and sensitive protein complex alignment with Foldseek-Multimer. Nat. Methods 2025, 22, 469–472. [Google Scholar] [CrossRef] [PubMed]
- Mougous, J.D.; Cuff, M.E.; Raunser, S.; Shen, A.; Zhou, M.; Gifford, C.A.; Goodman, A.L.; Joachimiak, G.; Ordonez, C.L.; Lory, S.; et al. A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science 2006, 312, 1526–1530. [Google Scholar] [CrossRef]
- Veesler, D.; Robin, G.; Lichiere, J.; Auzat, I.; Tavares, P.; Bron, P.; Campanacci, V.; Cambillau, C. Crystal Structure of Bacteriophage SPP1 Distal Tail Protein (gp19.1): A BASEPLATE HUB PARADIGM IN GRAM-POSITIVE INFECTING PHAGES. J. Biol. Chem. 2010, 285, 36666–36673. [Google Scholar] [CrossRef] [PubMed]
- Geller, B.L.; Ivey, R.G.; Trempy, J.E.; Hettinger-Smith, B. Cloning of a chromosomal gene required for phage infection of Lactococcus lactis subsp. lactis C2. J. Bacteriol. 1993, 175, 5510–5519. [Google Scholar] [CrossRef] [PubMed]
- Derkx, P.M.; Janzen, T.; Sorensen, K.I.; Christensen, J.E.; Stuer-Lauridsen, B.; Johansen, E. The art of strain improvement of industrial lactic acid bacteria without the use of recombinant DNA technology. Microb. Cell Fact. 2014, 13 (Suppl. 1), S5. [Google Scholar] [CrossRef]
- Sao-Jose, C.; Baptista, C.; Santos, M.A. Bacillus subtilis operon encoding a membrane receptor for bacteriophage SPP1. J. Bacteriol. 2004, 186, 8337–8346. [Google Scholar] [CrossRef]
- Ates, L.S.; Houben, E.N.G.; Bitter, W. Type VII Secretion: A Highly Versatile Secretion System. Microbiol. Spectr. 2016, 4, 357–384. [Google Scholar] [CrossRef] [PubMed]
- Siponen, M.; Sciara, G.; Villion, M.; Spinelli, S.; Lichiere, J.; Cambillau, C.; Moineau, S.; Campanacci, V. Crystal structure of ORF12 from Lactococcus lactis phage p2 identifies a tape measure protein chaperone. J. Bacteriol. 2009, 191, 728–734. [Google Scholar] [CrossRef]
- Pell, L.G.; Cumby, N.; Clark, T.E.; Tuite, A.; Battaile, K.P.; Edwards, A.M.; Chirgadze, N.Y.; Davidson, A.R.; Maxwell, K.L. A conserved spiral structure for highly diverged phage tail assembly chaperones. J. Mol. Biol. 2013, 425, 2436–2449. [Google Scholar] [CrossRef] [PubMed]
- Valentova, L.; Fuzik, T.; Novacek, J.; Hlavenkova, Z.; Pospisil, J.; Plevka, P. Structure and replication of Pseudomonas aeruginosa phage JBD30. EMBO J. 2024, 43, 4384–4405. [Google Scholar] [CrossRef]
- Nguyen, V.S.; Douzi, B.; Durand, E.; Roussel, A.; Cascales, E.; Cambillau, C. Towards a complete structural deciphering of Type VI secretion system. Curr. Opin. Struct. Biol. 2018, 49, 77–84. [Google Scholar] [CrossRef]
- Taylor, N.M.I.; van Raaij, M.J.; Leiman, P.G. Contractile injection systems of bacteriophages and related systems. Mol. Microbiol. 2018, 108, 6–15. [Google Scholar] [CrossRef]
- Kudryashev, M.; Wang, R.Y.; Brackmann, M.; Scherer, S.; Maier, T.; Baker, D.; DiMaio, F.; Stahlberg, H.; Egelman, E.H.; Basler, M. Structure of the type VI secretion system contractile sheath. Cell 2015, 160, 952–962. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.S.; Logger, L.; Spinelli, S.; Legrand, P.; Huyen Pham, T.T.; Nhung Trinh, T.T.; Cherrak, Y.; Zoued, A.; Desmyter, A.; Durand, E.; et al. Type VI secretion TssK baseplate protein exhibits structural similarity with phage receptor-binding proteins and evolved to bind the membrane complex. Nat. Microbiol. 2017, 2, 17103. [Google Scholar] [CrossRef]
- Xiao, H.; Tan, L.; Tan, Z.; Zhang, Y.; Chen, W.; Li, X.; Song, J.; Cheng, L.; Liu, H. Structure of the siphophage neck-Tail complex suggests that conserved tail tip proteins facilitate receptor binding and tail assembly. PLoS Biol. 2023, 21, e3002441. [Google Scholar] [CrossRef]
- Linares, R.; Breyton, C. About bacteriophage tail terminator and tail completion proteins: Structure of the proximal extremity of siphophage T5 tail. J. Virol. 2025, 99, e0137624. [Google Scholar] [CrossRef] [PubMed]
- Baptista, C.; Santos, M.A.; Sao-Jose, C. Phage SPP1 reversible adsorption to Bacillus subtilis cell wall teichoic acids accelerates virus recognition of membrane receptor YueB. J. Bacteriol. 2008, 190, 4989–4996. [Google Scholar] [CrossRef] [PubMed]
- Seul, A.; Brasiles, S.; Petitpas, I.; Lurz, R.; Campanacci, V.; Cambillau, C.; Weise, F.; Zairi, M.; Tavares, P.; Auzat, I. Biogenesis of a Bacteriophage Long Non-Contractile Tail. J. Mol. Biol. 2021, 433, 167112. [Google Scholar] [CrossRef] [PubMed]
- Freeman, K.G.; Mondal, S.; Macale, L.S.; Podgorski, J.; White, S.J.; Silva, B.H.; Ortiz, V.; Huet, A.; Perez, R.J.; Narsico, J.T.; et al. Structure and infection dynamics of mycobacteriophage Bxb1. Cell 2025, 188, 2925–2942.e17. [Google Scholar] [CrossRef]
- Rohde, M. The Gram-Positive Bacterial Cell Wall. Microbiol. Spectr. 2019, 7. [Google Scholar] [CrossRef]
- Chapot-Chartier, M.P.; Vinogradov, E.; Sadovskaya, I.; Andre, G.; Mistou, M.Y.; Trieu-Cuot, P.; Furlan, S.; Bidnenko, E.; Courtin, P.; Pechoux, C.; et al. Cell surface of Lactococcus lactis is covered by a protective polysaccharide pellicle. J. Biol. Chem. 2010, 285, 10464–10471. [Google Scholar] [CrossRef]
(A) | ||||||||
bIL67 | Target | Z-Value | rmsd Å | Residues Aligned | bIL67 Residues | Target Residues | %ID | |
34 CBM | 5e7t | BppA CBM | 11.7 | 3.3 | 173 | 234 | 286 | 16 |
35 CBM | 5x7p | GH31 | 11.8 | 2.5 | 122 | 235 | 1247 | 13 |
36 CBM | 2zxq | endo GH | 12.4 | 2.5 | 133 | 227 | 1178 | 14 |
34 core | 8gra | VgrG | 5.8 | 5.0 | 202 | 375 | 613 | 7 |
35 core | 7yw0 | Hcp | 3.8 | 3.2 | 86 | 179 | 120 | 9 |
36 core | 7yw0 | Hcp | 5.6 | 3.1 | 83 | 186 | 120 | 18 |
36 core | 35 core | Hcp | 14.6 | 2.7 | 155 | 187 | - | 17 |
MTP | 6v8i | MTP 80α | 8.6 | 3.5 | 130 | 205 | 150 | 13 |
(B) | ||||||||
c2 | Target | rmsd Å | Residues Aligned | c2 Residues | Target Residues | %ID | ||
L14 CBM | 5e7t | BppA CBM | 12.1 | 4.1 | 193 | 259 | 286 | 19 |
L15 CBM | 5e7t | BppA CBM | 13.7 | 2.8 | 184 | 215 | 286 | 34 |
L16 CBM | 2zew | Endo GH | 10.6 | 2.5 | 132 | 246 | 147 | 11 |
L14 core | 8gra | VgrG | 6.7 | 5.1 | 231 | 380 | 445 | 6 |
L15 core | 7yw0 | Hcp | 5.0 | 3.2 | 88 | 165 | 120 | 11 |
L16 core | 7yw0 | Hcp | 4.9 | 3.3 | 87 | 188 | 120 | 8 |
L16 core | L15 core | Hcp | 13.8 | 1.9 | 135 | 188 | - | 18 |
MTP | 6v8i | MTP 80α | 8.7 | 3.2 | 128 | 205 | 150 | 13 |
(C) | ||||||||
bIL67/c2 Core | Target | rmsd Å | Residues Aligned | bIL67 Residues | c2 Residues | %ID | ||
ORF34 | L14 | - | 30.7 | 2.9 | 340 | 375 | 380 | 44 |
ORF35 | L15 | - | 26.6 | 1.0 | 161 | 179 | 165 | 76 |
ORF36 | L16 | - | 22.1 | 2.4 | 175 | 186 | 188 | 49 |
(A) | (B) | (C) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
c2 Core | L14 | L15 | L16 | MTP | bIL67 Core | ORF34 | ORF35 | ORF36 | MTP | Full-Length ORF | YjaE |
L14 | 1587 | 1510 | 1299 | 0 | ORF34 | 1461 | 2049 | 1644 | 0 | ORF34 | 574 |
L15 | - | 0 | 1262 | 866 | ORF35 | - | 0 | 1377 | 992 | ORF35 | 0 |
L16 | - | - | 0 | 820 | ORF36 | - | - | 0 | 835 | ORF36 | 510 |
MTP | - | - | - | 2034 | MTP | - | - | - | 2072 | TOTAL | 1084 |
YjaE | 3037 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goulet, A.; Mahony, J.; van Sinderen, D.; Cambillau, C. Predicted Structures of Ceduovirus Adhesion Devices Highlight Unique Architectures Reminiscent of Bacterial Secretion System VI. Viruses 2025, 17, 1261. https://doi.org/10.3390/v17091261
Goulet A, Mahony J, van Sinderen D, Cambillau C. Predicted Structures of Ceduovirus Adhesion Devices Highlight Unique Architectures Reminiscent of Bacterial Secretion System VI. Viruses. 2025; 17(9):1261. https://doi.org/10.3390/v17091261
Chicago/Turabian StyleGoulet, Adeline, Jennifer Mahony, Douwe van Sinderen, and Christian Cambillau. 2025. "Predicted Structures of Ceduovirus Adhesion Devices Highlight Unique Architectures Reminiscent of Bacterial Secretion System VI" Viruses 17, no. 9: 1261. https://doi.org/10.3390/v17091261
APA StyleGoulet, A., Mahony, J., van Sinderen, D., & Cambillau, C. (2025). Predicted Structures of Ceduovirus Adhesion Devices Highlight Unique Architectures Reminiscent of Bacterial Secretion System VI. Viruses, 17(9), 1261. https://doi.org/10.3390/v17091261