Long-Term Nutritional Deficits and Growth Patterns in Children with Congenital Zika Virus Syndrome: Evidence from a Brazilian Cohort
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Eligibility Criteria
2.3. Study Size
2.4. Outcomes and Measures
2.4.1. Anthropometric Assessment
2.4.2. Dietary Assessment
2.5. Statistical Analysis
3. Results
3.1. General Characteristics of the Participants
3.1.1. Maternal Characteristics
3.1.2. Child Characteristics
3.2. Anthropometric Outcomes
3.3. Dietary Intake and Association with BMI
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CZVS | Congenital Zika Virus Syndrome |
ZIKV | Zika Virus |
HU-UFS | University Hospital of Sergipe |
SUS | Sistema Único de Saúde |
CHB | Child Health Booklet |
WHO | World Health Organization |
AMDR | Acceptable Macronutrient Distribution Range |
RDA | Recommended Dietary Allowance |
BMI | Body Mass Index |
IQR | Interquartile Range |
References
- Mendes, A.K.T.; Ribeiro, M.R.C.; Lamy-Filho, F.; Amaral, G.C.; Borges, M.C.R.; Costa, L.C.; Cavalcante, T.B.; Batista, R.F.L.; Sousa, P.S.; Silva, A.A.M. Congenital Zika syndrome: Association between the gestational trimester of maternal infection, severity of brain computed tomography findings and microcephaly at birth. Rev. Inst. Med. Trop. Sao Paulo 2020, 62, e56. [Google Scholar] [CrossRef]
- Schuller-Faccini, L.; Ribeiro, E.M.; Feitosa, I.M.L.; Horovitz, D.D.G.; Cavalcanti, D.P.; Pessoa, A.; Doriqui, M.J.R.; Neri, J.I.; Pina Neto, J.M.; Wanderley, H.Y.C.; et al. Possible Association Between Zika Virus Infection and Microcephaly-Brazil, 2015. MMWR Morb. Mortal Wkly. Rep. 2016, 65, 59–62. [Google Scholar] [CrossRef]
- Leibovitz, Z.; Leran-Sagie, T.; Haddad, L. Fetal Brain Development: Regulating Processes and Related Malformations. Life 2022, 12, 809. [Google Scholar] [CrossRef]
- Martins-Filho, P.R.; Lima, T.R.C.M.; Ferreira, J.S.; Souza, L.S.; Guerra, C.B.M.C.; Santos-Júnior, L.C.; Marques, R.S.; Tavares, C.S.S.; Araújo, B.C.L. Integrated Functional Care for Children with Congenital Zika Syndrome: Addressing Orofacial, Speech-Language, and Nutritional Needs. Oral Dis. 2025. Online ahead of print. [Google Scholar] [CrossRef]
- Costa, F.; Sarno, M.; Khouri, R.; de Paula Freitas, B.; Siqueira, I.; Ribeiro, G.S.; Ribeiro, H.C.; Campos, G.S.; Alcântara, L.C.; Reis, M.G.; et al. Emergence of Congenital Zika Syndrome: Viewpoint From the Front Lines. Ann. Intern. Med. 2016, 164, 689. [Google Scholar] [CrossRef] [PubMed]
- Moore, C.A.; Staples, J.E.; Dobyns, W.B.; Pessoa, A.; Ventura, C.V.; Fonseca, E.B.d.; Ribeiro, E.M.; Ventura, L.O.; Neto, N.N.; Arena, J.F.; et al. Characterizing the Pattern of Anomalies in Congenital Zika Syndrome for Pediatric Clinicians. JAMA Pediatr. 2017, 171, 288. [Google Scholar] [CrossRef] [PubMed]
- Alves, L.V.; Paredes, C.E.; Silva, G.C.; Mello, J.G.; Alves, J.G. Neurodevelopment of 24 Children Born in Brazil with Congenital Zika Syndrome in 2015: A Case Series Study. BMJ Open 2018, 8, e021304. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, A.; Brites, C.; Mochida, G.; Ventura, P.; Fernandes, A.; Lage, M.L.; Taguchi, T.; Brandi, I.; Silva, A.; Franceschi, G.; et al. Clinical and Neurodevelopmental Features in Children with Cerebral Palsy and Probable Congenital Zika. Brain Dev. 2019, 41, 587–594. [Google Scholar] [CrossRef]
- Vianna, R.A.D.O.; Lovero, K.L.; Oliveira, S.A.D.; Fernandes, A.R.; Santos, T.C.S.D.; Lima, L.C.S.D.S.; Carvalho, F.R.; Quintans, M.D.S.; Bueno, A.C.; Torbey, A.F.M.; et al. Children Born to Mothers with Rash During Zika Virus Epidemic in Brazil: First 18 Months of Life. J. Trop. Pediatr. 2019, 65, 592–602. [Google Scholar] [CrossRef]
- Marbán-Castro, E.; Guillamet, L.J.V.; Pantoja, P.E.; Casellas, A.; Maxwell, L.; Mulkey, S.B.; Menéndez, C.; Bardají, A. Neurodevelopment in Normocephalic Children Exposed to Zika Virus in Utero with No Observable Defects at Birth: A Systematic Review with Meta-Analysis. Int. J. Environ. Res. Public Health 2022, 19, 7319. [Google Scholar] [CrossRef]
- Ghosh, S.; Salan, T.; Riotti, J.; Ramachandran, A.; Gonzalez, I.A.; Bandstra, E.S.; Reyes, F.L.; Andreansky, S.S.; Govind, V.; Saigal, G. Brain MRI segmentation of Zika-Exposed normocephalic infants shows smaller amygdala volumes. PLoS ONE 2023, 18, e0289227. [Google Scholar] [CrossRef]
- Mulkley, S.B.; Andringa-Seed, R.; Corn, E.; Williams, M.E.; Arroyave-Wessel, M.; Podolsky, R.H.; Peyton, C.; Msall, M.E.; Cure, C.; Berl, M.M. School-age child neurodevelopment following antenatal Zika virus exposure. Pediatr. Res. 2025; Online ahead of print. [Google Scholar] [CrossRef]
- de Paula, G.L.; da Silva, G.A.P.; e Silva, E.J.d.C.; Lins, M.d.G.M.; Martins, O.S.d.S.; Oliveira, D.M.d.S.; Ferreira, E.d.S.; Antunes, M.M.d.C. Vomiting and Gastric Motility in Early Brain Damaged Children with Congenital Zika Syndrome. J. Pediatr. Gastroenterol. Nutr. 2022, 75, 159–165. [Google Scholar] [CrossRef]
- Antoniou, E.; Andronikidi, P.E.; Eskitzis, P.; Iliadou, M.; Palaska, E.; Tzitiridou-Chatzopoulou, M.; Rigas, N.; Orovou, E. Congenital Zika Syndrome and Disabilities of Feeding and Breastfeeding in Early Childhood: A Systematic Review. Viruses 2023, 15, 601. [Google Scholar] [CrossRef]
- Oliveira, S.J.G.d.; Tavares, C.S.S.; Santos, V.S.; Santos, H.P., Jr.; Martins-Filho, P.R. Anxiety, Depression, and Quality of Life in Mothers of Children with Congenital Zika Syndrome: Results of a 5-Year Follow-up Study. Rev. Soc. Bras. Med. Trop. 2022, 55, e06272021. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, A.M.M.; de Melo, E.G.M.; Mendes, M.L.T.; dos Santos Oliveira, S.J.G.; Tavares, C.S.S.; Vaez, A.C.; de Vasconcelos, S.J.A.; Santos, H.P.; Santos, V.S.; Martins-Filho, P.R.S. Oral and Maxillofacial Conditions, Dietary Aspects, and Nutritional Status of Children with Congenital Zika Syndrome. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2020, 130, 71–77. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, S.F.M.; Soares, F.V.M.; de Abranches, A.D.; da Costa, A.C.C.; Moreira, M.E.L.; de Matos Fonseca, V. Infants with Microcephaly Due to ZIKA Virus Exposure: Nutritional Status and Food Practices. Nutr. J. 2019, 18, 4. [Google Scholar] [CrossRef] [PubMed]
- Martinez, S.S.; Pardo-Hernandez, H.; Palacios, C. Feeding Modifications and Additional Primary Caregiver Support for Infants Exposed to Zika Virus or Diagnosed with Congenital Zika Syndrome: A Rapid Review of the Evidence. Trop. Med. Int. Health 2020, 25, 1353–1361. [Google Scholar] [CrossRef]
- França, T.; Medeiros, W.; Souza, N.; Longo, E.; Pereira, S.; França, T.; Sousa, K. Growth and Development of Children with Microcephaly Associated with Congenital Zika Virus Syndrome in Brazil. Int. J. Environ. Res. Public Health 2018, 15, 1990. [Google Scholar] [CrossRef]
- Soares, F.; Abranches, A.D.; Villela, L.; Lara, S.; Araújo, D.; Nehab, S.; Silva, L.; Amaral, Y.; Junior, S.C.G.; Pone, S.; et al. Zika virus infection in pregnancy and infant growth, body composition in the first three months of life: A cohort study. Sci. Rep. 2019, 9, 19198. [Google Scholar] [CrossRef]
- Arrais, N.M.R.; Maia, C.R.S.; Jerônimo, S.M.B.; Neri, J.I.C.F.; Melo, A.N.; Bezerra, M.T.A.L.; Moraes-Pinto, M.I. Growth and Survival of a Cohort of Congenital Zika Virus Syndrome Children Born with Microcephaly and Children Who Developed with Microcephaly After Birth. Pediatr. Infect. Dis. J. 2025, 44, 465–472. [Google Scholar] [CrossRef] [PubMed]
- Brasil Ministério da Saúde; Secretaria de Atenção à Saúde; Departamento de Ações Programáticas e Estratégicas. Protocolo de Vigilância e Resposta à Ocorrência de Microcefalia Relacionada à Infecção Pelo Vírus Zika: Plano Nacional de Enfrentamento à Microcefalia; Ministério da Saúde: Brasília, Brazil, 2015; Available online: https://www.sbp.com.br/fileadmin/user_upload/2015/12/microcefalia-protocolo-de-vigilancia-e-resposta-v1-2.pdf (accessed on 7 September 2025).
- Stevenson, R.D. Use of Segmental Measures to Estimate Stature in Children with Cerebral Palsy. Arch. Pediatr. Adolesc. Med. 1995, 149, 658. [Google Scholar] [CrossRef] [PubMed]
- Brasil Ministério da Saúde; Secretaria de Atenção à Saúde; Departamento de Atenção Básica; Coordenação-Geral da Política de Alimentação e Nutrição. Incorporação da Curvas de Crescimento da Organização Mundial da Saúde de 2006 e 2007 no SISVAN; Ministério da Saúde: Brasília, Brazil, 2007; Available online: http://189.28.128.100/nutricao/docs/geral/curvas_oms_2006_2007.pdf (accessed on 7 September 2025).
- WHO—World Health Organization. Screening, Assessment and Management of Neonates and Infants with Complications Associated with Zika Virus Exposure in Utero; WHO: Geneva, Switzerland, 2016. [Google Scholar]
- Freudenheim, J.L. A Review of Study Designs and Methods of Dietary Assessment in Nutritional Epidemiology of Chronic Disease. J. Nutr. 1993, 123, 401–405. [Google Scholar] [CrossRef] [PubMed]
- Culley, W.J.; Middleton, T.O. Caloric Requirements of Mentally Retarded Children with and without Motor Dysfunction. J. Pediatr. 1969, 75, 380–384. [Google Scholar] [CrossRef]
- Trumbo, P.; Schlicker, S.; Yates, A.A.; Poos, M. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein and Amino Acids. J. Am. Diet. Assoc. 2002, 102, 1621–1630. [Google Scholar] [CrossRef]
- NRC—National Research Council. Recommended Dietary Allowances, 10th ed.; National Academies Press: Washington, DC, USA, 1989; ISBN 978-0-309-04633-6. [Google Scholar]
- Victora, C.G.; Adair, L.; Fall, C.; Hallal, P.C.; Martorell, R.; Richter, L.; Sachdev, H.S. Maternal and Child Undernutrition: Consequences for Adult Health and Human Capital. Lancet 2008, 371, 340–357. [Google Scholar] [CrossRef]
- Black, R.E.; Victora, C.G.; Walker, S.P.; Bhutta, Z.A.; Christian, P.; de Onis, M.; Ezzati, M.; Grantham-McGregor, S.; Katz, J.; Martorell, R.; et al. Maternal and Child Undernutrition and Overweight in Low-Income and Middle-Income Countries. Lancet 2013, 382, 427–451. [Google Scholar] [CrossRef]
- Penagini, F.; Mameli, C.; Fabiano, V.; Brunetti, D.; Dilillo, D.; Zuccotti, G. Dietary Intakes and Nutritional Issues in Neurologically Impaired Children. Nutrients 2015, 7, 9400–9415. [Google Scholar] [CrossRef]
- Grantham-McGregor, S.; Cheung, Y.B.; Cueto, S.; Glewwe, P.; Richter, L.; Strupp, B. Developmental Potential in the First 5 Years for Children in Developing Countries. Lancet 2007, 369, 60–70. [Google Scholar] [CrossRef]
- Leal, M.C.; van der Linden, V.; Bezerra, T.P.; de Valois, L.; Borges, A.C.G.; Antunes, M.M.C.; Brandt, K.G.; Moura, C.X.; Rodrigues, L.C.; Ximenes, C.R. Characteristics of Dysphagia in Infants with Microcephaly Caused by Congenital Zika Virus Infection, Brazil, 2015. Emerg. Infect. Dis. 2017, 23, 1253–1259. [Google Scholar] [CrossRef]
- Lefton-Greif, M.A.; Arvedson, J.C. Schoolchildren with Dysphagia Associated with Medically Complex Conditions. Lang. Speech. Hear. Serv. Sch. 2008, 39, 237–248. [Google Scholar] [CrossRef]
- Buraniqi, E.; Dabaja, H.; Wirrell, E.C. Impact of Antiseizure Medications on Appetite and Weight in Children. Pediatr. Drugs 2022, 24, 335–363. [Google Scholar] [CrossRef] [PubMed]
- Carvalho-Sauer, R.; Costa, M.d.C.N.; Barreto, F.R.; Teixeira, M.G. Congenital Zika Syndrome: Prevalence of Low Birth Weight and Associated Factors. Bahia, 2015–2017. Int. J. Infect. Dis. 2019, 82, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, P.B.; Juszczak, E.; Lambert, B.R.; Rose, M.; Ford-Adams, M.E.; Johnson, A. Impact of feeding problems on nutritional intake and growth: Oxford Feeding Study II. Dev. Med. Child Neurol. 2002, 44, 461–467. [Google Scholar] [CrossRef] [PubMed]
- Oddy, W.H.; Webb, K.G.; Baikie, G.; Thompson, S.M.; Reilly, S.; Fyfe, S.D.; Young, D.; Anderson, A.M.; Leonard, H. Feeding experiences and growth status in a Rett syndrome population. J. Pediatr. Gastroenterol. Nutr. 2007, 45, 582–590. [Google Scholar] [CrossRef]
- Dipasquale, V.; Morello, R.; Romano, C. Gastrointestinal and nutritional care in pediatric neuromuscular disorders. World J. Clin. Pediatr. 2023, 12, 197–204. [Google Scholar] [CrossRef]
- Chou, E.; Lindeback, R.; Sampaio, H.; Farrar, M.A. Nutritional practices in pediatric patients with neuromuscular disorders. Nutr. Rev. 2020, 78, 857–865. [Google Scholar] [CrossRef]
- Pinto, C.; Borrego, R.; Eiró-Gomes, M.; Casimiro, I.; Raposo, A.; Folha, T.; Virella, D.; Moreira, A.C. Embracing the Nutritional Assessment in Cerebral Palsy: A Toolkit for Healthcare Professionals for Daily Practice. Nutrients 2022, 14, 1180. [Google Scholar] [CrossRef]
- Quitadamo, P.; Thapar, N.; Staiano, A.; Borrelli, O. Gastrointestinal and nutritional problems in neurologically impaired children. Eur. J. Paediatr. Neurol. 2016, 20, 810–815. [Google Scholar] [CrossRef]
- Frawley, H.E.; Andrews, S.M.; Wheeler, A.C.; Nobrega, L.L.; Firmino, R.C.B.; da Silva, C.M.; Bezerra, P.; Ventura, C.V.; Cavalcanti, A.; Williams, J.; et al. Feeding practices and weight status of children with congenital Zika syndrome: A longitudinal study in Brazil. J. Pediatr. Gastroenterol. Nutr. 2024, 79, 679–687. [Google Scholar] [CrossRef]
- Smythe, T.; Matos, M.; Reis, J.; Duttine, A.; Ferrite, S.; Kuper, H. Mothers as facilitators for a parent group intervention for children with Congenital Zika Syndrome: Qualitative findings from a feasibility study in Brazil. PLoS ONE 2020, 15, e0238850. [Google Scholar] [CrossRef]
Measures | Critical Values | Diagnosis | |
---|---|---|---|
Percentile | Z-Score | ||
Weight | >97 | >+2 | High weight for age. |
≥3 to ≤97 | ≥−2 to ≤+2 | Adequate weight for age. | |
≥0.1 to <3 | ≥−3 to <−2 | Low weight for age. | |
<0.1 | <−3 | Very low weight for age. | |
Height | ≥3 | ≥−2 | Adequate height for age. |
≥0.1 to <3 | ≥−3 to <−2 | Short stature for age. | |
< 0.1 | <−3 | Very short stature for age. | |
Body mass index | > 99.9 | >+3 | Obesity. |
>97 to ≤99.9 | >+2 to ≤+3 | Overweight. | |
> 85 to ≤97 | >+1 to ≤+2 | Risk of overweight. | |
≥3 to ≤85 | ≥−2 to ≤+1 | Adequate body mass index. | |
≥0.1 to <3 | ≥−3 to <−2 | Underweight. | |
<0.1 | <−3 | Severe underweight. |
Variable | n (%) |
---|---|
Age * | 31.0 (25.0−37.0) |
Area of residence | |
Rural | 15 (39.5%) |
Urban | 23 (60.5%) |
Marital status | |
Married/in a stable relationship | 30 (78.9%) |
Divorced/single | 8 (21.1%) |
Employed | |
Yes | 8 (21.1%) |
No | 30 (78.9%) |
Government benefit | |
Yes | 35 (92.1%) |
No | 3 (7.9%) |
Monthly family income | |
Less than 1 minimum wage | 2 (5.3%) |
From 1 to 3 minimum wages | 36 (94.7%) |
Number of births * | 2.0 (1.5−3.0) |
Live births * | 2.0 (1.0−3.0) |
Miscarriages * | 0.0 (0.0–0.0) |
Pregnancy wanted | |
Yes | 16 (42.1%) |
No | 22 (57.9%) |
Type of delivery | |
Vaginal | 21 (55.3%) |
Cesarean | 17 (44.7%) |
Variable | n (%) |
---|---|
Sex | |
Male | 20 (52.6%) |
Female | 18 (47.4%) |
Apgar 1st minute * | 9.0 (8.0–9.0) |
Apgar 5th minute * | 10.0 (9.0–10.0) |
Head circumference at birth * | 29.0 (27.5–30.0) |
Severe microcephaly | |
Yes | 31 (81.6%) |
No | 7 (18.4%) |
Current age | 6.3 (5.9–6.6) |
Current head circumference * | 44.5 (42.0–45.9) |
Complications | |
Arthrogryposis | 16 (42.1%) |
Seizures | 32 (84.2%) |
Dysphagia | 23 (60.5%) |
Ophthalmological disorders | 16 (42.1%) |
Hearing disorders | 9 (23.7%) |
Hypertonia | 15 (39.5%) |
Hyperreflexia | 3 (7.9%) |
Irritability | 12 (31.6%) |
Neurogenic bladder | 1 (2.6%) |
Need for hospitalization | |
Yes | 24 (63.2%) |
No | 14 (36.8%) |
Currently attends school | |
Yes | 8 (21.1%) |
No | 30 (78.9%) |
Measures | Birth | End of Early Childhood | Diagnostic Evolution | p-Value (a) | |||||
---|---|---|---|---|---|---|---|---|---|
Median (IQR) | Adequate Parameters for Age (%) | Median (IQR) | Adequate Parameters for Age (%) | Remained Adequate (%) | Improved (%) | Remained Inadequate (%) | Worsened (%) | ||
Height (cm) | 45.0 (43.0–48.0) | 16 (42.1) | 108.8 (106.6–117.5) | 29 (76.3) | 12 (31.6) | 17 (44.8) | 5 (13.1) | 4 (10.5) | 0.007 * |
Weight (kg) | 2.7 (2.5–3.0) | 28 (73.7) | 15.8 (14.3–18.7) | 22 (57.9) | 16 (42.1) | 6 (15.8) | 4 (10.5) | 12 (31.6) | 0.238 |
BMI (kg/m2) | 13.0 (11.5–14.6) | 28 (73.7) | 13.2 (11.8–15.0) | 16 (42.1) | 11 (29.0) | 5 (13.1) | 5 (13.1) | 17 (44.8) | 0.017 * |
Variables | n (%) (Total = 38) | Adequate BMI (n = 16) | Inadequate BMI (n = 22) | p-Value (a) |
---|---|---|---|---|
Daily number of meals * | 5.0 (4.5–6.0) | 5.0 (4.6–5.9) | 5.3 (4.4–6.0) | 0.848 |
Food intake | ||||
Oral | 30 (78.9%) | 11 (68.8%) | 19 (86.4%) | 0.243 |
Enteral | 8 (21.1%) | 5 (31.2%) | 3 (13.6%) | |
Consistency of food | ||||
Solid | 8 (21.1%) | 3 (18.8%) | 5 (22.7%) | 0.450 |
Liquid | 8 (21.1%) | 5 (31.2%) | 3 (13.6%) | |
Mushy | 22 (57.8%) | 8 (50.0%) | 14 (63.7%) | |
% of meals with cereals * | 22.5 (2.3–37.2) | 15.5 (0.0–30.1) | 26.2 (11.1–37.2) | 0.359 |
% of meals with fruits * | 25.0 (17.1–36.4) | 25.0 (17.2–37.3) | 26.8 (17.1–35.6) | 0.906 |
Ultra-processed food consumption | ||||
Yes | 22 (57.8%) | 9 (56.3%) | 13 (59.1%) | 1.000 |
No | 16 (42.2%) | 7 (43.7%) | 9 (40.9%) | |
Minimum dietary diversity | ||||
Yes | 13 (34.2%) | 4 (25.0%) | 9 (40.9%) | 0.490 |
No | 25 (65.8%) | 12 (75.0%) | 13 (59.1%) |
Variables | n (%) (Total = 38) | Adequate BMI (n = 16) | Inadequate BMI (n = 22) | p-Value (a) |
---|---|---|---|---|
Kcal | ||||
Adequate | 6 (15.8%) | 1 (6.3%) | 5 (22.7%) | 0.370 |
Inadequate | 32 (84.2%) | 15 (93.7%) | 17 (77.3%) | |
Macronutrients | ||||
Proteins | ||||
Adequate | 18 (47.4%) | 8 (50.0%) | 10 (45.5%) | 1.000 |
Inadequate | 20 (52.6%) | 8 (50.0%) | 12 (54.5%) | |
Carbohydrates | ||||
Adequate | 32 (84.2%) | 16 (100.0%) | 16 (72.7%) | 0.030 ¥ |
Inadequate | 6 (15.8%) | 0 (0.0%) | 6 (27.3%) | |
Lipids | ||||
Adequate | 20 (52.6%) | 8 (50.0%) | 12 (54.5%) | 1.000 |
Inadequate | 18 (47.4%) | 8 (50.0%) | 10 (45.5%) | |
Micronutrients | ||||
Zinc | ||||
Adequate | 4 (10.5%) | 1 (6.3%) | 3 (13.6%) | 0.625 |
Inadequate | 34 (89.5%) | 15 (93.7%) | 19 (86.4%) | |
Calcium | ||||
Adequate | 1 (2.6%) | 1 (6.3%) | 0 (0.0%) | 0.421 |
Inadequate | 37 (97.4%) | 15 (93.7%) | 22 (100.0%) | |
Iron | ||||
Adequate | 4 (10.5%) | 1 (6.3%) | 3 (13.6%) | 0.625 |
Inadequate | 34 (89.5%) | 15 (93.7%) | 19 (86.4%) | |
Vitamin D | ||||
Adequate | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 1.000 |
Inadequate | 38 (100.0%) | 16 (100.0%) | 22 (100.0%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tavares, C.S.S.; Marques, R.S.; Ferreira, J.d.S.; de Oliveira, M.B.B.; Reis, M.C.d.S.; Martins-Filho, P.R. Long-Term Nutritional Deficits and Growth Patterns in Children with Congenital Zika Virus Syndrome: Evidence from a Brazilian Cohort. Viruses 2025, 17, 1239. https://doi.org/10.3390/v17091239
Tavares CSS, Marques RS, Ferreira JdS, de Oliveira MBB, Reis MCdS, Martins-Filho PR. Long-Term Nutritional Deficits and Growth Patterns in Children with Congenital Zika Virus Syndrome: Evidence from a Brazilian Cohort. Viruses. 2025; 17(9):1239. https://doi.org/10.3390/v17091239
Chicago/Turabian StyleTavares, Carolina Santos Souza, Raquel Souza Marques, Janiele de Sá Ferreira, Marcela Barros Barbosa de Oliveira, Monique Carla da Silva Reis, and Paulo Ricardo Martins-Filho. 2025. "Long-Term Nutritional Deficits and Growth Patterns in Children with Congenital Zika Virus Syndrome: Evidence from a Brazilian Cohort" Viruses 17, no. 9: 1239. https://doi.org/10.3390/v17091239
APA StyleTavares, C. S. S., Marques, R. S., Ferreira, J. d. S., de Oliveira, M. B. B., Reis, M. C. d. S., & Martins-Filho, P. R. (2025). Long-Term Nutritional Deficits and Growth Patterns in Children with Congenital Zika Virus Syndrome: Evidence from a Brazilian Cohort. Viruses, 17(9), 1239. https://doi.org/10.3390/v17091239