Evolving Threats: Adaptive Mechanisms of Monkeypox Virus (MPXV) in the 2022 Global Outbreak and Their Implications for Vaccine Strategies
Abstract
1. Introduction
2. Basic Biological Characteristics of Monkeypox Virus
2.1. Virus Structure and Classification
2.2. Genomic Characteristics
2.3. The Immune Evasion Mechanism of the M2 Protein and Its Uniqueness in Viral Evasion Strategies
3. The Infection Mechanism of Monkeypox Virus
3.1. Pathways of Monkeypox Virus Entry into Host Cells
3.2. Molecular Mechanisms of Monkeypox Virus Replication, Pathogenesis, and Immune Evasion
3.3. The Impact of Monkeypox Virus Immune Scape Mechanisms on the Infection Process
4. Research Progress on Monkeypox Virus Vaccines
4.1. Protective Effects of Existing Vaccines
Vaccine Name | Research and Development Institutions/Companies | Vaccine Type | The Research and Development Phase | Protective Effect | Approval Status | Note |
---|---|---|---|---|---|---|
MVA-BN | Danish non-replicating vaccine | Attenuated live vaccine | Approved for use | Highly effective protection | Approved | Used to prevent monkeypox, widely used worldwide [65]. |
ACAM2000 | American smallpox vaccine | Attenuated live vaccine | Approved for use | Highly effective protection | Approved | Based on the smallpox vaccine, it has a protective effect against monkeypox [4]. |
MVA strain monkeypox attenuated live vaccine | Sinopharm Group | Attenuated live vaccine | Phase I clinical trial | To be verified | Approved for clinical trials in 2024 | The first batch of participants for Phase I will be enrolled by January 2025, marking China’s first monkeypox vaccine to enter clinical trials [66]. |
LC-16 | Japan’s minimum replication vaccine | Attenuated live vaccine | Approved for use | High | Approved | Based on the smallpox vaccine, it has a protective effect against monkeypox [67]. |
VTT | Sinopharm Group | Viral vector vaccine | Unspecified | High | Widely used in China from 1950 to 1969 | Long-term and large-scale use in China [68,69]. |
VGPox1-3 | Sinopharm Group | mRNA vaccine | Preclinical stage | Animal experiments show excellent immune protection effects | Not approved | World’s first monkeypox mRNA vaccine containing a combination of M1R and A35R antigens [70]. |
BNT166 | BioNTech | mRNA vaccine | BNT166 Clinical Assessment Conducted (NCT05988203) | Preclinical experiments protect mice and monkeys | Not approved | Polyvalent design, tetravalent vaccine (A35, B6, M1, H3); trivalent vaccine (without H3) [71]. |
VGPox | Multivalent mRNA vaccine developed by the Seventh Affiliated Hospital of Sun Yat-sen University | mRNA vaccine | Preclinical stage | To be verified | Not approved | mRNA vaccines against monkeypox and other poxviruses [70]. |
JYNNEOS | JYNNEOS vaccine in the United States | Attenuated live vaccine | Approved for use | Highly effective protection | Approve | For the prevention of monkeypox, based on the smallpox vaccine [72]. |
4.2. Development of New Vaccines
4.3. Comparative Analysis of Vaccine Platforms: Advantages, Disadvantages, and Applicable Scenarios
Evaluation Dimensions | Viral Vector Vaccines (e.g., MVA-BN, JYNNEOS) | mRNA Vaccines (e.g., mRNA-1769, BNT166) | Attenuated Live Vaccines (e.g., ACAM2000, LC16) | Protein Subunit Vaccine (Under Development) |
---|---|---|---|---|
Immunogenicity | Induces strong humoral and cellular immunity, supported by long-term real-world data (~85% efficacy) [77]. | Highly immunogenic, demonstrating superior neutralizing antibody and T cell responses compared to MVA-BN in preclinical studies [78]. | Highest immunogenicity, capable of inducing very strong and persistent immunity [77]. | Immunogenicity is highly dependent on adjuvants, is usually weak, and requires multiple immunizations [79]. |
Safety | High safety (non-replicating), suitable for immunocompromised individuals [80]. | High safety, no viral vectors, no integration risk [81]. | Low safety, with risks of spreading cowpox, myocarditis, encephalitis, etc. Not suitable for immunocompromised individuals [77]. | Highest safety, no genetic material, no risk of infection [82,83]. |
The platform is mature, but production depends on cell culture, which takes a long time. | Extremely fast research, development, and production, making it easy to respond to virus mutations and pandemics [84]. | The platform is mature, but production is complex and the cycle is long [74]. | Long R&D cycle, production requires protein expression and purification, slow speed. | |
Responding to variability | Based on conserved antigens, providing cross-protection [75]. | Can respond to mutations and rapidly design and produce multivalent vaccines targeting new variants [76]. | Provides broad-spectrum protection, but may become ineffective once antigenic drift occurs [85]. | Can be designed for specific antigens, but must be redesigned to address mutations, and is slower than mRNA [86]. |
Applicable scenarios | Large-scale vaccination, emergency reserves, and preferred choice for immunocompromised populations [74]. | Responding to new outbreaks and variants, rapid deployment, an ideal choice as a booster shot [75]. | Emergency vaccination for children, to be used when medical resources are sufficient [87]. | Suitable for people with extreme safety requirements (such as those who are highly allergic to vaccine ingredients) [88]. |
4.4. Vaccination Strategy
4.5. Analysis of the Protective Efficacy and Global Coverage of Existing Vaccines
4.6. Breakthrough Progress in China’s Independently Developed Vaccines
4.7. Challenges and Future Directions
5. Conclusions and Outlook
Funding
Conflicts of Interest
References
- Zafar, I.; Kanwal, F.; Azmat, M.; Unar, A.; Ali, I.; Yousaf, W.; Ain, Q.; Rather, A.; Ali, N.; Khan, R.L.; et al. Comprehensive Genomic, Mutation, Phylogenetic, and Statistical Analysis of the Monkeypox Virus Across Multiple Countries. Indian J. Microbiol. 2025, 65, 1321–1344. [Google Scholar] [CrossRef]
- Otieno, J.R.; Ruis, C.; Onoja, A.B.; Kuppalli, K.; Hoxha, A.; Nitsche, A.; Brinkmann, A.; Michel, J.; Mbala-Kingebeni, P.; Mukadi-Bamuleka, D.; et al. Global genomic surveillance of monkeypox virus. Nat. Med. 2025, 31, 342–350. [Google Scholar] [CrossRef]
- Du, M.; Niu, B.; Liu, J. The research and development landscape for mpox vaccines. Lancet Infect. Dis. 2025, 25, e198–e199. [Google Scholar] [CrossRef] [PubMed]
- Rizk, Y.; Lippi, G.; Henry, B.M.; Notarte, K.I.; Rizk, J.G. Update on Mpox management: Epidemiology, vaccines and therapeutics, and regulatory changes. Drugs 2025, 85, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Xie, X.; Zeng, M.; Cao, Y.; Fan, Q.; Jiang, M.; Lei, C.; Wang, J.; Li, F.; Tang, X. Clinical characteristics, viral dynamics, and antibody response of monkeypox virus infections among men with and without HIV infection in Guangzhou, China. Front. Cell. Infect. Microbiol. 2024, 14, 1412753. [Google Scholar] [CrossRef] [PubMed]
- Parvin, R.; Ali, A.; Nagy, A.; Zhu, Z.; Zhao, S.; Paul, A.; Hafez, H.; Shehata, A.A. Monkeypox virus: A comprehensive review of taxonomy, evolution, epidemiology, diagnosis, prevention, and control regiments so far. J. Microbiol. 2022, 2, 1–15. [Google Scholar] [CrossRef]
- Huang, Y.; Guo, L.; Li, Y.; Ren, L.; Nie, J.; Xu, F.; Huang, T.; Zhong, J.; Fan, Z.; Zhang, Y.; et al. Residual immunity from smallpox vaccination and possible protection from mpox, China. Emerg. Infect. Dis. 2024, 30, 321. [Google Scholar] [CrossRef]
- Li, D.; Wang, H.; Sun, L.; Feng, J.; Li, W.; Cheng, L.; Liao, X.; Zhang, Y.; Xu, Z.; Ge, X.; et al. Levels of antibodies against the monkeypox virus compared by HIV status and historical smallpox vaccinations: A serological study. Emerg. Microbes Infect. 2024, 13, 2356153. [Google Scholar] [CrossRef]
- Mitjà, O.; Ogoina, D.; Titanji, B.K.; Galvan, C.; Muyembe, J.-J.; Marks, M.; Orkin, C.M. Monkeypox. Lancet 2023, 401, 60–74. [Google Scholar] [CrossRef]
- Araf, Y.; Nipa, J.F.; Naher, S.; Maliha, S.T.; Rahman, H.; Arafat, K.I.; Munif, M.R.; Uddin, M.J.; Jeba, N.; Saha, S.; et al. Insights into the Transmission, Host Range, Genomics, Vaccination, and Current Epidemiology of the Monkeypox Virus. Vet. Med. Int. 2024, 2024, 8839830. [Google Scholar] [CrossRef]
- Zhu, J.; Yu, J.; Qin, H.; Chen, X.; Wu, C.; Hong, X.; Zhang, Y.; Zhang, Z. Exploring the key genomic variation in monkeypox virus during the 2022 outbreak. BMC Genom. Data 2023, 24, 67. [Google Scholar] [CrossRef]
- Isidro, J.; Borges, V.; Pinto, M.; Sobral, D.; Santos, J.D.; Nunes, A.; Mixão, V.; Ferreira, R.; Santos, D.; Duarte, S.; et al. Phylogenomic characterization and signs of microevolution in the 2022 multi-country outbreak of monkeypox virus. Nat. Med. 2022, 28, 1569–1572. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Wang, Y.; Yu, F.; Cheng, R.; Zhang, Y.; Zhou, D.; Ren, X.; Deng, Z.; Zhao, H. Structural and functional insights into the modulation of T cell costimulation by monkeypox virus protein. Nat. Commun. 2023, 14, 5186. [Google Scholar] [CrossRef]
- Karagoz, A.; Tombuloglu, H.; Alsaeed, M.; Tombuloglu, G.; AlRubaish, A.A.; Mahmoud, A.; Smajlović, S.; Ćordić, S.; Rabaan, A.A.; Alsuhaimi, E. Monkeypox (mpox) virus: Classification, origin, transmission, genome organization, antiviral drugs, and molecular diagnosis. J. Infect. Public Health 2023, 16, 531–541. [Google Scholar] [CrossRef]
- Hong, Y.; Huang, B.; Zhang, J.; Peng, C.; Kong, W.; Tan, W.; Li, S. Molecular architecture of monkeypox mature virus. Cell Discov. 2024, 10, 108. [Google Scholar] [CrossRef]
- Tan, M.; Zhang, R.; Shen, T.; Li, A.; Hou, X.; Zhang, Y.; Wang, T.; Zhang, B.; Sun, P.; Gong, X.; et al. Systematic evaluation of the induction of efficient neutralizing antibodies by recombinant multicomponent subunit vaccines against monkeypox virus. Vaccine 2024, 42, 126384. [Google Scholar] [CrossRef] [PubMed]
- Aljabali, A.A.; Obeid, M.A.; Nusair, M.B.; Hmedat, A.; Tambuwala, M.M. Monkeypox virus: An emerging epidemic. Microb. Pathog. 2022, 173, 105794. [Google Scholar] [CrossRef]
- Wu, C.; Ruhan, A.; Ye, S.; Ye, F.; Huo, W.; Lu, R.; Tang, Y.; Yang, J.; Meng, X.; Tang, Y.; et al. Rapid identification of full-length genome and tracing variations of monkeypox virus in clinical specimens based on mNGS and amplicon sequencing. Virol. Sin. 2024, 39, 134–143. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhang, H.; Ding, K.; Wang, X.H.; Sun, G.Y.; Liu, Z.X.; Luo, Y. The evolving epidemiology of monkeypox virus. Cytokine Growth Factor Rev. 2022, 68, 1–12. [Google Scholar] [CrossRef]
- Rabaan, A.A.; Abas, A.H.; Tallei, T.E.; Al-Zaher, M.A.; Al-Sheef, N.M.; Fatimawali; Al-Nass, E.Z.; Al-Ebrahim, E.A.; Effendi, Y.; Idroes, R.; et al. Monkeypox outbreak 2022: What we know so far and its potential drug targets and management strategies. J. Med. Virol. 2023, 95, e28306. [Google Scholar] [CrossRef]
- Haller, S.L.; Peng, C.; McFadden, G.; Rothenburg, S. Poxviruses and the evolution of host range and virulence. Infect. Genet. Evol. 2014, 21, 15–40. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, X.; Zhang, Y.; Liu, C.; Zhang, M.; Li, C.; Liu, P.; Li, S.; Wei, K.; Cai, Y. Immunogenicity of monkeypox virus surface proteins and cross-reactive antibody responses in vaccinated and infected individuals: Implications for vaccine and therapeutic development. Infect. Dis. Poverty 2025, 14, 82–94. [Google Scholar] [CrossRef]
- Vakaniaki, E.H.; Kacita, C.; Kinganda-Lusamaki, E.; O’Toole, Á.; Wawina-Bokalanga, T.; Mukadi-Bamuleka, D.; Amuri-Aziza, A.; Malyamungu-Bubala, N.; Mweshi-Kumbana, F.; Mutimbwa-Mambo, L.; et al. Sustained human outbreak of a new MPXV clade I lineage in eastern Democratic Republic of the Congo. Nat. Med. 2024, 30, 2791–2795. [Google Scholar] [CrossRef]
- Fang, D.; Liu, Y.; Dou, D.; Su, B. The unique immune evasion mechanisms of the mpox virus and their implication for developing new vaccines and immunotherapies. Virol. Sin. 2024, 39, 709–718. [Google Scholar] [CrossRef]
- Chan, P.; Ye, Z.W.; Zhao, W.; Ong, C.P.; Sun, X.Y.; Cheung, P.H.; Jin, D.Y. Mpox virus poxin-schlafen fusion protein suppresses innate antiviral response by sequestering STAT2. Emerg. Microbes Infect. 2025, 14, 2477639. [Google Scholar] [CrossRef]
- Shan, K.J.; Wu, C.; Tang, X.; Lu, R.; Hu, Y.; Tan, W.; Lu, J. Molecular Evolution of Protein Sequences and Codon Usage in Monkeypox Viruses. Genom. Proteom. Bioinform. 2024, 22, qzad003. [Google Scholar] [CrossRef] [PubMed]
- Masirika, L.M.; Kumar, A.; Dutt, M.; Ostadgavahi, A.T.; Hewins, B.; Nadine, M.B.; Steeven, B.K.; Mweshi, F.K.; Mambo, L.M.; Mbiribindi, J.B.; et al. Complete Genome Sequencing, Annotation, and Mutational Profiling of the Novel Clade I Human Mpox Virus, Kamituga Strain. J. Infect. Dev. Ctries. 2024, 18, 600–608. [Google Scholar] [CrossRef]
- Prompetchara, E.; Ketloy, C.; Khawsang, C.; Ruxrungtham, K.; Palaga, T. Mpox global health emergency: Insights into the virus, immune responses, and advancements in vaccines PART I: Insights into the virus and immune responses. Asian Pac. J. Allergy Immunol. 2024, 42, 181–190. [Google Scholar] [CrossRef]
- Elliott, H.; Hoyne, G.F. The role of the Nef protein in MHC-I downregulation and viral immune evasion by HIV-1. J. Clin. Cell. Immunol. 2015, 6, 375. [Google Scholar] [CrossRef]
- Brandsma, A. The Role of Proteasomes in the ERADication of MHC Class I by HCMV US2 and US11. Master’s Thesis, Utrecht University, Utrecht, The Netherlands, 2013. [Google Scholar]
- Frappier, L. Ebna1. In Epstein Barr Virus; Springer: Cham, Switzerland, 2025; Volume 2. [Google Scholar]
- Chen, J. Signaling pathways in HPV-associated cancers and therapeutic implications. Rev. Med. Virol. 2015, 25, 24–53. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Piersma, S.J.; Elliott, J.I.; Errico, J.M.; Gainey, M.D.; Yang, L.; Nelson, C.A.; Yokoyama, W.M.; Fremont, D.H. Cowpox virus encodes a protein that binds B7. 1 and B7. 2 and subverts T cell costimulation. Proc. Natl. Acad. Sci. USA 2019, 116, 21113–21119. [Google Scholar] [CrossRef] [PubMed]
- Dutta, S.; Ghosh, R.; Dasgupta, I.; Sikdar, P.; Santra, P.; Maity, D.; Pritam, M.; Lee, S.G. Monkeypox: A comprehensive review on mutation, transmission, pathophysiology, and therapeutics. Int. Immunopharmacol. 2025, 146, 113813. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wang, J.; Hu, Z.; Yan, X.; Gao, Q.; Li, X.; Liao, Y. Advancing Aggregation-Induced Emission-Derived Biomaterials in Viral, Tuberculosis, and Fungal Infectious Diseases. Aggregate 2024, 6, e715. [Google Scholar] [CrossRef]
- Lum, F.M.; Torres-Ruesta, A.; Tay, M.Z.; Lin, R.T.; Lye, D.C.; Rénia, L.; Ng, L.F. Monkeypox: Disease epidemiology, host immunity and clinical interventions. Nat. Rev. Immunol. 2022, 22, 597–613. [Google Scholar] [CrossRef]
- Das, R.; Bhattarai, A.; Karn, R.; Tamang, B. Computational investigations of potential inhibitors of monkeypox virus envelope protein E8 through molecular docking and molecular dynamics simulations. Sci. Rep. 2024, 14, 19585. [Google Scholar] [CrossRef]
- Lin, C.-L.; Chung, C.-S.; Heine, H.G.; Chang, W. Vaccinia virus envelope H3L protein binds to cell surface heparan sulfate and is important for intracellular mature virion morphogenesis and virus infection in vitro and in vivo. J. Virol. 2000, 74, 3353–3365. [Google Scholar] [CrossRef]
- Huang, Y.; Bergant, V.; Grass, V.; Emslander, Q.; Hamad, M.S.; Hubel, P.; Mergner, J.; Piras, A.; Krey, K.; Henrici, A.; et al. Multi-omics characterization of the monkeypox virus infection. Nat. Commun. 2024, 15, 6778. [Google Scholar] [CrossRef]
- Fantini, J.; Chahinian, H.; Yahi, N. A vaccine strategy based on the identification of an annular ganglioside binding motif in monkeypox virus protein E8L. Viruses 2022, 14, 2531. [Google Scholar] [CrossRef]
- Greseth, M.D.; Traktman, P. The life cycle of the vaccinia virus genome. Annu. Rev. Virol. 2022, 9, 239–259. [Google Scholar] [CrossRef]
- Witt, A.S.A.; Trindade, G.d.S.; Gil de Souza, F.; Serafim, M.S.M.; da Costa, A.V.B.; Silva, M.V.F.; Iani, F.C.d.M.; Rodrigues, R.A.L.; Kroon, E.G.; Abrahão, J.S. Ultrastructural analysis of monkeypox virus replication in Vero cells. J. Med. Virol. 2023, 95, e28536. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Li, H.; Zhang, L.; Mu, W.; Zhang, Y.; Chen, T.; Wu, J.; Tang, H.; Zheng, S.; Liu, Y.; et al. Generic Diagramming Platform (GDP): A comprehensive database of high-quality biomedical graphics. Nucleic Acids Res. 2025, 53, D1670–D1676. [Google Scholar] [CrossRef]
- Tang, Z.; Han, Y.; Meng, Y.; Li, J.; Qiu, X.; Bajinka, O.; Wu, G.; Tan, Y. A bioinformatics approach to systematically analyze the molecular patterns of monkeypox virus-host cell interactions. Heliyon 2024, 10, e30483. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.A.S.; Yousaf, M.A.; Azhar, J.; Maqbool, M.F.; Bibi, R. Repurposing FDA approved drugs against monkeypox virus DNA dependent RNA polymerase: Virtual screening, normal mode analysis and molecular dynamics simulation studies. VirusDisease 2024, 35, 260–270. [Google Scholar] [CrossRef]
- Kinganda-Lusamaki, E.; Amuri-Aziza, A.; Fernandez-Nunez, N.; Makangara-Cigolo, J.-C.; Pratt, C.; Vakaniaki, E.H.; Hoff, N.A.; Luakanda-Ndelemo, G.; Akil-Bandali, P.; Nundu, S.S. Clade I mpox virus genomic diversity in the Democratic Republic of the Congo, 2018–2024: Predominance of zoonotic transmission. Cell 2025, 188, 4–14.e16. [Google Scholar] [CrossRef]
- Fan, Q.; Jiang, M.; Lv, T.; Pan, M.; Dai, J.; Qian, P.; Hu, F.; Yu, H.; Ling, Y.; Tang, X. Modeling the pathogenic infection of monkeypox virus clade IIb in type I and II interferon pathway double deficient mice. hLife 2025, 3, 297–300. [Google Scholar] [CrossRef]
- Kataria, R.; Kaur, S.; Kaundal, R. Deciphering the complete human-monkeypox virus interactome: Identifying immune responses and potential drug targets. Front. Immunol. 2023, 14, 1116988. [Google Scholar] [CrossRef]
- Li, M.; Ren, Z.; Wang, Y.; Jiang, Y.; Yang, M.; Li, D.; Chen, J.; Liang, Z.; Lin, Y.; Zeng, Z.; et al. Three neutralizing mAbs induced by MPXV A29L protein recognizing different epitopes act synergistically against orthopoxvirus. Emerg. Microbes Infect. 2023, 12, 2223669. [Google Scholar] [CrossRef]
- Ndayambaje, M.; Munyeshyaka, E.; Dieumerci, O.; Habyarimana, T.; Ndishimye, P.; Naya, A.; Oudghiri, M. Plant-derived molecules in monkeypox management: Insight and alternative therapeutic strategies. Beni-Suef Univ. J. Basic Appl. Sci. 2025, 14, 17. [Google Scholar] [CrossRef]
- Kushwaha, J.M.; Rani, M.S.S.; Singh, S. Targeting monkeypox virus (MPXV): Strategies for molecular docking studies on protein inhibition. Virus Genes 2025, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Zheng, B.; Duan, M.; Huang, Y.; Wang, S.; Qiu, J.; Lu, Z.; Liu, L.; Tang, G.; Cheng, L.; Zheng, P. Discovery of a heparan sulfate binding domain in monkeypox virus H3 as an anti-poxviral drug target combining AI and MD simulations. Elife 2025, 13, RP100545. [Google Scholar] [CrossRef] [PubMed]
- Andrieu, J.; Valade, M.; Wurtz, N.; Lebideau, M.; Bretelle, F.; La Scola, B.; Mège, J.L.; Mezouar, S. Monkeypox Virus Subverts the Inflammatory Response of Macrophages at the Maternal-Fetal Interface. J. Med. Virol. 2025, 97, e70412. [Google Scholar] [CrossRef]
- Song, H.; Josleyn, N.; Janosko, K.; Skinner, J.; Reeves, R.K.; Cohen, M.; Jett, C.; Johnson, R.; Blaney, J.E.; Bollinger, L.; et al. Monkeypox virus infection of rhesus macaques induces massive expansion of natural killer cells but suppresses natural killer cell functions. PLoS ONE 2013, 8, e77804. [Google Scholar] [CrossRef]
- Hammarlund, E.; Dasgupta, A.; Pinilla, C.; Norori, P.; Früh, K.; Slifka, M.K. Monkeypox virus evades antiviral CD4+ and CD8+ T cell responses by suppressing cognate T cell activation. Proc. Natl. Acad. Sci. USA 2008, 105, 14567–14572. [Google Scholar] [CrossRef]
- Agarwal, V.; Parikh, V.; Lakhani, M.; De, C.; Motivala, A.; Mobarakai, N. Sub-acute endocarditis by Corynebacterium straitum: An often ignored pathogen. World J. Clin. Infect. Dis. 2014, 4, 1–4. [Google Scholar] [CrossRef]
- Islam, M.R.; Hossain, M.J.; Roy, A.; Hasan, A.N.; Rahman, M.A.; Shahriar, M.; Bhuiyan, M.A. Repositioning potentials of smallpox vaccines and antiviral agents in monkeypox outbreak: A rapid review on comparative benefits and risks. Health Sci. Rep. 2022, 5, e798. [Google Scholar] [CrossRef] [PubMed]
- Chopra, H.; Dhawan, M.; Bibi, S.; Baig, A.A.; Kushwah, A.S.; Kaur, M.; Emran, T.B. FDA approved vaccines for monkeypox: Current eminence. Int. J. Surg. 2022, 105, 106896. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Ji, J.; Shi, D.; Lu, X.; Wang, B.; Wu, N.; Wu, J.; Yao, H.; Li, L. Unusual global outbreak of monkeypox: What should we do? Front. Med. 2022, 16, 507–517. [Google Scholar] [CrossRef]
- Goh, E.; Chavatte, J.M.; Lin, R.T.P.; Ng, L.F.P.; Rénia, L.; Oon, H.H. Vaccines in Dermatology—Present and Future: A Review. Vaccines 2025, 13, 125. [Google Scholar] [CrossRef]
- Duffy, J.; Marquez, P.; Moro, P.; Weintraub, E.; Yu, Y.; Boersma, P.; Donahue, J.G.; Glanz, J.M.; Goddard, K.; Hambidge, S.J.; et al. Safety monitoring of JYNNEOS vaccine during the 2022 mpox outbreak—United States, May 22–October 21, 2022. MMWR Morb. Mortal. Wkly. Rep. 2022, 71, 1555–1559. [Google Scholar] [CrossRef]
- Tai, W.; Tian, C.; Shi, H.; Chai, B.; Yu, X.; Zhuang, X.; Dong, P.; Li, M.; Yin, Q.; Feng, S.; et al. An mRNA vaccine against monkeypox virus inhibits infection by co-activation of humoral and cellular immune responses. Nat. Commun. 2025, 16, 2971. [Google Scholar] [CrossRef]
- Priyamvada, L.; Minhaj, F.S.; Carson, W.C.; Moriarty, M.; Rodriguez, S.; Joseph, T.; Pukuta, E.; Kabamba, J.; Likafi, T.; Kokola, G. MVA-BN third-dose 5 years after primary; Democratic Republic of the Congo. medRxiv 2025. [Google Scholar] [CrossRef]
- China’s National Biotec Group. China’s First Monkeypox Vaccine Officially Starts Clinical Trials. 2025. Available online: http://media.drugdu.com/ddu-news/chinas-first-monkeypox-vaccine-officially-starts-clinical-trials.html (accessed on 26 August 2025).
- Nainwal, N.; Jakhmola, V. Candidate vaccines and Therapeutics against Monkeypox infection. J. Pure Appl. Microbiol. 2022, 16, 8282. [Google Scholar] [CrossRef]
- Zhai, Y.; Han, Y.; Wang, W.; Tan, W. Advancements in Mpox vaccine development: A comprehensive review of global progress and recent data. Biomed. Environ. Sci. 2025, 38, 248–254. [Google Scholar]
- Ruan, L. Research and application of vaccinia virus Tiantan strain vector. Microbiol. Infect. 2013, 8, 2–8. [Google Scholar]
- Hou, F.; Zhang, Y.; Liu, X.; Murad, Y.M.; Xu, J.; Yu, Z.; Hua, X.; Song, Y.; Ding, J.; Huang, H. mRNA vaccines encoding fusion proteins of monkeypox virus antigens protect mice from vaccinia virus challenge. Nat. Commun. 2023, 14, 5925. [Google Scholar] [CrossRef]
- Zuiani, A.; Dulberger, C.L.; De Silva, N.S.; Marquette, M.; Lu, Y.-J.; Palowitch, G.M.; Dokic, A.; Sanchez-Velazquez, R.; Schlatterer, K.; Sarkar, S. A multivalent mRNA monkeypox virus vaccine (BNT166) protects mice and macaques from orthopoxvirus disease. Cell 2024, 187, 1363–1373.e12. [Google Scholar] [CrossRef]
- Taha, A.M.; Mahmoud, A.M.; Abouelmagd, K.; Saed, S.A.A.; Khalefa, B.B.; Shah, S.; Satapathy, P.; Shamim, M.A.; Sah, S.; Serhan, H.A. Effectiveness of a single dose of JYNNEOS vaccine in real world: A systematic review and meta-analysis. Health Sci. Rep. 2024, 7, e70069. [Google Scholar] [CrossRef]
- Mucker, E.M.; Freyn, A.W.; Bixler, S.L.; Cizmeci, D.; Atyeo, C.; Earl, P.L.; Natarajan, H.; Santos, G.; Frey, T.R.; Levin, R.H.; et al. Comparison of protection against mpox following mRNA or modified vaccinia Ankara vaccination in nonhuman primates. Cell 2024, 187, 5540–5553. [Google Scholar] [CrossRef] [PubMed]
- Grabenstein, J.D.; Hacker, A. Vaccines against mpox: MVA-BN and LC16m8. Expert Rev. Vaccines 2024, 23, 796–811. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, D.A.; Qiu, Y.; Hu, R.; Chen, S.; Xu, Y.; Chen, K.; Yuan, J.; Li, X. Recent Advances in Mpox Epidemic: Global Features and Vaccine Prevention Research. Vaccines 2025, 13, 466. [Google Scholar] [CrossRef]
- Garcia-Atutxa, I.; Mondragon-Teran, P.; Huerta-Saquero, A.; Villanueva-Flores, F. Advancements in monkeypox vaccines development: A critical review of emerging technologies. Front. Immunol. 2024, 15, 1456060. [Google Scholar] [CrossRef]
- Shafaati, M.; Forghani, S.; Shahsavand Davoudi, A.; Samiee, R.; Mohammadi, K.; Akbarpour, S.; Seifi, A.; Salehi, M.; Zare, M. Current advances and challenges in mpox vaccine development: A global landscape. Ther. Adv. Vaccines Immunother. 2025, 13, 25151355251314339. [Google Scholar] [CrossRef]
- Alam, M.S.; Sharif, M.A.; Islam, M.A.; Hoque, M.N. mRNA Vaccine Against Mpox: A Promising Healthcare Strategy. Anim. Res. One Health 2025, 3, 177–180. [Google Scholar] [CrossRef]
- Wang, X.; Gu, Z.; Sheng, S.; Song, R.; Jin, R. The current state and progress of mpox vaccine research. China CDC Wkly. 2024, 6, 118–125. [Google Scholar] [CrossRef]
- Valdes, I.; Suzarte, E.; Lazo, L.; Cobas, K.; Cabrales, A.; Pérez, Y.; Garateix, R.; Silva, J.A.; Aguilar, J.C.; Guzman, C.A. Addition of nucleotide adjuvants enhances the immunogenicity of a recombinant subunit vaccine against the Zika virus in BALB/c mice. Vaccine 2024, 42, 126213. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Pan, S.; Huang, B.; Zhang, J.; Yang, Z.; Cong, Z.; Ma, J.; Qiu, S.; Liu, Y.; Zhang, J.; et al. Tiantan vaccinia virus-based vaccine with promising safety provides sustained protection against mpox in non-human primates. Nat. Commun. 2025, 16, 7183. [Google Scholar] [CrossRef] [PubMed]
- Bravo-Vázquez, L.A.; Bernal-Vázquez, D.; Duttaroy, A.K.; Paul, S. Current status of next-generation vaccines against mpox virus: A scoping review. Front. Pharmacol. 2025, 16, 1533533. [Google Scholar] [CrossRef]
- Heidary, M.; Kaviar, V.H.; Shirani, M.; Ghanavati, R.; Motahar, M.; Sholeh, M.; Ghahramanpour, H.; Khoshnood, S. A comprehensive review of the protein subunit vaccines against COVID-19. Front. Microbiol. 2022, 13, 927306. [Google Scholar] [CrossRef] [PubMed]
- Sandoval, C.; Guerrero, D.; Muñoz, J.; Godoy, K.; Souza-Mello, V.; Farías, J. Effectiveness of mRNA, protein subunit vaccine and viral vectors vaccines against SARS-CoV-2 in people over 18 years old: A systematic review. Expert Rev. Vaccines 2023, 22, 35–53. [Google Scholar] [CrossRef]
- Kumar, A.; Ahmad, F.; Sah, B.K.; Ajabali, A.A.; Mishra, Y.; Bafna, V. Advancements in viral vaccine approaches: mRNA vaccines (e.g., mRNA-1769, BNT166) facilitate the prevention and control of infectious diseases. Explor. Immunol. 2025, 5, 1003203. [Google Scholar] [CrossRef]
- Goswami, T.K.; Joardar, S.N. Are We Sure that Drug Can Cure or the Vaccine is Genuine to Restrain Mpox to be Benign: A Brief Review. Acta Sci. Med. Sci. 2025, 9, 1. [Google Scholar] [CrossRef]
- Bedi, R.; Bayless, N.L.; Glanville, J. Challenges and progress in designing broad-spectrum vaccines against rapidly mutating viruses. Annu. Rev. Biomed. Data Sci. 2023, 6, 419–441. [Google Scholar] [CrossRef]
- Nave, L.; Margalit, I.; Tau, N.; Cohen, I.; Yelin, D.; Lienert, F.; Yahav, D. Immunogenicity and Safety of Modified Vaccinia Ankara (MVA) Vaccine-A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Vaccines 2023, 11, 1410. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Pellett, S. Recent developments in vaccine design: From live vaccines to recombinant toxin vaccines. Toxins 2023, 15, 563. [Google Scholar] [CrossRef]
- Lamptey, E.; Senkyire, E.K.; Benita, D.A.; Boakye, E.O. COVID-19 vaccines development in Africa: A review of current situation and existing challenges of vaccine production. Clin. Exp. Vaccine Res. 2022, 11, 82. [Google Scholar] [CrossRef] [PubMed]
- Suri, R.K.; Marini, A. Accelerating sustainable regional vaccine manufacturing through global partnerships–24th DCVMN Annual General meeting 2023 report. Vaccine X 2024, 19, 100504. [Google Scholar] [CrossRef]
- de Bengy Puyvallée, A.; Storeng, K.T. COVAX, vaccine donations and the politics of global vaccine inequity. Glob. Health 2022, 18, 26. [Google Scholar] [CrossRef] [PubMed]
- Doua, J.; Ndembi, N.; Auerbach, J.; Kaseya, J.; Zumla, A. Advancing local manufacturing capacities for vaccines within Africa–Opportunities, priorities and challenges. Vaccine 2025, 50, 126829. [Google Scholar] [CrossRef]
- Oladipo, E.K.; Olufemi, S.E.; Ojo, T.O.; Adediran, D.A.; Idowu, A.F.; Idowu, U.A.; Onyeaka, H. Africa (COVID-19) Vaccine Technology Transfer: Where Are We? Life 2023, 13, 1886. [Google Scholar] [CrossRef]
- Pauwels, E.; Tilmes, K. The Artificial Intelligence—Biotech Revolution in Africa. In Africa–Europe Cooperation and Digital Transformation; Routledge: Abingdon, UK, 2022; pp. 50–65. [Google Scholar]
- Buckland, B.; Sanyal, G.; Ranheim, T.; Pollard, D.; Searles, J.A.; Behrens, S.; Pluschkell, S.; Josefsberg, J.; Roberts, C.J. Vaccine process technology—A decade of progress. Biotechnol. Bioeng. 2024, 121, 2604–2635. [Google Scholar] [CrossRef]
- Tondel, F.; Apiko, P.; Koyier, M. A Partnership in Progress: Africa and the EU Strive for Global Health and Equitable Access; ECPDM Discussion Paper No. 367; ECDPM: Maastricht, The Netherlands, 2024. [Google Scholar]
- Nkwain, J.; Zambou, V.M.; Nchinjoh, S.C.; Agbor, V.N.; Adidja, A.; Mbanga, C.; Edwidge, N.N.; Ndoula, S.T.; Ateke Njoh, A.; Diack, D. Deployment of vaccine cold chain equipment in resource-limited settings: Lessons from the Gavi Cold Chain Optimization Platform in Cameroon. Int. Health 2025, 17, 33–40. [Google Scholar] [CrossRef]
- Banjar, W.M.; Alaqeel, M.K. Monkeypox stigma and risk communication; understanding the dilemma. J. Infect. Public Health 2024, 17, 4–7. [Google Scholar] [CrossRef] [PubMed]
- See, K.C. Vaccination for monkeypox virus infection in humans: A review of key considerations. Vaccines 2022, 10, 1342. [Google Scholar] [CrossRef] [PubMed]
- Jadhav, V.; Paul, A.; Trivedi, V.; Bhatnagar, R.; Bhalsinge, R.; Jadhav, S.V. Global epidemiology, viral evolution, and public health responses: A systematic review on Mpox (1958–2024). J. Glob. Health 2025, 15, 04061. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Multi-Country Outbreak of Mpox (Monkeypox); World Health Organization: Geneva, Switzerland, 2024. [Google Scholar]
- McQuiston, J.H.; McCollum, A.; Christie, A.; Torres, F.; Mermin, J.; Jernigan, D.B.; Hutson, C.L. The Rise of Mpox in a Post-Smallpox World. Emerg. Infect. Dis. 2025, 31, 27. [Google Scholar] [CrossRef]
- Bertran, M.; Andrews, N.; Davison, C.; Dugbazah, B.; Boateng, J.; Lunt, R.; Hardstaff, J.; Green, M.; Blomquist, P.; Turner, C.; et al. Effectiveness of one dose of MVA–BN smallpox vaccine against mpox in England using the case-coverage method: An observational study. Lancet Infect. Dis. 2023, 23, 828–835. [Google Scholar] [CrossRef] [PubMed]
- Montero Morales, L.; Barbas Del Buey, J.F.; Alonso García, M.; Cenamor Largo, N.; Nieto Juliá, A.; Vázquez Torres, M.C.; Jiménez Bueno, S.; Aragón Peña, A.; Gil Montalbán, E.; Íñigo Martínez, J.; et al. Post-exposure vaccine effectiveness and contact management in the mpox outbreak, Madrid, Spain, May to August 2022. Eurosurveillance 2023, 28, 2200883. [Google Scholar] [CrossRef]
- Gruber, M.F. Current status of monkeypox vaccines. Npj Vaccines 2022, 7, 94. [Google Scholar] [CrossRef]
- Rao, A.K.; Petersen, B.W.; Whitehill, F.; Razeq, J.H.; Isaacs, S.N.; Merchlinsky, M.J.; Campos-Outcalt, D.; Morgan, R.L.; Damon, I.; Sánchez, P.J.; et al. Use of JYNNEOS (Smallpox and Monkeypox Vaccine, Live, Nonreplicating) for Preexposure Vaccination of Persons at Risk for Occupational Exposure to Orthopoxviruses: Recommendations of the Advisory Committee on Immunization Practices—United States, 2022. MMWR Morb. Mortal. Wkly. Rep. 2022, 71, 734–742. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, K.; Zhou, H. Immunogenic proteins and potential delivery platforms for mpox virus vaccine development: A rapid review. Int. J. Biol. Macromol. 2023, 245, 125515. [Google Scholar] [CrossRef]
- Martínez-Fernández, D.E.; Fernández-Quezada, D.; Casillas-Muñoz, F.A.G.; Carrillo-Ballesteros, F.J.; Ortega-Prieto, A.M.; Jimenez-Guardeño, J.M.; Regla-Nava, J.A. Human Monkeypox: A comprehensive overview of epidemiology, pathogenesis, diagnosis, treatment, and prevention strategies. Pathogens 2023, 12, 947. [Google Scholar] [CrossRef]
- Fang, Z.; Monteiro, V.S.; Renauer, P.A.; Shang, X.; Suzuki, K.; Ling, X.; Bai, M.; Xiang, Y.; Levchenko, A.; Booth, C.J.; et al. Polyvalent mRNA vaccination elicited potent immune response to monkeypox virus surface antigens. Cell Res. 2023, 33, 407–410. [Google Scholar] [CrossRef]
- Xiao, Y.; Aldaz-Carroll, L.; Ortiz, A.M.; Whitbeck, J.C.; Alexander, E.; Lou, H.; Davis, H.L.; Braciale, T.J.; Eisenberg, R.J.; Cohen, G.H.; et al. A protein-based smallpox vaccine protects mice from vaccinia and ectromelia virus challenges when given as a prime and single boost. Vaccine 2007, 25, 1214–1224. [Google Scholar] [CrossRef]
- World Health Organization. Strategic Framework for Enhancing Prevention and Control of Mpox 2024–2027; World Health Organization: Geneva, Switzerland, 2024. [Google Scholar]
- Mucker, E.M.; Golden, J.M.; Hammerbeck, C.D.; Kishimori, J.M.; Royals, M.; Joselyn, M.D.; Ballantyne, J.; Nalca, A.; Hooper, J.W. A Nucleic Acid-Based Orthopoxvirus Vaccine Targeting the Vaccinia Virus L1, A27, B5, and A33 Proteins Protects Rabbits against Lethal Rabbitpox Virus Aerosol Challenge. J. Virol. 2022, 96, e01504–e01521. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, M.G.; Damon, I.K. Outbreaks of human monkeypox after cessation of smallpox vaccination. Trends Microbiol. 2012, 20, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Halder, S.K.; Sultana, A.; Himel, M.K.; Shil, A. Monkeypox: Origin, Transmission, Clinical Manifestations, Prevention, and Therapeutic Options. Interdiscip. Perspect. Infect. Dis. 2025, 2025, 2522741. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Hai, M.; Guo, Z.; Wang, J.; Li, Y.; Gao, W. Evolving Threats: Adaptive Mechanisms of Monkeypox Virus (MPXV) in the 2022 Global Outbreak and Their Implications for Vaccine Strategies. Viruses 2025, 17, 1194. https://doi.org/10.3390/v17091194
Wang Y, Hai M, Guo Z, Wang J, Li Y, Gao W. Evolving Threats: Adaptive Mechanisms of Monkeypox Virus (MPXV) in the 2022 Global Outbreak and Their Implications for Vaccine Strategies. Viruses. 2025; 17(9):1194. https://doi.org/10.3390/v17091194
Chicago/Turabian StyleWang, Yuanwen, Meimei Hai, Zijie Guo, Junbo Wang, Yong Li, and Weifeng Gao. 2025. "Evolving Threats: Adaptive Mechanisms of Monkeypox Virus (MPXV) in the 2022 Global Outbreak and Their Implications for Vaccine Strategies" Viruses 17, no. 9: 1194. https://doi.org/10.3390/v17091194
APA StyleWang, Y., Hai, M., Guo, Z., Wang, J., Li, Y., & Gao, W. (2025). Evolving Threats: Adaptive Mechanisms of Monkeypox Virus (MPXV) in the 2022 Global Outbreak and Their Implications for Vaccine Strategies. Viruses, 17(9), 1194. https://doi.org/10.3390/v17091194