Interplay Between Bacterial Extracellular Vesicles and Phages: Receptors, Mechanisms, and Implications
Abstract
1. Introduction
Vesicle Type | Producing Microorganisms | Biogenesis | Composition | Known Functions | References |
---|---|---|---|---|---|
OMVs (Outer-Membrane Vesicles) | Gram (−) bacteria (e.g., P. aeruginosa and E. coli) | Outer membrane blebbing; reduced OM-PG linkages; periplasmic pressure; LPS charge repulsion; hydrophobic insertion | Outer membrane lipids (LPS), outer membrane proteins, periplasmic proteins; typically no cytosolic content; DNA (chromosomal and plasmid) and small RNAs; metabolites | Virulence factor delivery; immune modulation; antibiotic resistance; biofilm formation; communication; innate defense blockers via sequestration of antimicrobial peptides; decoys for bacteriophages; horizontal gene transfer; metabolite delivery | [5,7,10,37] |
OIMVs (Outer-Inner-Membrane Vesicles) | Gram (−) bacteria (e.g., Shewanella vesiculosa) | Inner-membrane protrusion through weakened PG (autolysins, damage); sometimes linked to cell lysis | Outer and inner membranes, periplasmic and cytoplasmic content (DNA and RNA) | DNA transfer; horizontal gene transfer; immune interactions | [7,10] |
EOMVs (Explosive Outer-Membrane Vesicles) | Gram (−) bacteria (e.g., P. aeruginosa) | Explosive cell lysis (phage-derived endolysin activation and genotoxic stress) | Outer-membrane lipids (LPS and phospholipids); outer-membrane proteins; periplasmic enzymes; occasional cytosolic hydrolases | Extracellular DNA release supporting biofilm matrix assembly and horizontal gene transfer; dispersal of cytosolic “public goods” (e.g., degradative enzymes); generation of vesicle heterogeneity in terms of sizes and composition | [38,39] |
EOIMV (Explosive Outer-Inner-Membrane Vesicles) | Gram (−) bacteria (e.g., P. aeruginosa and Shewanella vesiculosa M7T) | Phage-encoded endolysin- or native autolysin-mediated explosive cell lysis shatters the envelope; inner- and outer-membrane fragments self-anneal into double-bilayer vesicles | Outer-membrane lipids and proteins; inner-membrane lipids and proteins; entrapped cytoplasmic cargo (genomic DNA; soluble enzymes including phage endolysins and autolysins) | Extracellular DNA release for biofilm matrix assembly and horizontal gene transfer; disperse cytosolic “public goods” (e.g., degradative enzymes); generation of vesicle heterogeneity (single- vs. double-bilayer structures) | [38,39] |
CMVs (Cytoplasmic Membrane Vesicles) | Gram (+) bacteria (e.g., B. subtilis, S. aureus, Streptococcus pyogenes) | Bubbling cell death (endolysin/autolysin-mediated PG perforation) or blebbing (e.g., via phenol-soluble modulins) | Cytoplasmic membrane, cytosolic proteins, DNA, RNA, secreted proteins | Virulence; immune modulation; communication; decoys for bacteriophages, biofilm formation; horizontal gene transfer | [7,9,10,40,41] |
ECMVs (Explosive Cytoplasmic Membrane Vesicles) | Gram (+) bacteria (e.g., B. subtilis and L. casei) | Bubbling cell death with extended membrane damage; often prophage-triggered | Cytoplasmic membrane fragments, cytosolic proteins, DNA, endolysins | Similar functions to CMVs; delivery of intracellular virulence factors and toxins; modulation of host immune responses via cytosolic antigen presentation; facilitation of interbacterial communication and biofilm maturation; horizontal gene transfer via vesicle-associated nucleic acids | [7,9] |
mMVs (Mycomembrane Vesicles) | Mycolic acid-containing bacteria (e.g., Corynebacterium and Mycobacterium) | Mycomembrane blebbing during envelope stress (e.g., penicillin G and biotin depletion) | Mycomembrane lipids (mycolic acids) and surface proteins | Iron acquisition via vesicle-associated siderophores (only in Mycobacterium) | [8,42] |
IMVs (Inner-Membrane Vesicles) | Mycolic acid-containing bacteria (e.g., Mycobacterium tuberculosis) | Budding from the live cell’s cytoplasmic membrane | Inner-membrane lipids (phosphatidylinositol, phosphatidylethanolamine, cardiolipin), lipoglycan LAM, major lipoproteins (LpqH, LprG), and IM proteins | Delivery of antigenic lipoproteins and LAM to host cells; potently modulating innate immune responses | [43] |
MycoplasmaEVs | Mycoplasma spp. | Budding from plasma membrane of living cells; stress-induced | Cytoplasmic membrane lipids, membrane proteins, DNA, RNA | Host cell penetration; proteome modulation; immune stimulation; vesiduction (horizontal gene transfer via vesicles) | [44,45,46] |
ChlamydiaEVs | Chlamydia trachomatis, C. psittaci, C. pneumoniae | Eversion (budding) of the inclusion membrane forming inclusion membrane-derived vesicles; increased production under stress conditions (e.g., antibiotics, IFN-γ, nutrient deprivation) | Inclusion membrane lipids, outer-membrane proteins, bacterial antigens | Early release of chlamydial antigens into host cytosol and extracellular space; modulation of host innate immunity; promotion of pro-inflammatory signaling and persistent infection; upregulated vesicle shedding under intracellular stress; | [47,48,49] |
2. Phage Receptors on Bacterial Extracellular Vesicles
2.1. Phage Receptors in Gram (+) Bacteria and Their Membrane Vesicles (MVs)
2.2. Phage Receptors in Gram (−) Bacteria and Their Outer-Membrane Vesicles (OMVs)
2.3. Phage Receptors in Atypical Bacteria
3. Bacterial Resistance to Phage Infection
Bacteria | Phage | Receptor Recognized by Phage | Reference |
---|---|---|---|
Gram (−) non-encapsulated | T4 (Escherichia virus T4; Tequatrovirus T4) morphotype: myovirus | LPS (inner-core heptose and lipid A)—primary receptor for initial tethering OmpC porin—secondary receptor responsible for irreversible docking to the cell followed by DNA ejection | [57,101] |
λ (Lambda) (Escherichia virus Lambda; Lambdavirus lambda) morphotype: siphovirus | LamB maltoporin—essential receptor for adsorption | [102] | |
DLP1 (Stenotrophomonas phage vB_SmaS-DLP_1; Septimatrevirus DLP1) morphotype: siphovirus | Type IV pili (PilA)—essential receptor | [103] | |
χ (Chi) (Salmonella virus Chi; Chivirus chi) morphotype: siphovirus | Flagella FLiC filament—part of receptor for reversible adsorption Flagella FLiC base—part of receptor for irreversible adsorption and DNA injection | [104] | |
Clew-1 (Pseudomonas virus Clew-1) morphotype: podovirus | Psl from EPS—essential receptor | [105] | |
Gram (−) encapsulated | K1-5 (Escherichia virus K1-5; Vectrevirus K15) morphotype: podovirus | CPS (α-2,8-linked polysialic acid capsule K1)—primary receptor for initial anchoring LPS inner core heptose—secondary irreversible receptor that drives DNA injection | [106,107] |
GH-K3 (Klebsiella virus GH-K3; Webervirus GHK3) morphotype: siphovirus | CPS—primary receptor for initial binding OmpC porin—secondary irreversible receptor that drives DNA injection | [108,109] | |
MDAΦ (Neisseria virus MDAΦ) morphotype: filamentary | Type IV pili (PilE)—essential receptor for adsorption | [81] | |
F341 (Campylobacter virus F341; Fletchervirus F341) morphotype: myovirus | Flagella FlaA/B filament—part of receptor for reversible adsorption LOS core sugars—serve as a secondary receptor for irreversible engagement | [110] | |
PNJ1809-36 (Escherichia virus PNJ1809-36) morphotype: myovirus | CPS (α-2,8-linked polysialic acid capsule K1)—primary receptor for initial anchoring LPS outer core galactose—secondary irreversible receptor that drives DNA injection | [111] | |
Gram (+) non-encapsulated | LL-H (Lactobacillus delbrueckii subsp. lactis virus LL-H) morphotype: siphovirus | Lipoteichoic acid (D-alanine and α-glucosyl modifications)—essential receptor | [62] |
Φ11 (Staphylococcus virus Φ11) morphotype: siphovirus | Wall teichoic acid (polyribitol-phosphate backbone with α-GlcNAc substitutions)—essential receptor for phage adsorption and DNA injection | [112,113] | |
PBS1 (Bacillus virus PBS1; Takahashivirus PBS1) morphotype: myovirus | Flagella FliC filament—essential receptor for initial step of infection | [63] | |
SPP1 (Bacillus virus SPP1; Rivavirus SPP1) morphotype: siphovirus | Wall teichoic acid (glucosylated)—primary receptor for reversible step Cytoplasmic membrane protein YueB—secondary receptor for irreversible adsorption and genome entry | [114] | |
ϕCD38-2 (Clostridioides virus ϕCD38-2; Leicestervirus CD382) morphotype: siphovirus | S-layer protein A (SlpA)—essential receptor for adsorption | [73] | |
Gram (+) encapsulated | Dp-1 (Streptococcus virus Dp-1) morphotype: siphovirus | Wall teichoic acid enriched in choline—essential receptor for initial step of infection and DNA injection | [115] |
A118 (Listeria virus A118) morphotype: siphovirus | Serovar-specific wall teichoic acid glycosylated by, e.g., N-acetylglucosamine, rhamnose—essential receptor for phage adsorption | [116] | |
CPS1 (Clostridium virus CPS1; Gregsiragusavirus CPS1) morphotype: podovirus | Capsular polysaccharides (CPSs)—essential receptor for adsorption | [70] |
4. Bacterial Extracellular Vesicles—Dual Roles in Protection Against and Sensitization to Phage Infection
4.1. Bacterial Vesicles as Decoys During Phage Infection
4.2. Bacterial Vesicles as Tools for Sensitization to Phage Infection
5. Effect of Phage Infection on the Production of Classical Bacterial Extracellular Vesicles
5.1. Impact of Phages on the Vesicle Number
5.2. Impact of Phages on Vesicle Content
6. Effect of Phage Infection on the Production of Membrane Vesicles by Atypical Bacteria
7. Bacterial Vesicle–Phage Interactions in Different Ecosystems
7.1. Fermentation Starter Ecosystem
7.2. Marine Ecosystem
7.3. From Orally Consumed Probiotics
8. Other Bacterial Vesicle–Phage Interactions
8.1. Bacterial Extracellular Vesicles as Biofilm Generators
8.2. Indirect Immunomodulatory Action of OMVs with Phages
8.3. Bacterial Vesicles as a Screening Tool for Phage Specificity
8.4. Bacterial Vesicles as a Potential Tool in Phage Therapy
9. Conclusions and Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Trivedi, A.; Gosai, J.; Nakane, D.; Shrivastava, A. Design Principles of the Rotary Type 9 Secretion System. Front. Microbiol. 2022, 13, 845563. [Google Scholar] [CrossRef]
- Guerrero-Mandujano, A.; Hernández-Cortez, C.; Ibarra, J.A.; Castro-Escarpulli, G. The Outer Membrane Vesicles: Secretion System Type Zero. Traffic 2017, 18, 425–432. [Google Scholar] [CrossRef]
- Li, C.; Zhu, L.; Wang, D.; Wei, Z.; Hao, X.; Wang, Z.; Li, T.; Zhang, L.; Lu, Z.; Long, M.; et al. T6SS Secretes an LPS-Binding Effector to Recruit OMVs for Exploitative Competition and Horizontal Gene Transfer. ISME J. 2022, 16, 500–510. [Google Scholar] [CrossRef]
- Gill, S.; Catchpole, R.; Forterre, P. Extracellular Membrane Vesicles in the Three Domains of Life and Beyond. FEMS Microbiol. Rev. 2019, 43, 273–303. [Google Scholar] [CrossRef] [PubMed]
- Ñahui Palomino, R.A.; Vanpouille, C.; Costantini, P.E.; Margolis, L. Microbiota–Host Communications: Bacterial Extracellular Vesicles as a Common Language. PLoS Pathog. 2021, 17, e1009508. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.J.; Wang, X.H.; Fan, G.C. Versatile Effects of Bacterium-Released Membrane Vesicles on Mammalian Cells and Infectious/Inflammatory Diseases. Acta Pharmacol. Sin. 2018, 39, 514–533. [Google Scholar] [CrossRef]
- Toyofuku, M.; Schild, S.; Kaparakis-Liaskos, M.; Eberl, L. Composition and Functions of Bacterial Membrane Vesicles. Nat. Rev. Microbiol. 2023, 21, 415–430. [Google Scholar] [CrossRef]
- Nagakubo, T.; Tahara, Y.O.; Miyata, M.; Nomura, N.; Toyofuku, M. Mycolic Acid-Containing Bacteria Trigger Distinct Types of Membrane Vesicles through Different Routes. iScience 2021, 24, 102015. [Google Scholar] [CrossRef]
- Brown, L.; Wolf, J.M.; Prados-Rosales, R.; Casadevall, A. Through the Wall: Extracellular Vesicles in Gram-Positive Bacteria, Mycobacteria and Fungi. Nat. Rev. Microbiol. 2015, 13, 620–630. [Google Scholar] [CrossRef]
- Toyofuku, M.; Nomura, N.; Eberl, L. Types and Origins of Bacterial Membrane Vesicles. Nat. Rev. Microbiol. 2019, 17, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Cecil, J.D.; Sirisaengtaksin, N.; O’brien-Simpson, N.M.; Krachler, A.M. Outer Membrane Vesicle-Host Cell Interactions. Protein Secret. Bact. 2019, 7, 201–214. [Google Scholar] [CrossRef]
- Lynch, J.B.; Alegado, R.A. Spheres of Hope, Packets of Doom: The Good and Bad of Outer Membrane Vesicles in Interspecies and Ecological Dynamics. J. Bacteriol. 2017, 199, e00012-17. [Google Scholar] [CrossRef]
- Roszkowiak, J.; Jajor, P.; Guła, G.; Gubernator, J.; Żak, A.; Drulis-Kawa, Z.; Augustyniak, D. Interspecies Outer Membrane Vesicles (OMVs) Modulate the Sensitivity of Pathogenic Bacteria and Pathogenic Yeasts to Cationic Peptides and Serum Complement. Int. J. Mol. Sci. 2019, 20, 5577. [Google Scholar] [CrossRef]
- Seike, S.; Kobayashi, H.; Ueda, M.; Takahashi, E.; Okamoto, K.; Yamanaka, H. Outer Membrane Vesicles Released From Aeromonas Strains Are Involved in the Biofilm Formation. Front. Microbiol. 2021, 11, 613650. [Google Scholar] [CrossRef]
- Metruccio, M.M.E.; Evans, D.J.; Gabriel, M.M.; Kadurugamuwa, J.L.; Fleiszig, S.M.J. Pseudomonas aeruginosa Outer Membrane Vesicles Triggered by Human Mucosal Fluid and Lysozyme Can Prime Host Tissue Surfaces for Bacterial Adhesion. Front. Microbiol. 2016, 7, 871. [Google Scholar] [CrossRef]
- Macion, A.; Wyszyńska, A.; Godlewska, R. Delivery of Toxins and Effectors by Bacterial Membrane Vesicles. Toxins 2021, 13, 845. [Google Scholar] [CrossRef]
- Augustyniak, D.; Roszkowiak, J.; Wiśniewska, I.; Skała, J.; Gorczyca, D.; Drulis-Kawa, Z. Neuropeptides SP and CGRP Diminish the Moraxella catarrhalis Outer Membrane Vesicle- (OMV-) Triggered Inflammatory Response of Human A549 Epithelial Cells and Neutrophils. Mediat. Inflamm. 2018, 2018, 4847205. [Google Scholar] [CrossRef]
- Natsui, K.; Tsuchiya, A.; Imamiya, R.; Osada-Oka, M.; Ishii, Y.; Koseki, Y.; Takeda, N.; Tomiyoshi, K.; Yamazaki, F.; Yoshida, Y.; et al. Escherichia coli-Derived Outer-Membrane Vesicles Induce Immune Activation and Progression of Cirrhosis in Mice and Humans. Liver Int. 2023, 43, 1126–1140. [Google Scholar] [CrossRef]
- McCutcheon, C.R.; Gaddy, J.A.; Aronoff, D.M.; Manning, S.D.; Petroff, M.G. Group B Streptococcal Membrane Vesicles Induce Proinflammatory Cytokine Production and Are Sensed in an NLRP3 Inflammasome-Dependent Mechanism in a Human Macrophage-like Cell Line. ACS Infect. Dis. 2025, 11, 453–462. [Google Scholar] [CrossRef]
- Wang, X.; Li, H.; Wang, J.; Xu, H.; Xue, K.; Liu, X.; Zhang, Z.; Liu, J.; Liu, Y. Staphylococcus aureus Extracellular Vesicles Induce Apoptosis and Restrain Mitophagy-Mediated Degradation of Damaged Mitochondria. Microbiol. Res. 2023, 273, 127421. [Google Scholar] [CrossRef]
- Vdovikova, S.; Luhr, M.; Szalai, P.; Skalman, L.N.; Francis, M.K.; Lundmark, R.; Engedal, N.; Johansson, J.; Wai, S.N. A Novel Role of Listeria monocytogenes Membrane Vesicles in Inhibition of Autophagy and Cell Death. Front. Cell. Infect. Microbiol. 2017, 7, 154. [Google Scholar] [CrossRef] [PubMed]
- Tuipulotu, D.E.; Feng, S.; Pandey, A.; Zhao, A.; Ngo, C.; Mathur, A.; Lee, J.; Shen, C.; Fox, D.; Xue, Y.; et al. Immunity against Moraxella catarrhalis requires guanylate-binding proteins and caspase-11-NLRP3 inflammasomes. EMBO J. 2023, 42, e112558. [Google Scholar] [CrossRef] [PubMed]
- Mulcahy, L.A.; Pink, R.C.; Carter, D.R.F. Routes and Mechanisms of Extracellular Vesicle Uptake. J. Extracell. Vesicles 2014, 3, 24641. [Google Scholar] [CrossRef]
- Rehman, Z.U.; Obi, I.; Nadeem, A.; Tegtmeyer, N.; Backert, S.; Arnqvist, A. Bacterial Extracellular Vesicles Exploit Filopodial Surfing and Retraction Mechanisms to Reach the Host Cell Body in an Actin-Dependent Manner. J. Extracell. Vesicles 2025, 14, e70107. [Google Scholar] [CrossRef]
- Schaar, V.; Nordström, T.; Mörgelin, M.; Riesbeck, K. Moraxella catarrhalis Outer Membrane Vesicles Carry β-Lactamase and Promote Survival of Streptococcus pneumoniae and Haemophilus influenzae by Inactivating Amoxicillin. Antimicrob. Agents Chemother. 2011, 55, 3845–3853. [Google Scholar] [CrossRef]
- Kulkarni, H.M.; Nagaraj, R.; Jagannadham, M.V. Protective Role of E. coli Outer Membrane Vesicles against Antibiotics. Microbiol. Res. 2015, 181, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Uddin, M.J.; Dawan, J.; Jeon, G.; Yu, T.; He, X.; Ahn, J. The Role of Bacterial Membrane Vesicles in the Dissemination of Antibiotic Resistance and as Promising Carriers for Therapeutic Agent Delivery. Microorganisms 2020, 8, 670. [Google Scholar] [CrossRef]
- Zhang, X.; Qian, C.; Tang, M.; Zeng, W.; Kong, J.; Fu, C.; Xu, C.; Ye, J.; Zhou, T. Carbapenemase-Loaded Outer Membrane Vesicles Protect Pseudomonas aeruginosa by Degrading Imipenem and Promoting Mutation of Antimicrobial Resistance Gene. Drug Resist. Updat. 2023, 68, 100952. [Google Scholar] [CrossRef]
- Manning, A.J.; Kuehn, M.J. Contribution of Bacterial Outer Membrane Vesicles to Innate Bacterial Defense. BMC Microbiol. 2011, 11, 258. [Google Scholar] [CrossRef]
- Reyes-Robles, T.; Dillard, R.S.; Cairns, L.S.; Silva-Valenzuela, C.A.; Housman, M.; Ali, A.; Wright, E.R.; Camilli, A. Vibrio Cholerae Outer Membrane Vesicles Inhibit Bacteriophage Infection. J. Bacteriol. 2018, 200, e00792. [Google Scholar] [CrossRef]
- Augustyniak, D.; Olszak, T.; Drulis-Kawa, Z. Outer Membrane Vesicles (OMVs) of Pseudomonas aeruginosa Provide Passive Resistance but Not Sensitization to LPS-Specific Phages. Viruses 2022, 14, 121. [Google Scholar] [CrossRef] [PubMed]
- Rivera, J.; Cordero, R.J.B.; Nakouzi, A.S.; Frases, S.; Nicola, A.; Casadevall, A. Bacillus anthracis Produces Membrane-Derived Vesicles Containing Biologically Active Toxins. Proc. Natl. Acad. Sci. USA 2010, 107, 19002–19007. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.J.; Kim, M.H.; Jeon, J.; Kim, O.Y.; Choi, Y.; Seo, J.; Hong, S.W.; Lee, W.H.; Jeon, S.G.; Gho, Y.S.; et al. Active Immunization with Extracellular Vesicles Derived from Staphylococcus aureus Effectively Protects against Staphylococcal Lung Infections, Mainly via Th1 Cell-Mediated Immunity. PLoS ONE 2015, 10, e0136021. [Google Scholar] [CrossRef]
- Perez Vidakovics, M.L.A.; Jendholm, J.; Mörgelin, M.; Månsson, A.; Larsson, C.; Cardell, L.O.; Riesbeck, K. B Cell Activation by Outer Membrane Vesicles—A Novel Virulence Mechanism. PLoS Pathog. 2010, 6, e1000724. [Google Scholar] [CrossRef]
- Augustyniak, D.; Seredyński, R.; McClean, S.; Roszkowiak, J.; Roszniowski, B.; Smith, D.L.; Drulis-Kawa, Z.; MacKiewicz, P. Virulence Factors of Moraxella catarrhalis Outer Membrane Vesicles Are Major Targets for Cross-Reactive Antibodies and Have Adapted during Evolution. Sci. Rep. 2018, 8, 4955. [Google Scholar] [CrossRef]
- Codemo, M.; Muschiol, S.; Iovino, F.; Nannapaneni, P.; Plant, L.; Wai, S.N.; Henriques-Normark, B. Immunomodulatory Effects of Pneumococcal Extracellular Vesicles on Cellular and Humoral Host Defenses. MBio 2018, 9, e00559. [Google Scholar] [CrossRef] [PubMed]
- Schwechheimer, C.; Kuehn, M.J. Outer-Membrane Vesicles from Gram-Negative Bacteria: Biogenesis and Functions. Nat. Rev. Microbiol. 2015, 13, 139–148. [Google Scholar] [CrossRef]
- Baeza, N.; Delgado, L.; Comas, J.; Mercade, E. Phage-Mediated Explosive Cell Lysis Induces the Formation of a Different Type of O-IMV in Shewanella vesiculosa M7T. Front. Microbiol. 2021, 12, 713669. [Google Scholar] [CrossRef]
- Turnbull, L.; Toyofuku, M.; Hynen, A.L.; Kurosawa, M.; Pessi, G.; Petty, N.K.; Osvath, S.R.; Cárcamo-Oyarce, G.; Gloag, E.S.; Shimoni, R.; et al. Explosive Cell Lysis as a Mechanism for the Biogenesis of Bacterial Membrane Vesicles and Biofilms. Nat. Commun. 2016, 7, 11220. [Google Scholar] [CrossRef]
- Toyofuku, M.; Cárcamo-Oyarce, G.; Yamamoto, T.; Eisenstein, F.; Hsiao, C.C.; Kurosawa, M.; Gademann, K.; Pilhofer, M.; Nomura, N.; Eberl, L. Prophage-Triggered Membrane Vesicle Formation through Peptidoglycan Damage in Bacillus subtilis. Nat. Commun. 2017, 8, 481. [Google Scholar] [CrossRef] [PubMed]
- Beerens, D.; Franch-Arroyo, S.; Sullivan, T.J.; Goosmann, C.; Brinkmann, V.; Charpentier, E. Survival Strategies of Streptococcus Pyogenes in Response to Phage Infection. Viruses 2021, 13, 612. [Google Scholar] [CrossRef]
- Kawashima, K.; Nagakubo, T.; Nomura, N.; Toyofuku, M. Iron Delivery through Membrane Vesicles in Corynebacterium glutamicum. Microbiol. Spectr. 2023, 11, e01222-23. [Google Scholar] [CrossRef]
- Prados-Rosales, R.; Baena, A.; Martinez, L.R.; Luque-Garcia, J.; Kalscheuer, R.; Veeraraghavan, U.; Camara, C.; Nosanchuk, J.D.; Besra, G.S.; Chen, B.; et al. Mycobacteria Release Active Membrane Vesicles That Modulate Immune Responses in a TLR2-Dependent Manner in Mice. J. Clin. Investig. 2011, 121, 1471–1483. [Google Scholar] [CrossRef]
- Gaurivaud, P.; Ganter, S.; Villard, A.; Manso-Silvan, L.; Chevret, D.; Boulé, C.; Monnet, V.; Tardy, F. Mycoplasmas Are No Exception to Extracellular Vesicles Release: Revisiting Old Concepts. PLoS ONE 2018, 13, e0208160. [Google Scholar] [CrossRef] [PubMed]
- Mouzykantov, A.A.; Rozhina, E.V.; Fakhrullin, R.F.; Gomzikova, M.O.; Zolotykh, M.A.; Chernova, O.A.; Chernov, V.M. Extracellular Vesicles from Mycoplasmas Can Penetrate Eukaryotic Cells In Vitro and Modulate the Cellular Proteome. Acta Naturae 2021, 13, 82–88. [Google Scholar] [CrossRef]
- Wagner, T.M.; Torres-Puig, S.; Yimthin, T.; Irobalieva, R.N.; Heller, M.; Kaessmeyer, S.; Démoulins, T.; Jores, J. Extracellular Vesicles of Minimalistic Mollicutes as Mediators of Immune Modulation and Horizontal Gene Transfer. Commun. Biol. 2025, 8, 674. [Google Scholar] [CrossRef] [PubMed]
- Elwell, C.; Mirrashidi, K.; Engel, J. Chlamydia Cell Biology and Pathogenesis. Nat. Rev. Microbiol. 2016, 14, 385–400. [Google Scholar] [CrossRef] [PubMed]
- Frohlich, K.M.; Hua, Z.; Quayle, A.J.; Wang, J.; Lewis, M.E.; Chou, C.W.; Luo, M.; Buckner, L.R.; Shen, L. Membrane Vesicle Production by Chlamydia trachomatis as an Adaptive Response. Front. Cell. Infect. Microbiol. 2014, 4, 73. [Google Scholar] [CrossRef]
- Giles, D.K.; Whittimore, J.D.; LaRue, R.W.; Raulston, J.E.; Wyrick, P.B. Ultrastructural Analysis of Chlamydial Antigen-Containing Vesicles Everting from the Chlamydia trachomatis Inclusion. Microbes Infect. 2006, 8, 1579–1591. [Google Scholar] [CrossRef]
- Olszak, T.; Latka, A.; Roszniowski, B.; Valvano, M.A.; Drulis-Kawa, Z. Phage Life Cycles Behind Bacterial Biodiversity. Curr. Med. Chem. 2017, 24, 3987–4001. [Google Scholar] [CrossRef]
- Dicks, L.M.T.; Vermeulen, W. Bacteriophage–Host Interactions and the Therapeutic Potential of Bacteriophages. Viruses 2024, 16, 478. [Google Scholar] [CrossRef]
- Klumpp, J.; Dunne, M.; Loessner, M.J. A Perfect Fit: Bacteriophage Receptor-Binding Proteins for Diagnostic and Therapeutic Applications. Curr. Opin. Microbiol. 2023, 71, 102240. [Google Scholar] [CrossRef]
- Danis-Wlodarczyk, K.; Olszak, T.; Arabski, M.; Wasik, S.; Majkowska-Skrobek, G.; Augustyniak, D.; Gula, G.; Briers, Y.; Bin Jang, H.; Vandenheuvel, D.; et al. Characterization of the Newly Isolated Lytic Bacteriophages KTN6 and KT28 and Their Efficacy against Pseudomonas aeruginosa Biofilm. PLoS ONE 2015, 10, e0127603. [Google Scholar] [CrossRef]
- Subramanian, S.; Dover, J.A.; Parent, K.N.; Doore, S.M. Host Range Expansion of Shigella Phage Sf6 Evolves through Point Mutations in the Tailspike. J. Virol. 2022, 96, e00929-22. [Google Scholar] [CrossRef] [PubMed]
- Garciadoval, C.; Castón, J.R.; Luque, D.; Granell, M.; Otero, J.M.; Llamas-Saiz, A.L.; Renouard, M.; Boulanger, P.; van Raaij, M.J. Structure of the Receptor-Binding Carboxy-Terminal Domain of the Bacteriophage T5 L-Shaped Tail Fibre with and without Its Intra-Molecular Chaperone. Viruses 2015, 7, 6424–6440. [Google Scholar] [CrossRef] [PubMed]
- Degroux, S.; Effantin, G.; Linares, R.; Schoehn, G.; Breyton, C. Deciphering Bacteriophage T5 Host Recognition Mechanism and Infection Trigger. J. Virol. 2023, 97, e01584-22. [Google Scholar] [CrossRef]
- Washizaki, A.; Yonesaki, T.; Otsuka, Y. Characterization of the Interactions between Escherichia coli Receptors, LPS and OmpC, and Bacteriophage T4 Long Tail Fibers. Microbiologyopen 2016, 5, 1003–1015. [Google Scholar] [CrossRef]
- Montag, D.; Riede, I.; Eschbach, M.L.; Degen, M.; Henning, U. Receptor-Recognizing Proteins of T-Even Type Bacteriophages. Constant and Hypervariable Regions and an Unusual Case of Evolution. J. Mol. Biol. 1987, 196, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Lin, H. Characterization and Function of Membrane Vesicles in Gram-Positive Bacteria. Appl. Microbiol. Biotechnol. 2021, 105, 1795–1801. [Google Scholar] [CrossRef]
- Leprince, A.; Mahillon, J. Phage Adsorption to Gram-Positive Bacteria. Viruses 2023, 15, 196. [Google Scholar] [CrossRef]
- Xia, G.; Kohler, T.; Peschel, A. The Wall Teichoic Acid and Lipoteichoic Acid Polymers of Staphylococcus aureus. Int. J. Med. Microbiol. 2010, 300, 148–154. [Google Scholar] [CrossRef]
- Räisänen, L.; Draing, C.; Pfitzenmaier, M.; Schubert, K.; Jaakonsaari, T.; Von Aulock, S.; Hartung, T.; Alatossava, T. Molecular Interaction between Lipoteichoic Acids and Lactobacillus delbrueckii Phages Depends on D-Alanyl and α-Glucose Substitution of Poly(Glycerophosphate) Backbones. J. Bacteriol. 2007, 189, 4135–4140. [Google Scholar] [CrossRef]
- Raimondo, L.M.; Lundh, N.P.; Martinez, R.J. Primary Adsorption Site of Phage PBS1: The Flagellum of Bacillus subtilis. J. Virol. 1968, 2, 256–264. [Google Scholar] [CrossRef] [PubMed]
- Takumi, K.; Takeoka, A.; Kinouchi, T.; Kawata, T. Solubilization and Partial Properties of Receptor Substance for Bacteriophage Alpha2 Induced from Clostricium botulinum Type A 190L. Microbiol. Immunol. 1985, 29, 1185–1195. [Google Scholar] [CrossRef] [PubMed]
- Melville, S.; Craig, L. Type IV Pili in Gram-Positive Bacteria. Microbiol. Mol. Biol. Rev. 2013, 77, 323–341. [Google Scholar] [CrossRef]
- Davison, S.; Couture-Tosi, E.; Candela, T.; Mock, M.; Fouet, A. Identification of the Bacillus anthracis γ Phage Receptor. J. Bacteriol. 2005, 187, 6742–6749. [Google Scholar] [CrossRef]
- São-José, C.; Baptista, C.; Santos, M.A. Bacillus subtilis Operon Encoding a Membrane Receptor for Bacteriophage SPP1. J. Bacteriol. 2004, 186, 8337–8346. [Google Scholar] [CrossRef]
- Uppu, D.S.S.M.; Wang, X.; Lee, J.C. Contribution of Extracellular Membrane Vesicles To the Secretome of Staphylococcus aureus. MBio 2023, 14, e0357122. [Google Scholar] [CrossRef] [PubMed]
- Shibata, Y.; Yamashita, Y.; Van Der Ploeg, J.R. The Serotype-Specific Glucose Side Chain of Rhamnose-Glucose Polysaccharides Is Essential for Adsorption of Bacteriophage M102 to Streptococcus mutans. FEMS Microbiol. Lett. 2009, 294, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Ha, E.; Chun, J.; Kim, M.; Ryu, S. Capsular Polysaccharide Is a Receptor of a Clostridium perfringens Bacteriophage CPS1. Viruses 2019, 11, 1002. [Google Scholar] [CrossRef]
- Wakinaka, T.; Matsutani, M.; Watanabe, J.; Mogi, Y.; Tokuoka, M.; Ohnishi, A. Identification of Capsular Polysaccharide Synthesis Loci Determining Bacteriophage Susceptibility in Tetragenococcus halophilus. Microbiol. Spectr. 2023, 11, e0038523. [Google Scholar] [CrossRef] [PubMed]
- McDonnell, B.; Hanemaaijer, L.; Bottacini, F.; Kelleher, P.; Lavelle, K.; Sadovskaya, I.; Vinogradov, E.; Ver Loren van Themaat, E.; Kouwen, T.; Mahony, J.; et al. A Cell Wall-Associated Polysaccharide Is Required for Bacteriophage Adsorption to the Streptococcus thermophilus Cell Surface. Mol. Microbiol. 2020, 114, 31–45. [Google Scholar] [CrossRef] [PubMed]
- Royer, A.L.M.; Umansky, A.A.; Allen, M.-M.; Garneau, J.R.; Ospina-Bedoya, M.; Kirk, J.A.; Govoni, G.; Fagan, R.P.; Soutourina, O.; Fortier, L.-C. Clostridioides difficile S-Layer Protein A (SlpA) Serves as a General Phage Receptor. Microbiol. Spectr. 2023, 11, e0389422. [Google Scholar] [CrossRef]
- Parent, K.N.; Erb, M.L.; Cardone, G.; Nguyen, K.; Gilcrease, E.B.; Porcek, N.B.; Pogliano, J.; Baker, T.S.; Casjens, S.R. OmpA and OmpC Are Critical Host Factors for Bacteriophage Sf6 Entry in Shigella. Mol. Microbiol. 2014, 92, 47–60. [Google Scholar] [CrossRef]
- Seed, K.D.; Yen, M.; Jesse Shapiro, B.; Hilaire, I.J.; Charles, R.C.; Teng, J.E.; Ivers, L.C.; Boncy, J.; Harris, J.B.; Camilli, A. Evolutionary Consequences of Intra-Patient Phage Predation on Microbial Populations. Elife 2014, 3, e03497. [Google Scholar] [CrossRef] [PubMed]
- Flayhan, A.; Wien, F.; Paternostre, M.; Boulanger, P.; Breyton, C. New Insights into Pb5, the Receptor Binding Protein of Bacteriophage T5, and Its Interaction with Its Escherichia coli Receptor FhuA. Biochimie 2012, 94, 1982–1989. [Google Scholar] [CrossRef]
- Tamer, Y.T.; Gaszek, I.; Rodrigues, M.; Coskun, F.S.; Farid, M.; Koh, A.Y.; Russ, W.; Toprak, E. The Antibiotic Efflux Protein TolC Is a Highly Evolvable Target under Colicin E1 or TLS Phage Selection. Mol. Biol. Evol. 2021, 38, 4493–4504. [Google Scholar] [CrossRef]
- Thoma, J.; Manioglu, S.; Kalbermatter, D.; Bosshart, P.D.; Fotiadis, D.; Müller, D.J. Protein-Enriched Outer Membrane Vesicles as a Native Platform for Outer Membrane Protein Studies. Commun. Biol. 2018, 1, 23. [Google Scholar] [CrossRef]
- Kulp, A.J.; Sun, B.; Ai, T.; Manning, A.J.; Orench-Rivera, N.; Schmid, A.K.; Kuehn, M.J. Genome-Wide Assessment of Outer Membrane Vesicle Production in Escherichia coli. PLoS ONE 2015, 10, e0139200. [Google Scholar] [CrossRef]
- Schmidt, A.K.; Fitzpatrick, A.D.; Schwartzkopf, C.M.; Faith, D.R.; Jennings, L.K.; Coluccio, A.; Hunt, D.J.; Michaels, L.A.; Hargil, A.; Chen, Q.; et al. A Filamentous Bacteriophage Protein Inhibits Type IV Pili To Prevent Superinfection of Pseudomonas aeruginosa. MBio 2022, 13, e02441-21. [Google Scholar] [CrossRef]
- Meyer, J.; Brissac, T.; Frapy, E.; Omer, H.; Euphrasie, D.; Bonavita, A.; Nassif, X.; Bille, E. Characterization of MDAΦ, A Temperate Filamentous Bacteriophage of Neisseria meningitidis. Microbiology 2016, 162, 268–282. [Google Scholar] [CrossRef]
- Markwitz, P.; Lood, C.; Olszak, T.; van Noort, V.; Lavigne, R.; Drulis-Kawa, Z. Genome-Driven Elucidation of Phage-Host Interplay and Impact of Phage Resistance Evolution on Bacterial Fitness. ISME J. 2022, 16, 533–542. [Google Scholar] [CrossRef]
- Choi, D.S.; Kim, D.K.; Choi, S.J.; Lee, J.; Choi, J.P.; Rho, S.; Park, S.H.; Kim, Y.K.; Hwang, D.; Gho, Y.S. Proteomic Analysis of Outer Membrane Vesicles Derived from Pseudomonas aeruginosa. Proteomics 2011, 11, 3424–3429. [Google Scholar] [CrossRef]
- Williams, J.N.; Skipp, P.J.; Humphries, H.E.; Christodoulides, M.; O’Connor, C.D.; Heckels, J.E. Proteomic Analysis of Outer Membranes and Vesicles from Wild-Type Serogroup B Neisseria meningitidis and a Lipopolysaccharide-Deficient Mutant. Infect. Immun. 2007, 75, 1364–1372. [Google Scholar] [CrossRef]
- Craig, L.; KT, F.; Maier, B. Type IV Pili: Dynamics, Biophysics, and Functional Consequences. Nat. Rev. Microbiol. 2019, 17, 429–440. [Google Scholar] [CrossRef]
- Ellisson, C.; Kan, J.; Dillard, R.; Kysela, D.; Ducret, A.; Berne, C.; Hampton, C.; Ke, Z.; Wright, E.; Biais, N.; et al. Obstruction of pilus retraction stimulates bacterial surface sensing. Science 2017, 358, 6535–6538. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Liu, Q.; Yi, J.; Liang, K.; Hu, B.; Zhang, X.; Curtiss, R.; Kong, Q. Outer membrane vesicles from flagellin-deficient Salmonella enterica Serovar Typhimurium Induce Cross-Reactive Immunity and Provide Cross-Protection Against Heterologous Salmonella Challenge. Sci. Rep. 2016, 6, 34776. [Google Scholar] [CrossRef]
- Fu, Y.; Yin, M.; Cao, L.; Lu, Y.; Li, Y.; Zhang, L. Capsule mutations Serve as a Key Strategy of Phage Resistance Evolution of K54 Hypervirulent Klebsiella pneumoniae. Commun. Biol. 2025, 8, 257. [Google Scholar] [CrossRef] [PubMed]
- Kaszowska, M.; Majkowska-skrobek, G.; Markwitz, P.; Lood, C.; Jachymek, W.; Maciejewska, A.; Lukasiewicz, J.; Drulis-Kawa, Z. The Mutation in Wbap Cps Gene Cluster Selected by Phage-borne Depolymerase Abolishes Capsule Production and Diminishes the Virulence of Klebsiella pneumoniae. Int. J. Mol. Sci. 2021, 22, 11562. [Google Scholar] [CrossRef]
- Haudiquet, M.; Le Bris, J.; Nucci, A.; Bonnin, R.A.; Domingo-Calap, P.; Rocha, E.P.C.; Rendueles, O. Capsules and Their Traits Shape Phage Susceptibility and Plasmid Conjugation Efficiency. Nat. Commun. 2024, 15, 2032. [Google Scholar] [CrossRef] [PubMed]
- Murray, S.M.; McKay, P.F. Chlamydia trachomatis: Cell Biology, Immunology and Vaccination. Vaccine 2021, 39, 2965–2975. [Google Scholar] [CrossRef] [PubMed]
- Everson, J.S.; Garner, S.A.; Lambden, P.R.; Fane, B.A.; Clarke, I.N. Host Range of Chlamydiaphages φCPAR39 and Chp3. J. Bacteriol. 2003, 185, 6490–6492. [Google Scholar] [CrossRef]
- Guo, Y.; Guo, R.; Zhou, Q.; Sun, C.; Zhang, X.; Liu, Y.; Liu, Q. Chlamydiaphage φCPG1 Capsid Protein Vp1 Inhibits Chlamydia trachomatis Growth via the Mitogen-Activated Protein Kinase Pathway. Viruses 2016, 8, 99. [Google Scholar] [CrossRef]
- Bernheim, A.; Sorek, R. The Pan-Immune System of Bacteria: Antiviral Defence as a Community Resource. Nat. Rev. Microbiol. 2020, 18, 113–119. [Google Scholar] [CrossRef]
- Egido, J.E.; Costa, A.R.; Aparicio-Maldonado, C.; Haas, P.J.; Brouns, S.J.J. Mechanisms and Clinical Importance of Bacteriophage Resistance. FEMS Microbiol. Rev. 2022, 46, fuab048. [Google Scholar] [CrossRef]
- Latka, A.; Lemire, S.; Grimon, D.; Dams, D.; Maciejewska, B.; Lu, T.; Drulis-Kawa, Z.; Briers, Y. Engineering the Modular Receptor-Binding Proteins of Klebsiella Phages Switches Their Capsule Serotype Specificity. MBio 2021, 12, e00455-21. [Google Scholar] [CrossRef] [PubMed]
- Azam, A.H.; Sato, K.; Miyanaga, K.; Nakamura, T.; Ojima, S.; Kondo, K.; Tamura, A.; Yamashita, W.; Tanji, Y.; Kiga, K. Selective Bacteriophages Reduce the Emergence of Resistance Bacteria in Bacteriophage-Antibiotic Combination Therapy. Microbiol. Spectr. 2024, 12, 00427-23. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, M.; Ju, L.; Li, M.; Zhao, M.; Deng, H.; Rensing, C.; Yang, Q.E.; Zhou, S. Phage-Mediated Virulence Loss and Antimicrobial Susceptibility in Carbapenem-Resistant Klebsiella pneumoniae. MBio 2025, 16, e02957-24. [Google Scholar] [CrossRef]
- Olszak, T.; Augustyniak, D.; García-Romero, I.; Markwitz, P.; Gula, G.; Molinaro, A.; Valvano, M.A.; Drulis-Kawa, Z. Phage Treatment of Pseudomonas aeruginosa Yields a Phage-Resistant Population with Different Susceptibility to Innate Immune Responses and Mild Effects on Metabolic Profiles. Microbiol. Res. 2024, 282, 127609. [Google Scholar] [CrossRef] [PubMed]
- Majkowska-Skrobek, G.; Markwitz, P.; Sosnowska, E.; Lood, C.; Lavigne, R.; Drulis-Kawa, Z. The Evolutionary Trade-Offs in Phage-Resistant Klebsiella pneumoniae Entail Cross-Phage Sensitization and Loss of Multidrug Resistance. Environ. Microbiol. 2021, 23, 7723–7740. [Google Scholar] [CrossRef]
- Yu, F.; Mizushima, S. Roles of Lipopolysaccharide and Outer Membrane Protein Ompc of Escherichia coli K-12 in the Receptor Function for Bacteriophage T4. J. Bacteriol. 1982, 151, 718–722. [Google Scholar] [CrossRef] [PubMed]
- Werts, C.; Michel, V.; Hofnung, M.; Charbit, A. Adsorption of Bacteriophage Lambda on the LamB Protein of Escherichia coli K-12: Point Mutations in Gene J of Lambda Responsible for Extended Host Range. J. Bacteriol. 1994, 176, 941–947. [Google Scholar] [CrossRef]
- McCutcheon, J.G.; Peters, D.L.; Dennis, J.J. Identification and Characterization of Type IV Pili as the Cellular Receptor of Broad Host Range Stenotrophomonas maltophilia Bacteriophages DLP1 and DLP2. Viruses 2018, 10, 338. [Google Scholar] [CrossRef]
- Samuel, A.D.T.; Pitta, T.P.; Ryu, W.S.; Danese, P.N.; Leung, E.C.W.; Berg, H.C. Flagellar Determinants of Bacterial Sensitivity to χ-Phage. Proc. Natl. Acad. Sci. USA 1999, 96, 9863–9866. [Google Scholar] [CrossRef]
- Walton, B.; Abbondante, S.; Marshall, M.; Dobruchowska, J.; Alvi, A.; Gallagher, L.; Vallikat, N.; Zhang, Z.; Wozniak, D.; Yu, E.; et al. A Biofilm-Tropic Pseudomonas aeruginosa Bacteriophage Uses the Exopolysaccharide Psl as Receptor. bioRxiv 2025. [Google Scholar] [CrossRef]
- Scholl, D.; Rogers, S.; Adhya, S.; Merril, C.R. Bacteriophage K1-5 Encodes Two Different Tail Fiber Proteins, Allowing It To Infect and Replicate on Both K1 and K5 Strains of Escherichia coli. J. Virol. 2001, 75, 2509–2515. [Google Scholar] [CrossRef] [PubMed]
- Leiman, P.G.; Battisti, A.J.; Bowman, V.D.; Stummeyer, K.; Mühlenhoff, M.; Gerardy-Schahn, R.; Scholl, D.; Molineux, I.J. The Structures of Bacteriophages K1E and K1-5 Explain Processive Degradation of Polysaccharide Capsules and Evolution of New Host Specificities. J. Mol. Biol. 2007, 371, 836–849. [Google Scholar] [CrossRef]
- Cai, R.; Wu, M.; Zhang, H.; Zhang, Y.; Cheng, M.; Guo, Z.; Ji, Y.; Xi, H.; Wang, X.; Xue, Y.; et al. A Smooth-Type, Phage-Resistant Klebsiella pneumoniae Mutant Strain Reveals That OmpC Is Indispensable for Infection by Phage GH-K3. Appl. Environ. Microbiol. 2018, 84, e01585-18. [Google Scholar] [CrossRef]
- Cai, R.; Ren, Z.; Zhao, R.; Lu, Y.; Wang, X.; Guo, Z.; Song, J.; Xiang, W.; Du, R.; Zhang, X.; et al. Structural Biology and Functional Features of Phage-Derived Depolymerase Depo32 on Klebsiella pneumoniae with K2 Serotype Capsular Polysaccharides. Microbiol. Spectr. 2023, 11, 05304-22. [Google Scholar] [CrossRef]
- Baldvinsson, S.B.; Holst Sørensen, M.C.; Vegge, C.S.; Clokie, M.R.J.; Brøndsted, L. Campylobacter jejuni Motility Is Required for Infection of the Flagellotropic Bacteriophage F341. Appl. Environ. Microbiol. 2014, 80, 7096–7106. [Google Scholar] [CrossRef] [PubMed]
- Gong, Q.; Wang, X.; Huang, H.; Sun, Y.; Qian, X.; Xue, F.; Ren, J.; Dai, J.; Tang, F. Novel Host Recognition Mechanism of the K1 Capsule-Specific Phage of Escherichia coli: Capsular Polysaccharide as the First Receptor and Lipopolysaccharide as the Secondary Receptor. J. Virol. 2021, 95, e00920-21. [Google Scholar] [CrossRef]
- Xia, G.; Corrigan, R.M.; Winstel, V.; Goerke, C.; Gründling, A.; Peschel, A. Wall Teichoic Acid-Dependent Adsorption of Staphylococcal Siphovirus and Myovirus. J. Bacteriol. 2011, 193, 4006–4009. [Google Scholar] [CrossRef]
- Li, X.; Koç, C.; Kühner, P.; Stierhof, Y.D.; Krismer, B.; Enright, M.C.; Penadés, J.R.; Wolz, C.; Stehle, T.; Cambillau, C.; et al. An Essential Role for the Baseplate Protein Gp45 in Phage Adsorption to Staphylococcus aureus. Sci. Rep. 2016, 6, 26455. [Google Scholar] [CrossRef]
- Baptista, C.; Santos, M.A.; São-José, C. Phage SPP1 Reversible Adsorption to Bacillus subtilis Cell Wall Teichoic Acids Accelerates Virus Recognition of Membrane Receptor YueB. J. Bacteriol. 2008, 190, 4989–4996. [Google Scholar] [CrossRef] [PubMed]
- Lopez, R.; Garcia, E.; Garcia, P.; Ronda, C.; Tomasz, A. Choline-Containing Bacteriophage Receptors in Streptococcus pneumoniae. J. Bacteriol. 1982, 151, 1581–1590. [Google Scholar] [CrossRef]
- Eugster, M.R.; Morax, L.S.; Hüls, V.J.; Huwiler, S.G.; Leclercq, A.; Lecuit, M.; Loessner, M.J. Bacteriophage Predation Promotes Serovar Diversification in Listeria monocytogenes. Mol. Microbiol. 2015, 97, 33–46. [Google Scholar] [CrossRef] [PubMed]
- Bishop, D.G.; Work, E. An Extracellular Glycolipid Produced by Escherichia coli Grown under Lysine-Limiting Conditions. Biochem. J. 1965, 96, 567–576. [Google Scholar] [CrossRef] [PubMed]
- Loeb, M.R. Bacteriophage T4-Mediated Release of Envelope Components from Escherichia coli. J. Virol. 1974, 13, 631–641. [Google Scholar] [CrossRef]
- Loeb, M.R.; Kilner, J. Release of a Special Fraction of the Outer Membrane from Both Growing and Phage T4-Infected Escherichia coli B. BBA Biomembr. 1978, 514, 117–127. [Google Scholar] [CrossRef]
- Xuan, G.; Lu, D.; Lin, H.; Wang, Y.; Wang, J. Outer Membrane Vesicle Production by Escherichia coli Enhances Its Defense against Phage Infection. Microorganisms 2024, 12, 1836. [Google Scholar] [CrossRef]
- Seed, K.D.; Faruque, S.M.; Mekalanos, J.J.; Calderwood, S.B.; Qadri, F.; Camilli, A. Phase Variable O Antigen Biosynthetic Genes Control Expression of the Major Protective Antigen and Bacteriophage Receptor in Vibrio cholerae O1. PLoS Pathog. 2012, 8, e1002917. [Google Scholar] [CrossRef]
- Beckman, D.A.; Waters, C.M. Vibrio cholerae Phage ICP3 Requires O1 Antigen for Infection. Infect. Immun. 2023, 91, e0002623. [Google Scholar] [CrossRef]
- Miller, V.L.; Mekalanos, J.J. A Novel Suicide Vector and Its Use in Construction of Insertion Mutations: Osmoregulation of Outer Membrane Proteins and Virulence Determinants in Vibrio cholerae Requires toxR. J. Bacteriol. 1988, 170, 2575–2583. [Google Scholar] [CrossRef]
- Stephan, M.S.; Broeker, N.K.; Saragliadis, A.; Roos, N.; Linke, D.; Barbirz, S. In Vitro Analysis of O-Antigen-Specific Bacteriophage P22 Inactivation by Salmonella Outer Membrane Vesicles. Front. Microbiol. 2020, 11, 510638. [Google Scholar] [CrossRef] [PubMed]
- Biller, S.J.; Ryan, M.G.; Li, J.; Burger, A.; Eppley, J.M.; Hackl, T.; DeLong, E.F. Distinct Horizontal Gene Transfer Potential of Extracellular Vesicles versus Viral-like Particles in Marine Habitats. Nat. Commun. 2025, 16, 2126. [Google Scholar] [CrossRef]
- Tzipilevich, E.; Habusha, M.; Ben-Yehuda, S. Acquisition of Phage Sensitivity by Bacteria through Exchange of Phage Receptors. Cell 2017, 168, 186–199.e12. [Google Scholar] [CrossRef] [PubMed]
- Ofir, G.; Sorek, R. Vesicles Spread Susceptibility to Phages. Cell 2017, 168, 13–15. [Google Scholar] [CrossRef] [PubMed]
- Kawagishi, Y.; Murase, K.; Grebenshchikova, A.; Iibushi, J.; Kimeu, T.; Minowa-Nozawa, A.; Nozawa, T.; Nakagawa, I. Bacterial Extracellular Vesicle Target Different Bacterial Species, Imparing Cell Division and Diminishing Their Pathogenicity. Proc. Natl. Acad. Sci. USA 2025, 122, e2416652122. [Google Scholar] [CrossRef] [PubMed]
- Fulsundar, S.; Harms, K.; Flaten, G.E.; Johnsen, P.J.; Chopade, B.A.; Nielsen, K.M. Gene Transfer Potential of Outer Membrane Vesicles of Acinetobacter baylyi and Effects of Stress on Vesiculation. Appl. Environ. Microbiol. 2014, 80, 3469–3483. [Google Scholar] [CrossRef]
- Domingues, S.; Nielsen, K.M. Membrane Vesicles and Horizontal Gene Transfer in Prokaryotes. Curr. Opin. Microbiol. 2017, 38, 16–21. [Google Scholar] [CrossRef]
- Kharina, A.; Podolich, O.; Faidiuk, I.; Zaika, S.; Haidak, A.; Kukharenko, O.; Zaets, I.; Tovkach, F.; Reva, O.; Kremenskoy, M.; et al. Temperate Bacteriophages Collected by Outer Membrane Vesicles in Komagataeibacter intermedius. J. Basic Microbiol. 2015, 55, 509–513. [Google Scholar] [CrossRef]
- Liu, Y.; Alexeeva, S.; Bachmann, H.; Martínez, J.A.G.; Yeremenko, N.; Abee, T.; Smida, E.J. Chronic Release of Tailless Phage Particles from Lactococcus lactis. Appl. Environ. Microbiol. 2022, 88, e0148321. [Google Scholar] [CrossRef]
- Kulp, A.; Kuehn, M.J. Biological Functions and Biogenesis of Secreted Outer Membrane Vesicles. Annu. Rev. Microbiol. 2010, 64, 163–184. [Google Scholar] [CrossRef]
- Brüssow, H.; Canchaya, C.; Hardt, W.-D. Phages and the Evolution of Bacterial Pathogens: From Genomic Rearrangements to Lysogenic Conversion. Microbiol. Mol. Biol. Rev. 2004, 68, 560–602. [Google Scholar] [CrossRef] [PubMed]
- Mozaheb, N.; Mingeot-Leclercq, M.P. Membrane Vesicle Production as a Bacterial Defense Against Stress. Front. Microbiol. 2020, 11, 600221. [Google Scholar] [CrossRef]
- da Silva Barreira, D.; Lapaquette, P.; Ducassou, J.N.; Couté, Y.; Guzzo, J.; Rieu, A. Spontaneous Prophage Induction Contributes to the Production of Membrane Vesicles by the Gram-Positive Bacterium Lacticaseibacillus casei BL23. MBio 2022, 13, e02375-22. [Google Scholar] [CrossRef]
- Yasuda, M.; Yamamoto, T.; Nagakubo, T.; Morinaga, K.; Obana, N.; Nomura, N.; Toyofuku, M. Phage Genes Induce Quorum Sensing Signal Release through Membrane Vesicle Formation. Microbes Environ. 2022, 37, ME21067. [Google Scholar] [CrossRef]
- Sangiorgio, G.; Nicitra, E.; Bivona, D.; Bonomo, C.; Bonacci, P.; Santagati, M.; Musso, N.; Bongiorno, D.; Stefani, S. Interactions of Gram-Positive Bacterial Membrane Vesicles and Hosts: Updates and Future Directions. Int. J. Mol. Sci. 2024, 25, 2904. [Google Scholar] [CrossRef]
- Andreoni, F.; Toyofuku, M.; Menzi, C.; Kalawong, R.; Shambat, M. Antibiotics Stimulate Formation of Vesicles in Staphylococcus aureus in Both Phage-Dependent and -Independent Fashions via Different Routes. Antimicrob. Agents Chemother. 2019, 63, e01439-18. [Google Scholar] [CrossRef] [PubMed]
- Pasqua, M.; Zennaro, A.; Trirocco, R.; Fanelli, G.; Micheli, G.; Grossi, M.; Colonna, B.; Prosseda, G. Modulation of Omv Production by the Lysis Module of the Dlp12 Defective Prophage of Escherichia coli K12. Microorganisms 2021, 9, 369. [Google Scholar] [CrossRef] [PubMed]
- McCallin, S.; Sacher, J.C.; Zheng, J.; Chan, B.K. Current State of Compassionate Phage Therapy. Viruses 2019, 11, 343. [Google Scholar] [CrossRef]
- Holger, D.J.; Lev, K.L.; Kebriaei, R.; Morrisette, T.; Shah, R.; Alexander, J.; Lehman, S.M.; Rybak, M.J. Bacteriophage-Antibiotic Combination Therapy for Multidrug-Resistant Pseudomonas aeruginosa: In Vitro Synergy Testing. J. Appl. Microbiol. 2022, 133, 1636–1649. [Google Scholar] [CrossRef] [PubMed]
- Crispim, J.S.; Dias, R.S.; Laguardia, C.N.; Araújo, L.C.; da Silva, J.D.; Vidigal, P.M.P.; de Sousa, M.P.; da Silva, C.C.; Santana, M.F.; de Paula, S.O. Desulfovibrio alaskensis Prophages and Their Possible Involvement in the Horizontal Transfer of Genes by Outer Membrane Vesicles. Gene 2019, 703, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Aktar, S.; Okamoto, Y.; Ueno, S.; Tahara, Y.O.; Imaizumi, M.; Shintani, M.; Miyata, M.; Futamata, H.; Nojiri, H.; Tashiro, Y. Incorporation of Plasmid DNA Into Bacterial Membrane Vesicles by Peptidoglycan Defects in Escherichia coli. Front. Microbiol. 2021, 12, 747606. [Google Scholar] [CrossRef]
- Li, C.; Xue, H.; Du, X.; Nyaruaba, R.; Yang, H.; Wei, H. Outer Membrane Vesicles Generated by an Exogenous Bacteriophage Lysin and Protection against Acinetobacter baumannii Infection. J. Nanobiotechnol. 2024, 22, 273. [Google Scholar] [CrossRef] [PubMed]
- Owen, S.V.; Canals, R.; Wenner, N.; Hammarlöf, D.L.; Kröger, C.; Hinton, J.C.D. A Window into Lysogeny: Revealing Temperate Phage Biology with Transcriptomics. Microb. Genom. 2020, 6, e000330. [Google Scholar] [CrossRef]
- Wang, X.; Kim, Y.; Ma, Q.; Hong, S.H.; Pokusaeva, K.; Sturino, J.M.; Wood, T.K. Cryptic Prophages Help Bacteria Cope with Adverse Environments. Nat. Commun. 2010, 1, 147–149. [Google Scholar] [CrossRef]
- Kimchi, O.; Meir, Y.; Wingreen, N.S. Lytic and Temperate Phage Naturally Coexist in a Dynamic Population Model. ISME J. 2024, 18, wrae093. [Google Scholar] [CrossRef]
- Armbruster, E.G.; Rani, P.; Lee, J.; Klusch, N.; Hutchings, J.; Hoffman, L.Y.; Buschkaemper, H.; Enustun, E.; Adler, B.A.; Inlow, K.; et al. Sequential Membrane- and Protein-Bound Organelles Compartmentalize Genomes during Phage Infection. Cell Host Microbe 2025, 33, 484–497.e6. [Google Scholar] [CrossRef]
- Antonova, D.; Nichiporenko, A.; Sobinina, M.; Wang, Y.; Vishnyakov, I.E.; Moiseenko, A.; Chesnokov, Y.M.; Stepanchikova, E.; Bourkaltseva, M.; Samygina, V.R.; et al. Genomic transfer via membrane vesicle: A strategy of giant phage phiKZ for early infection. J. Virol. 2024, 98, e0020524. [Google Scholar] [CrossRef]
- Mozumdar, D.; Fossati, A.; Stevenson, E.; Guan, J.; Nieweglowska, E.; Rao, S.; Agard, D.; Swaney, D.L.; Bondy-Denomy, J. Characterization of a Lipid-Based Jumbo Phage Compartment as a Hub for Early Phage Infection. Cell Host Microbe 2024, 32, 1050–1058.e7. [Google Scholar] [CrossRef]
- Röske, K.; Calcutt, M.J.; Wise, K.S. The Mycoplasma Fermentans Prophage ΦMFV1: Genome Organization, Mobility and Variable Expression of an Encoded Surface Protein. Mol. Microbiol. 2004, 52, 1703–1720. [Google Scholar] [CrossRef]
- Voelker, L.R.L.; Dybvig, K. Characterization of the Lysogenic Bacteriophage MAV1 from Mycoplasma arthritidis. J. Bacteriol. 1998, 180, 5928–5931. [Google Scholar] [CrossRef] [PubMed]
- Tu, A.H.T.; Voelker, L.R.L.; Shen, X.; Dybvig, K. Complete Nucleotide Sequence of the Mycoplasma Virus P1 Genome. Plasmid 2001, 45, 122–126. [Google Scholar] [CrossRef]
- Kovács, Á.B.; Wehmann, E.; Sváb, D.; Bekő, K.; Grózner, D.; Mitter, A.; Bali, K.; Morrow, C.J.; Bányai, K.; Gyuranecz, M. Novel Prophage-like Sequences in Mycoplasma anserisalpingitidis. Infect. Genet. Evol. 2021, 92, 104886. [Google Scholar] [CrossRef] [PubMed]
- Soler, N.; Forterre, P. Vesiduction: The Fourth Way of HGT. Environ. Microbiol. 2020, 22, 2457–2460. [Google Scholar] [CrossRef]
- Ipoutcha, T.; Tsarmpopoulos, I.; Talenton, V.; Gaspin, C.; Moisan, A.; Walker, C.A.; Brownlie, J.; Blanchard, A.; Thebault, P.; Sirand-Pugnet, P. Multiple Origins and Specific Evolution of CRISPR/Cas9 Systems in Minimal Bacteria (Mollicutes). Front. Microbiol. 2019, 10, 2701. [Google Scholar] [CrossRef]
- Makarova, K.S.; Wolf, Y.I.; Iranzo, J.; Shmakov, S.A.; Alkhnbashi, O.S.; Brouns, S.J.J.; Charpentier, E.; Cheng, D.; Haft, D.H.; Horvath, P.; et al. Evolutionary Classification of CRISPR–Cas Systems: A Burst of Class 2 and Derived Variants. Nat. Rev. Microbiol. 2020, 18, 67–83. [Google Scholar] [CrossRef]
- Voidarou, C.; Antoniadou, M.; Rozos, G.; Tzora, A.; Skoufos, I.; Varzakas, T.; Lagiou, A.; Bezirtzoglou, E. Fermentative Foods: Microbiology, Biochemistry, Potential Human Health Benefits and Public Health Issues. Foods 2021, 10, 69. [Google Scholar] [CrossRef] [PubMed]
- Gänzle, M.G.; Monnin, L.; Zheng, J.; Zhang, L.; Coton, M.; Sicard, D.; Walter, J. Starter Culture Development and Innovation for Novel Fermented Foods. Annu. Rev. Food Sci. Technol. 2024, 15, 211–239. [Google Scholar] [CrossRef]
- Łos, M.; Czyz, A.; Sell, E.; Wegrzyn, A.; Neubauer, P.; Wegrzyna, G. Bacteriophage Contamination: Is There a Simple Method to Reduce Its Deletorious Effects in Laboratory Cultures and Biotechnological Factories? J. Appl. Genet. 2004, 45, 111–120. [Google Scholar] [PubMed]
- Biller, S.J.; Schubotz, F.; Roggensack, S.E.; Thompson, A.W.; Summons, R.E.; Chisholm, S.W. Bacterial Vesicles in Marine Ecosystems. Science 2014, 343, 183–186. [Google Scholar] [CrossRef]
- Parsons, R.J.; Breitbart, M.; Lomas, M.W.; Carlson, C.A. Ocean Time-Series Reveals Recurring Seasonal Patterns of Virioplankton Dynamics in the Northwestern Sargasso Sea. ISME J. 2012, 6, 273–284. [Google Scholar] [CrossRef] [PubMed]
- Kushmaro, A.; Banin, E.; Loya, Y.; Stackebrandt, E.; Rosenberg, E. Vibrio shiloi sp. nov., the Causative Agent of Bleaching of the Coral Oculina patagonica. Int. J. Syst. Evol. Microbiol. 2001, 51, 1383–1388. [Google Scholar] [CrossRef]
- Xu, M.; Cai, Z.; Cheng, K.; Chen, G.; Zhou, J.; Xu, M.; Cai, Z.; Cheng, K.; Chen, G.; Zhou, J. Mitigation of Vibrio coralliilyticus-Induced Coral Bleaching through Bacterial Dysbiosis Prevention by Ruegeria profundi. Appl. Environ. Microbiol. 2024, 90, 02274-23. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Azam, F.; Zhang, S. Outer Membrane Vesicles Containing Signalling Molecules and Active Hydrolytic Enzymes Released by a Coral Pathogen Vibrio shilonii AK1. Environ. Microbiol. 2016, 18, 3850–3866. [Google Scholar] [CrossRef]
- Li, J.; Guo, A.; Huang, S.; Azam, F.; Sun, X.; Zhang, J.; Long, L.; Zhang, S. Outer Membrane Vesicles Produced by Coral-Associated Vibrio coralliilyticus Inhibit Bacteriophage Infection and Its Ecological Implications. Microbiol. Res. 2024, 281, 127607. [Google Scholar] [CrossRef]
- Miura, N.; Motone, K.; Takagi, T.; Aburaya, S.; Watanabe, S.; Aoki, W.; Ueda, M. Ruegeria sp. Strains Isolated from the Reef-Building Coral Galaxea fascicularis Inhibit Growth of the Temperature-Dependent Pathogen Vibrio coralliilyticus. Mar. Biotechnol. 2019, 21, 1–8. [Google Scholar] [CrossRef]
- Afzaal, M.; Saeed, F.; Shah, Y.A.; Hussain, M.; Rabail, R.; Socol, C.T.; Hassoun, A.; Pateiro, M.; Lorenzo, J.M.; Rusu, A.V.; et al. Human Gut Microbiota in Health and Disease: Unveiling the Relationship. Front. Microbiol. 2022, 13, 999001. [Google Scholar] [CrossRef]
- Hussain, N.; Li, R.; Takala, T.; Tariq, M.; AH, Z.; Saris, P. Generation of Lactose- and Protease-Positive Probiotic Lacticaseibacillus rhamnosus GG Conjugation with Lactococcus lactis NCDO 712. Appl. Environ. Microbiol. 2021, 87, e02957-20. [Google Scholar] [CrossRef] [PubMed]
- Champagne-Jorgensen, K.; Jose, T.A.; Stanisz, A.M.; Mian, M.F.; Hynes, A.P.; Bienenstock, J. Bacterial Membrane Vesicles and Phages in Blood after Consumption of Lacticaseibacillus rhamnosus JB-1. Gut Microbes 2021, 13, e1993583. [Google Scholar] [CrossRef]
- Lannoy, V.; Côté-Biron, A.; Asselin, C.; Rivard, N. Phosphatases in Toll-like Receptors Signaling: The Unfairly-Forgotten. Cell Commun. Signal. 2021, 19, 10. [Google Scholar] [CrossRef] [PubMed]
- Su, S.B.; Tao, L.; Deng, Z.P.; Chen, W.; Qin, S.Y.; Jiang, H.X. TLR10: Insights, Controversies and Potential Utility as a Therapeutic Target. Scand. J. Immunol. 2021, 93, e12988. [Google Scholar] [CrossRef]
- Flemming, H.-C.; Wingender, J.; Szewzyk, U.; Streinberg, P.; Rice, S.; Kjelleberg, S. Biofilm Matrix: An Emergentform of Bacterial Life. Nat. Rev. Microbiol. 2016, 14, 563–575. [Google Scholar] [CrossRef]
- Wang, W.; Chanda, W.; Zhong, M. The Relationship between Biofilm and Outer Membrane Vesicles: A Novel Therapy Overview. FEMS Microbiol. Lett. 2015, 362, fnv117. [Google Scholar] [CrossRef]
- Azeredo, J.; García, P.; Drulis-Kawa, Z. Targeting Biofilms Using Phages and Their Enzymes. Curr. Opin. Biotechnol. 2021, 68, 251–261. [Google Scholar] [CrossRef]
- Visnapuu, A.; Der Gucht, M.; Wagemans, J.; Lavigne, R. Deconstructing the Phage–Bacterial Biofilm Interaction as a Basis to Establish New Antibiofilm Strategies. Viruses 2022, 14, 1057. [Google Scholar] [CrossRef] [PubMed]
- Weiss, M.; Denou, E.; Bruttin, A.; Serra-Moreno, R.; Dillmann, M.L.; Brüssow, H. In Vivo Replication of T4 and T7 Bacteriophages in Germ-Free Mice Colonized with Escherichia coli. Virology 2009, 393, 16–23. [Google Scholar] [CrossRef]
- Whiteley, M.; Bangera, M.; Bumgarner, R.; Parsek, M.; Teitzel, G.; Lory, S.; Greenberg, E. Gene Expression in Pseudomonas aeruginosa Biofilms. Nature 2001, 413, 860–864. [Google Scholar] [CrossRef]
- Burgener, E.; Sweere, J.; Bach, M.; Secor, P.; Haddock, N.; Jennings, L.; Marvig, R.; Johansen, H.; Rossi, E.; Cao, X.; et al. Filamentous Bacteriophages Are Associated with Chronic Pseudomonas Lung Infections and Antibiotic Resistance in Cystic Fibrosis. Sci. Transl. Med. 2019, 11, 488. [Google Scholar] [CrossRef] [PubMed]
- Secor, P.R.; Burgener, E.B.; Kinnersley, M.; Jennings, L.K.; Roman-Cruz, V.; Popescu, M.; Van Belleghem, J.D.; Haddock, N.; Copeland, C.; Michaels, L.A.; et al. Pf Bacteriophage and Their Impact on Pseudomonas Virulence, Mammalian Immunity, and Chronic Infections. Front. Immunol. 2020, 11, 244. [Google Scholar] [CrossRef]
- Secor, P.R.; Michaels, L.A.; Smigiel, K.S.; Rohani, M.G.; Jennings, L.K.; Hisert, K.B.; Arrigoni, A.; Braun, K.R.; Birkland, T.P.; Lai, Y.; et al. Filamentous Bacteriophage Produced by Pseudomonas aeruginosa Alters the Inflammatoryr Response and Promotes Noninvasive Infection In Vivo. Infect. Immun. 2017, 85, e00648-16. [Google Scholar] [CrossRef]
- Pennetzdorfer, N.; Popescu, M.C.; Haddock, N.L.; Dupuy, F.; Kaber, G.; Hargil, A.; Johansson, P.K.; Enejder, A.; Bollyky, P.L. Bacterial Outer Membrane Vesicles Bound to Bacteriophages Modulate Neutrophil Responses to Bacterial Infection. Front. Cell. Infect. Microbiol. 2023, 13, 1250339. [Google Scholar] [CrossRef]
- Tiku, V.; Tan, M.W. Host Immunity and Cellular Responses to Bacterial Outer Membrane Vesicles. Trends Immunol. 2021, 42, 1024–1036. [Google Scholar] [CrossRef] [PubMed]
- Bali, K.; McCoy, R.; Lu, Z.; Treiber, J.; Savva, A.; Kaminski, C.F.; Salmond, G.; Salleo, A.; Mela, I.; Monson, R.; et al. Multiparametric Sensing of Outer Membrane Vesicle-Derived Supported Lipid Bilayers Demonstrates the Specificity of Bacteriophage Interactions. ACS Biomater. Sci. Eng. 2023, 9, 3632–3642. [Google Scholar] [CrossRef] [PubMed]
- Jackman, J.A.; Cho, N.J. Supported Lipid Bilayer Formation: Beyond Vesicle Fusion. Langmuir 2020, 36, 1387–1400. [Google Scholar] [CrossRef] [PubMed]
- Colom, J.; Cano-Sarabia, M.; Otero, J.; Cortés, P.; Maspoch, D.; Llagostera, M. Liposome-Encapsulated Bacteriophages for Enhanced Oral Phage Therapy Against Salmonella spp. Appl. Environ. Microbiol. 2015, 81, 4841–4849. [Google Scholar] [CrossRef]
- Otero, J.; García-Rodríguez, A.; Cano-Sarabia, M.; Maspoch, D.; Marcos, R.; Cortés, P.; Llagostera, M. Biodistribution of Liposome-Encapsulated Bacteriophages and Their Transcytosis during Oral Phage Therapy. Front. Microbiol. 2019, 10, 689. [Google Scholar] [CrossRef]
- Singla, S.; Harjai, K.; Katare, O.P.; Chhibber, S. Encapsulation of Bacteriophage in Liposome Accentuates Its Entry in to Macrophage and Shields It from Neutralizing Antibodies. PLoS ONE 2016, 11, e0153777. [Google Scholar] [CrossRef]
- Bai, J.; Yang, E.; Chang, P.S.; Ryu, S. Preparation and Characterization of Endolysin-Containing Liposomes and Evaluation of Their Antimicrobial Activities against Gram-Negative Bacteria. Enzym. Microb. Technol. 2019, 128, 40–48. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bołoz, A.; Lannoy, V.; Olszak, T.; Drulis-Kawa, Z.; Augustyniak, D. Interplay Between Bacterial Extracellular Vesicles and Phages: Receptors, Mechanisms, and Implications. Viruses 2025, 17, 1180. https://doi.org/10.3390/v17091180
Bołoz A, Lannoy V, Olszak T, Drulis-Kawa Z, Augustyniak D. Interplay Between Bacterial Extracellular Vesicles and Phages: Receptors, Mechanisms, and Implications. Viruses. 2025; 17(9):1180. https://doi.org/10.3390/v17091180
Chicago/Turabian StyleBołoz, Angelika, Valérie Lannoy, Tomasz Olszak, Zuzanna Drulis-Kawa, and Daria Augustyniak. 2025. "Interplay Between Bacterial Extracellular Vesicles and Phages: Receptors, Mechanisms, and Implications" Viruses 17, no. 9: 1180. https://doi.org/10.3390/v17091180
APA StyleBołoz, A., Lannoy, V., Olszak, T., Drulis-Kawa, Z., & Augustyniak, D. (2025). Interplay Between Bacterial Extracellular Vesicles and Phages: Receptors, Mechanisms, and Implications. Viruses, 17(9), 1180. https://doi.org/10.3390/v17091180