Wild Citrus CTV Genomic Data Provides Novel Insights into Its Global Transmission Dynamics
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection and Processing
2.2. RNA Extraction, Library Preparation, and Sequencing
2.3. Sequence Assembly and Virus Discovery
2.4. Viral Composition Identification in Wild Citrus and CTV Phylogenetic Analysis
2.5. CTV Population Genetic Differentiation Analysis
2.6. CTV Temporal Dynamics and Molecular Clock Analysis
2.7. CTV Phylogeographic Diffusion and Population Dynamic Analysis
3. Results
3.1. Sampling and Sequencing
3.2. Viral Composition in Wild Citrus and Phylogenetic Analysis
3.3. Genetic Differentiation Analysis of CTV Populations
3.4. Temporal Dynamics of CTV
3.5. Migration Events and Population Dynamic History of CTV
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, S.-H.; Zhou, J.; Yi, L.; Huang, A.-J.; Han, R.-Y.; You, P. Complete genome sequence of a novel variant of citrus tristeza virus infecting chinese wild mandarin (citrus daoxianensis s.w. he & g.f. liu. syn. citrus reticulata blanco) in china. Trop. Plant Pathol. 2023, 48, 352–356. [Google Scholar]
- Wu, G.A.; Terol, J.; Ibanez, V.; López-García, A.; Pérez-Román, E.; Borredá, C.; Domingo, C.; Tadeo, F.R.; Carbonell-Caballero, J.; Alonso, R.; et al. Genomics of the origin and evolution of citrus. Nature 2018, 554, 311–316. [Google Scholar] [CrossRef]
- Qiu, X. Studies on the Forest Ecosystem in Ailao Mountains Yunnan, China; Kunming, Yunnan Sciences and Technology Press: Kunming, China, 1998; pp. 1–12. [Google Scholar]
- Tatineni, S.; Robertson, C.J.; Garnsey, S.M. Three genes of Citrus tristeza virus are dispensable for infection and movement throughout some varieties of citrus trees. Virology 2008, 376, 297–307. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Liu, X.; Du, Z.; Hou, H.; Wang, X.; Wang, F.; Yang, J. Bayesian phylodynamic analysis reveals the dispersal patterns of tobacco mosaic virus in China. Virology 2019, 528, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Ibanez, J.M.; Zambrana, R.; Carreras, P.; Obregón, V.; Irazoqui, J.M.; Vera, P.A.; Lattar, T.E.; Blanco Fernández, M.D.; Puebla, A.F.; Amadio, A.F.; et al. Phylodynamic of Tomato Brown Rugose Fruit Virus and Tomato Chlorosis Virus, Two Emergent Viruses in Mixed Infections in Argentina. Viruses 2025, 17, 533. [Google Scholar] [CrossRef]
- Wang, C.; Chen, C.; Chen, Y.; Zhong, K.; Yi, L. Bayesian phylodynamic analysis reveals the evolutionary history and the dispersal patterns of citrus tristeza virus in China based on the p25 gene. Virol. J. 2023, 20, 223. [Google Scholar] [CrossRef]
- Davino, S.; Willemsen, A.; Panno, S.; Davino, M.; Catara, A.; Elena, S.F.; Rubio, L. Emergence and phylodynamics of Citrus tristeza virus in Sicily, Italy. PLoS ONE 2013, 8, e66700. [Google Scholar] [CrossRef] [PubMed]
- Benítez-Galeano, M.J.; Castells, M.; Colina, R. The Evolutionary History and Spatiotemporal Dynamics of the NC Lineage of Citrus Tristeza Virus. Viruses 2017, 9, 272. [Google Scholar] [CrossRef]
- Bar-Joseph, M.; Marcus, R.; Lee, R.F. The continuous challenge of Citrus tristeza virus control. Annu. Rev. Phytopathol. 1989, 27, 291–316. [Google Scholar] [CrossRef]
- Herron, C.M.; Mirkov, T.E.; da Graça, J.V.; Lee, R.F. Citrus tristeza virus transmission by the Toxoptera citricida vector, in vitro acquisition and transmission and infectivity immunoneutralization experiments. J. Virol. Methods 2006, 134, 205–211. [Google Scholar] [CrossRef]
- Roistacher, C.N.; Nauer, E.M.; Kishaba, A.; Calavan, E.C. Transmission of Citrus Tristeza Virus by Aphis gossypii Reflecting Changes in Virus Transmissibility in California. In International Organization of Citrus Virologists Conference Proceedings (1957–2010); University of California: Riverside, CA, USA, 1980; Volume 8. [Google Scholar]
- Harper, S.J. Citrus tristeza virus: Evolution of Complex and Varied Genotypic Groups. Front. Microbiol. 2013, 4, 93. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Kim, D.; Paggi, J.M.; Park, C.; Bennett, C.; Salzberg, S.L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 2019, 37, 907–915. [Google Scholar] [CrossRef]
- Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.; et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011, 29, 644–652. [Google Scholar] [CrossRef]
- Martin, D.P.; Murrell, B.; Golden, M.; Khoosal, A.; Muhire, B. RDP4: Detection and analysis of recombination patterns in virus genomes. Virus Evol. 2015, 1, vev003. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.T.; Schmidt, H.A.; Arndt, V.H.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef]
- Excoffier, L.; Lischer, H.E. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 2010, 10, 564–567. [Google Scholar] [CrossRef] [PubMed]
- Balloux, F.; Lugon-Moulin, N. The estimation of population differentiation with microsatellite markers. Mol. Ecol. 2002, 11, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef] [PubMed]
- Bouckaert, R.; Heled, J.; Kühnert, D.; Vaughan, T.; Wu, C.H.; Xie, D.; Suchard, M.A.; Rambaut, A.; Drummond, A.J. BEAST 2: A software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 2014, 10, e1003537. [Google Scholar] [CrossRef] [PubMed]
- Gill, M.S.; Lemey, P.; Faria, N.R.; Rambaut, A.; Shapiro, B.; Suchard, M.A. Improving Bayesian population dynamics inference, a coalescent-based model for multiple loci. Mol. Biol. Evol. 2013, 30, 713–724. [Google Scholar] [CrossRef]
- Heled, J.; Drummond, A.J. Bayesian inference of population size history from multiple loci. BMC Evol. Biol. 2008, 23, 289. [Google Scholar] [CrossRef]
- Villanueva, R.A.M.; Chen, Z.J. ggplot2: Elegant Graphics for Data Analysis, 2nd ed.; Measurement Interdisciplinary Research & Perspectives: Philadelphia, PA, USA, 2019; Volume 17, pp. 160–167. [Google Scholar]
- Bielejec, F.; Baele, G.; Vrancken, B.; Suchard, M.A.; Rambaut, A.; Lemey, P. SpreaD3: Interactive Visualization of Spatiotemporal History and Trait Evolutionary Processes. Mol. Biol. Evol. 2016, 33, 2167–2169. [Google Scholar] [CrossRef]
- Wang, L.G.; Lam, T.T.; Xu, S.; Dai, Z.; Zhou, L.; Feng, T.; Guo, P.; Dunn, C.W.; Jones, B.R.; Bradley, T.; et al. Treeio: An R Package for Phylogenetic Tree Input and Output with Richly Annotated and Associated Data. Mol. Biol. Evol. 2020, 37, 599–603. [Google Scholar] [CrossRef] [PubMed]
- Bielejec, F.; Rambaut, A.; Suchard, M.A.; Lemey, P. SPREAD, spatial phylogenetic reconstruction of evolutionary dynamics. Bioinformatics 2011, 27, 2910–2912. [Google Scholar] [CrossRef] [PubMed]
- Minin, V.N.; Suchard, M.A. Counting labeled transitions in continuous-time Markov models of evolution. J. Math. Biol. 2008, 56, 391–412. [Google Scholar] [CrossRef]
- Yi, L.; Zhou, C.-Y.; Zhou, Y.; Wang, Z.-G.; Tang, K.Z. Molecular characterization of Citrus tristeza virus isolates from wild citrus in China. Sci. Agric. Sin. 2007, 40, 932–939. [Google Scholar]
- Yi, L.; Zhou, C.-Y. Genetic characteristics analysis of Citrus tristeza virus isolates between wild and cultivated citrus based on p23 gene. J. Fruit. Sci. 2017, 34, 828–834. [Google Scholar]
- Martin, S.; Sambade, A.; Rubio, L.; Vives, M.C.; Moya, P.; Guerri, J.; Elena, S.F.; Moreno, P. Contribution of recombination and selection to molecular evolution of Citrus tristeza virus. J. Gen. Virol. 2009, 90 Pt 6, 1527–1538. [Google Scholar] [CrossRef]
- Vives, M.C.; Rubio, L.; López, C.; Navas-Castillo, J.; Albiach-Mart, M.R.; Dawson, W.O.; Guerri, J.; Flores, R.; Moreno, P. The complete genome sequence of the major component of a mild citrus tristeza virus isolate. J. Gen. Virol. 1999, 80 Pt 3, 811–816. [Google Scholar] [CrossRef]
- Duchene, S.; Holmes, E.C.; Ho, S.Y. Analyses of evolutionary dynamics in viruses are hindered by a time-dependent bias in rate estimates. Proc. Biol. Sci. 2014, 281, 20140732. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Suleski, M.; Hedges, S.B. TimeTree, A Resource for Timelines, Timetrees, and Divergence Times. Mol. Biol. Evol. 2017, 34, 1812–1819. [Google Scholar] [CrossRef]
- Moreno, P.; Ambrós, S.; Albiach-Martí, M.R.; Guerri, J.; Peña, L. Citrus tristeza virus, a pathogen that changed the course of the citrus industry. Mol. Plant Pathol. 2008, 9, 251–268. [Google Scholar] [CrossRef]
- Crosby, A.W. The Columbian Exchange, Biological and Cultural Consequences of 1492; Greenwood Press: Westport, CT, USA, 2003. [Google Scholar]
- Fraile, A.; Escriu, F.; Aranda, M.A.; Malpica, J.M.; Gibbs, A.J.; García-Arenal, F. A century of tobamovirus evolution in an Australian population of Nicotiana glauca. J. Virol. 1997, 71, 8316–8320. [Google Scholar] [CrossRef]
- Liu, Y.; Heying, E.; Tanumihardjo, A.S. History, Global Distribution, and Nutritional Importance of Citrus Fruits. Compr. Rev. Food Sci. Food Saf. 2012, 11, 530–545. [Google Scholar] [CrossRef]
- Lee, R.F.; Keremane, M.L. Mild strain cross protection of tristeza, a review of research to protect against decline on sour orange in Florida. Front. Microbiol. 2013, 4, 259. [Google Scholar] [CrossRef] [PubMed]
- Lee, R.F. Control of virus diseases of citrus. Adv. Virus Res. 2015, 91, 143–173. [Google Scholar] [PubMed]
- Lefeuvre, P.; Lett, J.M.; Varsani, A.; Martin, D.P. Widely conserved recombination patterns among single-stranded DNA viruses. J. Virol. 2009, 83, 2697–2707. [Google Scholar] [CrossRef]
Sampling Locations | Sample | Bases (GB) | Total Reads | Mapping Reads | Q30 (%) | Avg. Quality |
---|---|---|---|---|---|---|
Chongyi | NDX45 | 9.442 | 59,698,544 | 42,356,972 (70.95%) | 94.97 | 38.955 |
NDX50 | 8.208 | 52,472,188 | 46,027,772 (87.72%) | 95.57 | 39.085 | |
NDX84 | 9.477 | 60,427,976 | 52,687,712 (87.19%) | 94.99 | 38.95 | |
Yunnan | YX11 | 12.699 | 84,662,326 | 72,355,540 (91.53%) | 93.435 | 38.645 |
YX17 | 12.647 | 84,314,934 | 71,056,978 (90.59%) | 93.265 | 38.61 | |
YX22 | 12.896 | 85,972,880 | 71,176,766 (89.7%) | 92.725 | 38.505 | |
YX26 | 11.978 | 79,852,688 | 66,846,012 (90.59%) | 92.915 | 38.54 | |
Hunan | JY1 | 15.441 | 67,826,812 | 58,578,180 (86.36%) | 94.575 | 38.825 |
JY2 | 12.671 | 81,534,830 | 73,602,632 (90.27%) | 95.32 | 39.035 | |
JY3 | 13.696 | 88,105,784 | 77,482,064 (87.94%) | 95.12 | 38.99 | |
JY4 | 26.533 | 163,795,202 | 31,242,094 (19.07%) | 93.61 | 38.69 |
Region | Total Sample | Number of Virus Species | Number of Mixed Infection Samples (Number of Samples with ≥2 Viruses) |
---|---|---|---|
Yunnan | 4 | 4(CEVd, CTV, CAAV1, CiVB) | 4 |
Jiangxi | 3 | 2(CEVd, CTV) | 3 |
Hunan | 4 | 2(CEVd, CTV) | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Zhou, J.; Huang, A.; Yi, L. Wild Citrus CTV Genomic Data Provides Novel Insights into Its Global Transmission Dynamics. Viruses 2025, 17, 1162. https://doi.org/10.3390/v17091162
Li X, Zhou J, Huang A, Yi L. Wild Citrus CTV Genomic Data Provides Novel Insights into Its Global Transmission Dynamics. Viruses. 2025; 17(9):1162. https://doi.org/10.3390/v17091162
Chicago/Turabian StyleLi, Xiang, Jun Zhou, Aijun Huang, and Long Yi. 2025. "Wild Citrus CTV Genomic Data Provides Novel Insights into Its Global Transmission Dynamics" Viruses 17, no. 9: 1162. https://doi.org/10.3390/v17091162
APA StyleLi, X., Zhou, J., Huang, A., & Yi, L. (2025). Wild Citrus CTV Genomic Data Provides Novel Insights into Its Global Transmission Dynamics. Viruses, 17(9), 1162. https://doi.org/10.3390/v17091162