Topography and Nanomechanics of the Tomato Brown Rugose Fruit Virus Suggest a Fragmentation-Driven Infection Mechanism
Abstract
1. Introduction
2. Materials and Methods
2.1. Isolation of the ToBRF Virus
2.2. Preparation of ToBRFV Samples for AFM
2.3. AFM Imaging
2.4. Force Mapping and Spectroscopy
2.5. Image Processing, Data Analysis, Calculations, and Statistics
2.6. Structural Analysis
3. Results
3.1. ToBRFV Virions Are Rodlike Particles with Wide Length Distribution
3.2. Virions Display an Axially Periodic Structure
3.3. ToBRFV Virions Are Soft and Fragile
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ToBRFV | Tomato Brown Rugose Fruit Virus |
AFM | Atomic Force Microscopy |
pLDDT | Predicted Local Distance Difference Test |
PAE | Predicted Alignment Error |
CP | Coat Protein |
ORF | Open Reading Frame |
TMV | Tobacco Mosaic Virus |
References
- Luria, N.; Smith, E.; Reingold, V.; Bekelman, I.; Lapidot, M.; Levin, I.; Elad, N.; Tam, Y.; Sela, N.; Abu-Ras, A.; et al. A New Israeli Tobamovirus Isolate Infects Tomato Plants Harboring Tm-22 Resistance Genes. PLoS ONE 2017, 12, e0170429. [Google Scholar] [CrossRef]
- Cambrón-Crisantos, J.M.; Rodríguez-Mendoza, J.; Valencia-Luna, J.B.; Alcasio-Rangel, S.; García-Ávila, C.D.J.; López-Buenfil, J.A.; Ochoa-Martínez, D.L. Primer reporte de Tomato brown rugose fruit virus (ToBRFV) en Michoacán, México. Rev. Mex. Fitopatol. Mex. J. Phytopathol. 2018, 37, 185–192. [Google Scholar] [CrossRef]
- Alkowni, R.; Alabdallah, O.; Fadda, Z. Molecular identification of tomato brown rugose fruit virus in tomato in Palestine. J. Plant Pathol. 2019, 101, 719–723. [Google Scholar] [CrossRef]
- Menzel, W.; Knierim, D.; Winter, S.; Hamacher, J.; Heupel, M. First report of Tomato brown rugose fruit virus infecting tomato in Germany. New Dis. Rep. 2019, 39, 1. [Google Scholar] [CrossRef]
- Oladokun, J.O.; Halabi, M.H.; Barua, P.; Nath, P.D. Tomato brown rugose fruit disease: Current distribution, knowledge and future prospects. Plant Pathol. 2019, 68, 1579–1586. [Google Scholar] [CrossRef]
- Caruso, A.G.; Bertacca, S.; Parrella, G.; Rizzo, R.; Davino, S.; Panno, S. Tomato brown rugose fruit virus: A pathogen that is changing the tomato production worldwide. Ann. Appl. Biol. 2022, 181, 258–274. [Google Scholar] [CrossRef]
- Eichmeier, A.; Hejlova, M.; Orsagova, H.; Frejlichova, L.; Hakalova, E.; Tomankova, K.; Linhartova, S.; Kulich, P.; Cermak, V.; Cechova, J. Characterization of Tomato Brown Rugose Fruit Virus (ToBRFV) Detected in Czech Republic. Diversity 2023, 15, 301. [Google Scholar] [CrossRef]
- Zhang, S.; Griffiths, J.S.; Marchand, G.; Bernards, M.A.; Wang, A. Tomato brown rugose fruit virus: An emerging and rapidly spreading plant RNA virus that threatens tomato production worldwide. Mol. Plant Pathol. 2022, 23, 1262–1277. [Google Scholar] [CrossRef]
- Bernabé-Orts, J.M.; Torre, C.; Méndez-López, E.; Hernando, Y.; Aranda, M.A. New Resources for the Specific and Sensitive Detection of the Emerging Tomato Brown Rugose Fruit Virus. Viruses 2021, 13, 1680. [Google Scholar] [CrossRef]
- Abrahamian, P.; Cai, W.; Nunziata, S.O.; Ling, K.S.; Jaiswal, N.; Mavrodieva, V.A.; Rivera, Y.; Nakhla, M.K. Comparative Analysis of Tomato Brown Rugose Fruit Virus Isolates Shows Limited Genetic Diversity. Viruses 2022, 14, 2816. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Planchart, A.; Stubbs, G. Caspar Carboxylates: The Structural Basis of Tobamovirus Disassembly. Biophys. J. 1998, 74, 633–638. [Google Scholar] [CrossRef] [PubMed]
- Weis, F.; Beckers, M.; von der Hocht, I.; Sachse, C. Elucidation of the viral disassembly switch of tobacco mosaic virus. EMBO Rep. 2019, 20, e48451. [Google Scholar] [CrossRef] [PubMed]
- EPPO Global Database, First Report of Tomato Brown Rugose Fruit Virus in Hungary. 2021. EPPO Reporting Service no. 06-2021. Num. article: 2021/134. Available online: https://gd.eppo.int/reporting/article-7073 (accessed on 22 August 2025).
- Sáray, R.; Almási, A.; Pinczés, D.; Palkovics, L.; Salánki, K. Magyarországon megjelent paradicsom barna termésráncosodás vírus (Tomato Brown Rugose Fruit Virus, ToBRFV) izolátumok jellemzése. In Proceedings of the 70. Növényvédelmi Tudományos Napok, Budapest, Hungary, 20 February 2024; p. 40. [Google Scholar]
- Chapman, S.N. Tobamovirus isolation and RNA extraction. Methods Mol. Biol. 1998, 81, 123–129. [Google Scholar] [CrossRef]
- Kellermayer, M.S.Z.; Voros, Z.; Csik, G.; Herenyi, L. Forced phage uncorking: Viral DNA ejection triggered by a mechanically sensitive switch. Nanoscale 2018, 10, 1898–1904. [Google Scholar] [CrossRef] [PubMed]
- Kiss, B.; Kis, Z.; Palyi, B.; Kellermayer, M.S.Z. Topography, Spike Dynamics, and Nanomechanics of Individual Native SARS-CoV-2 Virions. Nano Lett. 2021, 21, 2675–2680. [Google Scholar] [CrossRef]
- Kiss, B.; Kiss, L.A.; Lohinai, Z.D.; Mudra, D.; Tordai, H.; Herenyi, L.; Csik, G.; Kellermayer, M. Imaging the Infection Cycle of T7 at the Single Virion Level. Int. J. Mol. Sci. 2022, 23, 11252. [Google Scholar] [CrossRef]
- Vörös, Z.; Csik, G.; Herényi, L.; Kellermayer, M. Temperature-Dependent Nanomechanics and Topography of Bacteriophage T7. J. Virol. 2018, 92, 354a. [Google Scholar] [CrossRef]
- Vörös, Z.; Csik, G.; Herényi, L.; Kellermayer, M.S. Stepwise reversible nanomechanical buckling in a viral capsid. Nanoscale 2017, 9, 1136–1143. [Google Scholar] [CrossRef]
- Villarino, M.B. Ramanujan’s Perimeter of an Ellipse. arXiv 2005, arXiv:math/0506384. [Google Scholar]
- Schmatulla, A.; Maghelli, N.; Marti, O. Micromechanical properties of tobacco mosaic viruses. J. Microsc. 2007, 225, 264–268. [Google Scholar] [CrossRef]
- Kiss, B.; Mudra, D.; Torok, G.; Martonfalvi, Z.; Csik, G.; Herenyi, L.; Kellermayer, M. Single-particle virology. Biophys. Rev. 2020, 12, 1141–1154. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Niu, Z.; Li, S.; Wang, Q.; Li, X. Nanomechanical characterization of polyaniline coated tobacco mosaic virus nanotubes. J. Biomed. Mater. Res. A 2008, 87, 8–14. [Google Scholar] [CrossRef]
- Lomonossoff, G.P.; Wege, C. TMV Particles: The Journey From Fundamental Studies to Bionanotechnology Applications. Adv. Virus Res. 2018, 102, 149–176. [Google Scholar] [CrossRef]
- Catching, A.; Te Yeh, M.; Bianco, S.; Capponi, S.; Andino, R. A tradeoff between enterovirus A71 particle stability and cell entry. Nat. Commun. 2023, 14, 7450. [Google Scholar] [CrossRef]
- Jimenez-Zaragoza, M.; Yubero, M.P.; Martin-Forero, E.; Caston, J.R.; Reguera, D.; Luque, D.; de Pablo, P.J.; Rodriguez, J.M. Biophysical properties of single rotavirus particles account for the functions of protein shells in a multilayered virus. elife 2018, 7, e37295. [Google Scholar] [CrossRef]
- Calo, A.; Eleta-Lopez, A.; Ondarcuhu, T.; Verdaguer, A.; Bittner, A.M. Nanoscale Wetting of Single Viruses. Molecules 2021, 26, 5184. [Google Scholar] [CrossRef]
- Jimenez, J.; Sadras, V.O.; Espaillat, N.; Moreno, A.; Fereres, A. Interplay between drought and plant viruses co-infecting melon plants. Sci. Rep. 2024, 14, 15833. [Google Scholar] [CrossRef] [PubMed]
- Mehle, N.; Ravnikar, M. Plant viruses in aqueous environment—Survival, water mediated transmission and detection. Water Res. 2012, 46, 4902–4917. [Google Scholar] [CrossRef]
- Liphardt, J.; Onoa, B.; Smith, S.B.; Tinoco, I.J.; Bustamante, C. Reversible unfolding of single RNA molecules by mechanical force. Science 2001, 292, 733–737. [Google Scholar] [CrossRef] [PubMed]
- Kretzer, B.; Herenyi, L.; Csik, G.; Supala, E.; Orosz, A.; Tordai, H.; Kiss, B.; Kellermayer, M. TMPyP binding evokes a complex, tunable nanomechanical response in DNA. Nucleic Acids Res. 2024, 52, 8399–8418. [Google Scholar] [CrossRef]
- Smith, D.E.; Tans, S.J.; Smith, S.B.; Grimes, S.; Anderson, D.L.; Bustamante, C. The bacteriophage straight phi29 portal motor can package DNA against a large internal force. Nature 2001, 413, 748–752. [Google Scholar] [CrossRef] [PubMed]
Parameter | Model a | Model b |
---|---|---|
Outer diameter | 22 nm | 22 nm |
Wall thickness | 3.3 nm | 7.3 nm |
Inner diameter | 15.4 nm | 7.4 nm |
Inner perimeter | 48.4 nm | 23.2 nm |
Number of RNA bases per turn (0.34 nm/base) | 142 | 68 |
Total RNA turns per genome (6392 bases) | 45 | 94 |
Virion length (2 nm helical pitch) | 90 nm | 188 nm |
Number of unit-length elements in virion | 4 | 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puskás, P.; Salánki, K.; Herényi, L.; Hegedűs, T.; Kellermayer, M. Topography and Nanomechanics of the Tomato Brown Rugose Fruit Virus Suggest a Fragmentation-Driven Infection Mechanism. Viruses 2025, 17, 1160. https://doi.org/10.3390/v17091160
Puskás P, Salánki K, Herényi L, Hegedűs T, Kellermayer M. Topography and Nanomechanics of the Tomato Brown Rugose Fruit Virus Suggest a Fragmentation-Driven Infection Mechanism. Viruses. 2025; 17(9):1160. https://doi.org/10.3390/v17091160
Chicago/Turabian StylePuskás, Péter, Katalin Salánki, Levente Herényi, Tamás Hegedűs, and Miklós Kellermayer. 2025. "Topography and Nanomechanics of the Tomato Brown Rugose Fruit Virus Suggest a Fragmentation-Driven Infection Mechanism" Viruses 17, no. 9: 1160. https://doi.org/10.3390/v17091160
APA StylePuskás, P., Salánki, K., Herényi, L., Hegedűs, T., & Kellermayer, M. (2025). Topography and Nanomechanics of the Tomato Brown Rugose Fruit Virus Suggest a Fragmentation-Driven Infection Mechanism. Viruses, 17(9), 1160. https://doi.org/10.3390/v17091160