The Triplex-Centric Assembly and Maturation of the Herpesvirus Procapsid
Abstract
1. Introduction
2. The Architecture of the Herpes Capsid
2.1. The Genes and Proteins of the Herpes Capsid
2.2. The Icosahedral Herpesvirus Capsid
2.3. The Scaffold Core
2.4. The Portal at One or More Capsid Vertices
2.5. Overview of the Generation of Herpesvirus Capsids in the Nucleus
2.6. Cytoplasmic Production of Capsid Subunits and Nuclear Import
2.7. The Maturation of the Procapsid
3. Procapsid Assembly
3.1. The Triplex-Centric Model of Capsid Assembly
3.2. The Role of the Portal in Capsid Assembly
3.3. The Triplex-MCP3 Complex
3.4. The MCP-Scaffold Interaction and the Triplex-MCP3 Complex
3.5. Triplex Orientations Define MCP-MCP Interactions
3.6. The Intracapsomer MCP-MCP Interfaces in Assembly
3.7. The MCP-Scaffold Interactions May Also Relate to Asymmetric Triplexes
3.8. The Triplex Interactions with the Portal
3.9. The Spherical T = 7 Icosahedral Particle Composed of MCP-Tri1
3.10. The Small Capsid Protein in Capsid Assembly
4. Procapsid Maturation
4.1. Severing the Bond Between Scaffold and MCP
4.2. Maturation Involves the Rotation of the MCP Almost as a Rigid Body
4.3. Formation of the Intercapsomer MCP-MCP Interfaces During Maturation
4.4. Triplex Connection Changes During Maturation
5. The Prospects for Drug Development Targeting Assembly and Maturation
5.1. Thio-Urea-Based Inhibitors Affect Portal Incorporation
5.2. Acridone Inhibitor
5.3. Mimicking Peptides as Inhibitors
6. Discussion
6.1. Alternative Capsid Assembly Pathways
6.2. The Importance of the Scaffold
6.3. The N-Terminus as a Key Part of Assembly and Maturation
6.4. The Organizing Principal of the Triplex
6.5. Do Disulfides Play a Role in Assembly?
6.6. The Similarities to Bacteriophage HK97 Assembly and Maturation
7. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PDB | Protein databank |
EMDB | Electron microscopy databank |
EM | Electron microscopy |
CryoEM | Cryo-electron microscopy |
HHV | Human herpesvirus |
HSV1 | Herpes simplex virus type 1 |
HSV2 | Herpes simplex virus type 2 |
VZV | Varicella-zoster virus |
PRV | Pseudorabies virus |
CMV | Cytomegalovirus |
HV6A | Herpesvirus 6A |
HV6B | Herpesvirus 6B |
HV7 | Herpesvirus 7 |
EBV | Epstein-Barr virus |
KSHV | Kaposi sarcoma-associated virus |
MCP | Major capsid protein |
SCP | Small capsid protein |
Tri1 | Triplex protein 1 |
Tri2 | Triplex protein 2 |
PP | Portal protein |
SP | Scaffold protein |
MPSP | Maturation protease and scaffold protein |
References
- Gopinath, D.; Koe, K.H.; Maharajan, M.K.; Panda, S. A Comprehensive Overview of Epidemiology, Pathogenesis and the Management of Herpes Labialis. Viruses 2023, 15, 225. [Google Scholar] [CrossRef]
- Zarrouk, K.; Piret, J.; Boivin, G. Herpesvirus DNA polymerases: Structures, functions and inhibitors. Virus Res. 2017, 234, 177–192. [Google Scholar] [CrossRef] [PubMed]
- Muller, C.; Alain, S.; Baumert, T.F.; Ligat, G.; Hantz, S. Structures and Divergent Mechanisms in Capsid Maturation and Stabilization Following Genome Packaging of Human Cytomegalovirus and Herpesviruses. Life 2021, 11, 150. [Google Scholar] [CrossRef]
- Cardone, G.; Heymann, J.B.; Cheng, N.; Trus, B.L.; Steven, A.C. Procapsid assembly, maturation, nuclear exit: Dynamic steps in the production of infectious herpesvirions. Adv. Exp. Med. Biol. 2012, 726, 423–439. [Google Scholar] [CrossRef]
- Draganova, E.B.; Valentin, J.; Heldwein, E.E. The Ins and Outs of Herpesviral Capsids: Divergent Structures and Assembly Mechanisms across the Three Subfamilies. Viruses 2021, 13, 1913. [Google Scholar] [CrossRef]
- Baines, J.D. Herpes simplex virus capsid assembly and DNA packaging: A present and future antiviral drug target. Trends Microbiol. 2011, 19, 606–613. [Google Scholar] [CrossRef]
- Keil, T.; Liu, D.M.; Lloyd, M.; Coombs, W.; Moffat, J.; Visalli, R. DNA Encapsidation and Capsid Assembly Are Underexploited Antiviral Targets for the Treatment of Herpesviruses. Front. Microbiol. 2020, 11, 1862. [Google Scholar] [CrossRef] [PubMed]
- Grunewald, K.; Desai, P.; Winkler, D.C.; Heymann, J.B.; Belnap, D.M.; Baumeister, W.; Steven, A.C. Three-dimensional structure of herpes simplex virus from cryo-electron tomography. Science 2003, 302, 1396–1398. [Google Scholar] [CrossRef]
- Zhen, J.; Chen, J.; Huang, H.; Liao, S.Q.; Liu, S.H.; Yuan, Y.; Sun, R.; Longnecker, R.; Wu, T.T.; Zhou, Z.H. Structures of Epstein-Barr virus and Kaposi’s sarcoma-associated herpesvirus virions reveal species-specific tegument and envelope features. J. Virol. 2024, 98, e01194-24. [Google Scholar] [CrossRef] [PubMed]
- Trus, B.L.; Booy, F.P.; Newcomb, W.W.; Brown, J.C.; Homa, F.L.; Thomsen, D.R.; Steven, A.C. The herpes simplex virus procapsid: Structure, conformational changes upon maturation, and roles of the triplex proteins VP19c and VP23 in assembly. J. Mol. Biol. 1996, 263, 447–462. [Google Scholar] [CrossRef]
- Heymann, J.B.; Cheng, N.; Newcomb, W.W.; Trus, B.L.; Brown, J.C.; Steven, A.C. Dynamics of herpes simplex virus capsid maturation visualized by time-lapse cryo-electron microscopy. Nat. Struct. Biol. 2003, 10, 334–341. [Google Scholar] [CrossRef]
- Aksyuk, A.A.; Newcomb, W.W.; Cheng, N.; Winkler, D.C.; Fontana, J.; Heymann, J.B.; Steven, A.C. Subassemblies and asymmetry in assembly of herpes simplex virus procapsid. mBio 2015, 6, 01525-15. [Google Scholar] [CrossRef]
- Buch, M.H.C.; Heymann, J.B.; Newcomb, W.W.; Winkler, D.C.; Steven, A.C. Cryo-electron tomography of the herpesvirus procapsid reveals interactions of the portal with the scaffold and a shift on maturation. bioRxiv 2020, 12, 10–1128. [Google Scholar] [CrossRef]
- Cheng, N.; Trus, B.L.; Belnap, D.M.; Newcomb, W.W.; Brown, J.C.; Steven, A.C. Handedness of the herpes simplex virus capsid and procapsid. J. Virol. 2002, 76, 7855–7859. [Google Scholar] [CrossRef]
- Dai, X.; Zhou, Z.H. Structure of the herpes simplex virus 1 capsid with associated tegument protein complexes. Science 2018, 360, eaao7298. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.T.; Jih, J.; Dai, X.; Bi, G.Q.; Zhou, Z.H. Cryo-EM structures of herpes simplex virus type 1 portal vertex and packaged genome. Nature 2019, 570, 257–261. [Google Scholar] [CrossRef] [PubMed]
- Stevens, A.; Kashyap, S.; Crofut, E.; Alvarez-Cabrera, A.L.; Jih, J.; Liu, Y.; Zhou, Z.H. Structure of a new capsid form and comparison with A-, B- and C-capsids clarify herpesvirus assembly and DNA translocation. bioRxiv 2025, 99, e00504–e00525. [Google Scholar] [CrossRef]
- Yuan, S.A.; Wang, J.L.; Zhu, D.J.; Wang, N.; Gao, Q.; Chen, W.Y.; Tang, H.; Wang, J.Z.; Zhang, X.Z.; Liu, H.R.; et al. Cryo-EM structure of a herpesvirus capsid at 3.1 Å. Science 2018, 360, eaao7283. [Google Scholar] [CrossRef]
- Wang, N.; Chen, W.; Zhu, L.; Zhu, D.; Feng, R.; Wang, J.; Zhu, B.; Zhang, X.; Chen, X.; Liu, X.; et al. Structures of the portal vertex reveal essential protein-protein interactions for Herpesvirus assembly and maturation. Protein Cell 2020, 11, 366–373. [Google Scholar] [CrossRef]
- Sun, J.Q.; Liu, C.C.; Peng, R.C.; Zhang, F.K.; Tong, Z.; Liu, S.; Shi, Y.; Zhao, Z.N.; Zeng, W.B.; Gao, G.F.; et al. Cryo-EM structure of the varicella-zoster virus A-capsid. Nat. Commun. 2020, 11, 4795. [Google Scholar] [CrossRef]
- Wang, W.; Zheng, Q.B.; Pan, D.Q.; Yu, H.; Fu, W.K.; Liu, J.; He, M.Z.; Zhu, R.; Cai, Y.Z.; Huang, Y.; et al. Near-atomic cryo-electron microscopy structures of varicella-zoster virus capsids. Nat. Microbiol. 2020, 5, 1542. [Google Scholar] [CrossRef]
- Cao, L.; Wang, N.; Lv, Z.; Chen, W.; Chen, Z.; Song, L.; Sha, X.; Wang, G.; Hu, Y.; Lian, X.; et al. Insights into varicella-zoster virus assembly from the B- and C-capsid at near-atomic resolution structures. hLife 2024, 2, 64–74. [Google Scholar] [CrossRef]
- Wang, G.S.; Zha, Z.H.; Huang, P.F.; Sun, H.; Huang, Y.; He, M.Z.; Chen, T.; Lin, L.N.; Chen, Z.Q.; Kong, Z.B.; et al. Structures of pseudorabies virus capsids. Nat. Commun. 2022, 13, 1533. [Google Scholar] [CrossRef]
- Yu, X.K.; Jih, J.; Jiang, J.S.; Zhou, Z.H. Atomic structure of the human cytomegalovirus capsid with its securing tegument layer of pp150. Science 2017, 356, eaam6892. [Google Scholar] [CrossRef]
- Liu, W.; Dai, X.H.; Jih, J.; Chan, K.R.; Trang, P.; Yu, X.K.; Balogun, R.; Mei, Y.; Liu, F.Y.; Zhou, Z.H. Atomic structures and deletion mutant reveal different capsid-binding patterns and functional significance of tegument protein pp150 in murine and human cytomegaloviruses with implications for therapeutic development. PLoS Pathog. 2019, 15, e1007615. [Google Scholar] [CrossRef]
- Li, Z.H.; Pang, J.J.; Gao, R.C.; Wang, Q.X.; Zhang, M.Y.; Yu, X.K. Cryo-electron microscopy structures of capsids and in situ portals of DNA-devoid capsids of human cytomegalovirus. Nat. Commun. 2023, 14, 2025. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, W.; Li, Z.; Kumar, V.; Alvarez-Cabrera, A.L.; Leibovitch, E.C.; Cui, Y.; Mei, Y.; Bi, G.-Q.; Jacobson, S.; et al. Atomic structure of the human herpesvirus 6B capsid and capsid-associated tegument complexes. Nat. Commun. 2019, 10, 5346. [Google Scholar] [CrossRef]
- Liu, W.; Cui, Y.X.; Wang, C.Y.; Li, Z.H.; Gong, D.Y.; Dai, X.H.; Bi, G.Q.; Sun, R.; Zhou, Z.H. Structures of capsid and capsid-associated tegument complex inside the Epstein-Barr virus. Nat. Microbiol. 2020, 5, 1285. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.H.; Zhang, X.; Dong, L.L.; Pang, J.J.; Xu, M.; Zhong, Q.; Zeng, M.S.; Yu, X.K. CryoEM structure of the tegumented capsid of Epstein-Barr virus. Cell Res. 2020, 30, 873–884. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.H.; Gong, D.Y.; Lim, H.Y.; Jih, J.; Wu, T.T.; Sun, R.; Zhou, Z.H. Structure and mutagenesis reveal essential capsid protein interactions for KSHV replication. Nature 2018, 553, 521–525. [Google Scholar] [CrossRef]
- Gong, D.; Dai, X.; Jih, J.; Liu, Y.T.; Bi, G.Q.; Sun, R.; Zhou, Z.H. DNA-Packing Portal and Capsid-Associated Tegument Complexes in the Tumor Herpesvirus KSHV. Cell 2019, 178, 1329–1343.e12. [Google Scholar] [CrossRef]
- Wildy, P.; Russell, W.C.; Horne, R.W. The Morphology of Herpes Virus. Virology 1960, 12, 204–222. [Google Scholar] [CrossRef]
- Schrag, J.D.; Prasad, B.V.V.; Rixon, F.J.; Chiu, W. 3-Dimensional Structure of the Hsv1 Nucleocapsid. Cell 1989, 56, 651–660. [Google Scholar] [CrossRef]
- Baker, T.S.; Newcomb, W.W.; Booy, F.P.; Brown, J.C.; Steven, A.C. Three-dimensional structures of maturable and abortive capsids of equine herpesvirus 1 from cryoelectron microscopy. J. Virol. 1990, 64, 563–573. [Google Scholar] [CrossRef]
- Thomsen, D.R.; Roof, L.L.; Homa, F.L. Assembly of herpes simplex virus (HSV) intermediate capsids in insect cells infected with recombinant baculoviruses expressing HSV capsid proteins. J. Virol. 1994, 68, 2442–2457. [Google Scholar] [CrossRef] [PubMed]
- Tatman, J.D.; Preston, V.G.; Nicholson, P.; Elliott, R.M.; Rixon, F.J. Assembly of herpes simplex virus type 1 capsids using a panel of recombinant baculoviruses. J. Gen. Virol. 1994, 75 Pt 5, 1101–1113. [Google Scholar] [CrossRef] [PubMed]
- Thomsen, D.R.; Newcomb, W.W.; Brown, J.C.; Homa, F.L. Assembly of the herpes simplex virus capsid: Requirement for the carboxyl-terminal twenty-five amino acids of the proteins encoded by the UL26 and UL26.5 genes. J. Virol. 1995, 69, 3690–3703. [Google Scholar] [CrossRef] [PubMed]
- Kennard, J.; Rixon, F.J.; McDougall, I.M.; Tatman, J.D.; Preston, V.G. The 25 amino acid residues at the carboxy terminus of the herpes simplex virus type 1 UL26.5 protein are required for the formation of the capsid shell around the scaffold. J. Gen. Virol. 1995, 76 Pt 7, 1611–1621. [Google Scholar] [CrossRef]
- Zhou, Z.H.; He, J.; Jakana, J.; Tatman, J.D.; Rixon, F.J.; Chiu, W. Assembly of VP26 in herpes simplex virus-1 inferred from structures of wild-type and recombinant capsids. Nat. Struct. Biol. 1995, 2, 1026–1030. [Google Scholar] [CrossRef]
- Newcomb, W.W.; Homa, F.L.; Thomsen, D.R.; Ye, Z.; Brown, J.C. Cell-free assembly of the herpes simplex virus capsid. J. Virol. 1994, 68, 6059–6063. [Google Scholar] [CrossRef]
- Newcomb, W.W.; Homa, F.L.; Thomsen, D.R.; Booy, F.P.; Trus, B.L.; Steven, A.C.; Spencer, J.V.; Brown, J.C. Assembly of the herpes simplex virus capsid: Characterization of intermediates observed during cell-free capsid formation. J. Mol. Biol. 1996, 263, 432–446. [Google Scholar] [CrossRef]
- Spencer, J.V.; Newcomb, W.W.; Thomsen, D.R.; Homa, F.L.; Brown, J.C. Assembly of the herpes simplex virus capsid: Preformed triplexes bind to the nascent capsid. J. Virol. 1998, 72, 3944–3951. [Google Scholar] [CrossRef]
- Newcomb, W.W.; Homa, F.L.; Thomsen, D.R.; Trus, B.L.; Cheng, N.; Steven, A.; Booy, F.; Brown, J.C. Assembly of the herpes simplex virus procapsid from purified components and identification of small complexes containing the major capsid and scaffolding proteins. J. Virol. 1999, 73, 4239–4250. [Google Scholar] [CrossRef] [PubMed]
- Newcomb, W.W.; Thomsen, D.R.; Homa, F.L.; Brown, J.C. Assembly of the herpes simplex virus capsid: Identification of soluble scaffold-portal complexes and their role in formation of portal-containing capsids. J. Virol. 2003, 77, 9862–9871. [Google Scholar] [CrossRef] [PubMed]
- Newcomb, W.W.; Homa, F.L.; Brown, J.C. Involvement of the portal at an early step in herpes simplex virus capsid assembly. J. Virol. 2005, 79, 10540–10546. [Google Scholar] [CrossRef] [PubMed]
- Oien, N.L.; Thomsen, D.R.; Wathen, M.W.; Newcomb, W.W.; Brown, J.C.; Homa, F.L. Assembly of herpes simplex virus capsids using the human cytomegalovirus scaffold protein: Critical role of the C terminus. J. Virol. 1997, 71, 1281–1291. [Google Scholar] [CrossRef]
- Henson, B.W.; Perkins, E.M.; Cothran, J.E.; Desai, P. Self-Assembly of Epstein-Barr Virus Capsids. J. Virol. 2009, 83, 3877–3890. [Google Scholar] [CrossRef]
- Kreitler, D.; Capuano, C.M.; Henson, B.W.; Pryce, E.N.; Anacker, D.; McCaffery, J.M.; Desai, P.J. The Assembly Domain of the Small Capsid Protein of Kaposi’s Sarcoma-Associated Herpesvirus. J. Virol. 2012, 86, 11926–11930. [Google Scholar] [CrossRef]
- Perkins, E.M.; Anacker, D.; Davis, A.; Sankar, V.; Ambinder, R.F.; Desai, P. Small capsid protein pORF65 is essential for assembly of Kaposi’s sarcoma-associated herpesvirus capsids. J. Virol. 2008, 82, 7201–7211. [Google Scholar] [CrossRef] [PubMed]
- Capuano, C.M.; Grzesik, P.; Kreitler, D.; Pryce, E.N.; Desai, K.V.; Coombs, G.; McCaffery, J.M.; Desai, P.J. A hydrophobic domain within the small capsid protein of Kaposi’s sarcoma-associated herpesvirus is required for assembly. J. Gen. Virol. 2014, 95, 1755–1769. [Google Scholar] [CrossRef]
- Borst, E.M.; Harmening, S.; Sanders, S.; Caragliano, E.; Wagner, K.; Rovis, T.L.; Jonjic, S.; Bosse, J.B.; Messerle, M. A Unique Role of the Human Cytomegalovirus Small Capsid Protein in Capsid Assembly. mBio 2022, 13, e01007-22. [Google Scholar] [CrossRef]
- Sheaffer, A.K.; Newcomb, W.W.; Gao, M.; Yu, D.; Weller, S.K.; Brown, J.C.; Tenney, D.J. Herpes simplex virus DNA cleavage and packaging proteins associate with the procapsid prior to its maturation. J. Virol. 2001, 75, 687–698. [Google Scholar] [CrossRef]
- Matusickkumar, L.; Hulburt, W.; Weinheimer, S.P.; Newcomb, W.W.; Brown, J.C.; Gao, M. Phenotype of the Herpes-Simplex Virus Type-1 Protease Substrate Icp35 Mutant Virus. J. Virol. 1994, 68, 5384–5394. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Matusick-Kumar, L.; Hurlburt, W.; DiTusa, S.F.; Newcomb, W.W.; Brown, J.C.; McCann, P.J., 3rd; Deckman, I.; Colonno, R.J. The protease of herpes simplex virus type 1 is essential for functional capsid formation and viral growth. J. Virol. 1994, 68, 3702–3712. [Google Scholar] [CrossRef]
- Tigue, N.J.; Matharu, P.J.; Roberts, N.A.; Mills, J.S.; Kay, J.; Jupp, R. Cloning, expression and characterization of the proteinase from human herpesvirus 6. J. Virol. 1996, 70, 4136–4141. [Google Scholar] [CrossRef]
- DiIanni, C.L.; Drier, D.A.; Deckman, I.C.; McCann, P.J.; Liu, F.; Roizman, B.; Colonno, R.J.; Cordingley, M.G. Identification of the herpes simplex virus-1 protease cleavage sites by direct sequence analysis of autoproteolytic cleavage products. J. Biol. Chem. 1993, 268, 2048–2051. [Google Scholar] [CrossRef]
- Weinheimer, S.P.; McCann, P.J.; O’Boyle, D.R.; Stevens, J.T.; Boyd, B.A.; Drier, D.A.; Yamanaka, G.A.; DiIanni, C.L.; Deckman, I.C.; Cordingley, M.G. Autoproteolysis of herpes simplex virus type 1 protease releases an active catalytic domain found in intermediate capsid particles. J. Virol. 1993, 67, 5813–5822. [Google Scholar] [CrossRef]
- Robertson, B.J.; McCann, P.J.; Matusick-Kumar, L.; Preston, V.G.; Gao, M. Na, an autoproteolytic product of the herpes simplex virus type 1 protease, can functionally substitute for the assembly protein ICP35. J. Virol. 1997, 71, 1683–1687. [Google Scholar] [CrossRef]
- Newcomb, W.W.; Brown, J.C. Use of Ar+ plasma etching to localize structural proteins in the capsid of herpes simplex virus type 1. J. Virol. 1989, 63, 4697–4702. [Google Scholar] [CrossRef] [PubMed]
- Newcomb, W.W.; Brown, J.C. Structure of the Herpes-Simplex Virus Capsid—Effects of Extraction with Guanidine-Hydrochloride and Partial Reconstitution of Extracted Capsids. J. Virol. 1991, 65, 613–620. [Google Scholar] [CrossRef] [PubMed]
- Desai, P.; Person, S. Molecular interactions between the HSV-1 capsid proteins as measured by the yeast two-hybrid system. Virology 1996, 220, 516–521. [Google Scholar] [CrossRef] [PubMed]
- Wood, L.J.; Baxter, M.K.; Plafker, S.M.; Gibson, W. Human cytomegalovirus capsid assembly protein precursor (pUL80.5) interacts with itself and with the major capsid protein (pUL86) through two different domains. J. Virol. 1997, 71, 179–190. [Google Scholar] [CrossRef] [PubMed]
- Goddard, T.D.; Huang, C.C.; Meng, E.C.; Pettersen, E.F.; Couch, G.S.; Morris, J.H.; Ferrin, T.E. UCSF ChimeraX: Meeting modern challenges in visualization and analysis. Prot. Sci. 2018, 27, 14–25. [Google Scholar] [CrossRef]
- Heymann, J.B. Guidelines for using Bsoft for high resolution reconstruction and validation of biomolecular structures from electron micrographs. Protein Sci. 2018, 27, 159–171. [Google Scholar] [CrossRef]
- Heymann, J.B. High resolution electron tomography and segmentation-by-modeling interpretation in Bsoft. Prot. Sci. 2021, 30, 44–59. [Google Scholar] [CrossRef]
- Beaudet-Miller, M.; Zhang, R.; Durkin, J.; Gibson, W.; Kwong, A.D.; Hong, Z. Virus-specific interaction between the human cytomegalovirus major capsid protein and the C terminus of the assembly protein precursor. J. Virol. 1996, 70, 8081–8088. [Google Scholar] [CrossRef]
- Plafker, S.M.; Gibson, W. Cytomegalovirus assembly protein precursor and proteinase precursor contain two nuclear localization signals that mediate their own nuclear translocation and that of the major capsid protein. J. Virol. 1998, 72, 7722–7732. [Google Scholar] [CrossRef]
- Yang, K.; Wills, E.G.; Baines, J.D. Release of the herpes simplex virus 1 protease by self cleavage is required for proper conformation of the portal vertex. Virology 2012, 429, 63–73. [Google Scholar] [CrossRef]
- Desai, P.; Person, S. Second site mutations in the N-terminus of the major capsid protein (VP5) overcome a block at the maturation cleavage site of the capsid scaffold proteins of herpes simplex virus type 1. Virology 1999, 261, 357–366. [Google Scholar] [CrossRef]
- Walters, J.N.; Sexton, G.L.; McCaffery, J.M.; Desai, P. Mutation of single hydrophobic residue I27, L35, F39, L58, L65, L67, or L71 in the N terminus of VP5 abolishes interaction with the scaffold protein and prevents closure of herpes simplex virus type 1 capsid shells. J. Virol. 2003, 77, 4043–4059. [Google Scholar] [CrossRef] [PubMed]
- Pelletier, A.; Do, F.; Brisebois, J.J.; Lagace, L.; Cordingley, M.G. Self-association of herpes simplex virus type 1 ICP35 is via coiled-coil interactions and promotes stable interaction with the major capsid protein. J. Virol. 1997, 71, 5197–5208. [Google Scholar] [CrossRef] [PubMed]
- Newcomb, W.W.; Trus, B.L.; Cheng, N.; Steven, A.C.; Sheaffer, A.K.; Tenney, D.J.; Weller, S.K.; Brown, J.C. Isolation of herpes simplex virus procapsids from cells infected with a protease-deficient mutant virus. J. Virol. 2000, 74, 1663–1673. [Google Scholar] [CrossRef]
- Newcomb, W.W.; Juhas, R.M.; Thomsen, D.R.; Homa, F.L.; Burch, A.D.; Weller, S.K.; Brown, J.C. The UL6 gene product forms the portal for entry of DNA into the herpes simplex virus capsid. J. Virol. 2001, 75, 10923–10932. [Google Scholar] [CrossRef] [PubMed]
- Deng, B.; O’Connor, C.M.; Kedes, D.H.; Zhou, Z.H. Cryo-electron tomography of Kaposi’s sarcoma-associated herpesvirus capsids reveals dynamic scaffolding structures essential to capsid assembly and maturation. J. Struct. Biol. 2008, 161, 419–427. [Google Scholar] [CrossRef] [PubMed]
- Heming, J.D.; Conway, J.F.; Homa, F.L. Herpesvirus Capsid Assembly and DNA Packaging. Adv. Anat. Embryol. Cell Biol. 2017, 223, 119–142. [Google Scholar] [CrossRef]
- Sherman, G.; Bachenheimer, S.L. Characterization of intranuclear capsids made by ts morphogenic mutants of HSV-1. Virology 1988, 163, 471–480. [Google Scholar] [CrossRef]
- Newcomb, W.W.; Fontana, J.; Winkler, D.C.; Cheng, N.; Heymann, J.B.; Steven, A.C. The Primary Enveloped Virion of Herpes Simplex Virus 1: Its Role in Nuclear Egress. mBio 2017, 8, 00825-17. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, L.; Wang, S.A.; Xing, J.J.; Zheng, C.F. Identification of a novel NLS of herpes simplex virus type 1 (HSV-1) VP19C and its nuclear localization is required for efficient production of HSV-1. J. Gen. Virol. 2012, 93, 1869–1875. [Google Scholar] [CrossRef]
- Döhner, K.; Serrero, M.C.; Sodeik, B. The role of nuclear pores and importins for herpes simplex virus infection. Curr. Opin. Virol. 2023, 62, 101361. [Google Scholar] [CrossRef]
- Adamson, W.E.; McNab, D.; Preston, V.G.; Rixon, F.J. Mutational analysis of the herpes simplex virus triplex protein VP19C. J. Virol. 2006, 80, 1537–1548. [Google Scholar] [CrossRef]
- Nicholson, P.; Addison, C.; Cross, A.M.; Kennard, J.; Preston, V.G.; Rixon, F.J. Localization of the Herpes-Simplex Virus Type-1 Major Capsid Protein Vp5 to the Cell-Nucleus Requires the Abundant Scaffolding Protein Vp22a. J. Gen. Virol. 1994, 75, 1091–1099. [Google Scholar] [CrossRef]
- Rixon, F.J.; Addison, C.; McGregor, A.; Macnab, S.J.; Nicholson, P.; Preston, V.G.; Tatman, J.D. Multiple interactions control the intracellular localization of the herpes simplex virus type 1 capsid proteins. J. Gen. Virol. 1996, 77 Pt 9, 2251–2260. [Google Scholar] [CrossRef] [PubMed]
- Cai, M.; Ou, X.; Li, Y.; Zou, X.; Xu, Z.; Wang, Y.; Peng, H.; Deng, Y.; Guo, Y.; Lu, M.; et al. Molecular anatomy of the subcellular localization and nuclear import mechanism of herpes simplex virus 1 UL6. Aging 2020, 12, 5751–5763. [Google Scholar] [CrossRef] [PubMed]
- Church, G.A.; Wilson, D.W. Study of herpes simplex virus maturation during a synchronous wave of assembly. J. Virol. 1997, 71, 3603–3612. [Google Scholar] [CrossRef]
- Wu, W.; Newcomb, W.W.; Cheng, N.; Aksyuk, A.; Winkler, D.C.; Steven, A.C. Internal Proteins of the Procapsid and Mature Capsids of Herpes Simplex Virus 1 Mapped by Bubblegram Imaging. J. Virol. 2016, 90, 5176–5186. [Google Scholar] [CrossRef]
- Maier, O.; Sollars, P.J.; Pickard, G.E.; Smith, G.A. Visualizing Herpesvirus Procapsids in Living Cells. J. Virol. 2016, 90, 10182–10192. [Google Scholar] [CrossRef] [PubMed]
- Church, G.A.; Dasgupta, A.; Wilson, D.W. Herpes simplex virus DNA packaging without measurable DNA synthesis. J. Virol. 1998, 72, 2745–2751. [Google Scholar] [CrossRef]
- Nellissery, J.K.; Szczepaniak, R.; Lamberti, C.; Weller, S.K. A putative leucine zipper within the herpes simplex virus type 1 UL6 protein is required for portal ring formation. J. Virol. 2007, 81, 8868–8877. [Google Scholar] [CrossRef]
- Trus, B.L.; Cheng, N.; Newcomb, W.W.; Homa, F.L.; Brown, J.C.; Steven, A.C. Structure and polymorphism of the UL6 portal protein of herpes simplex virus type 1. J. Virol. 2004, 78, 12668–12671. [Google Scholar] [CrossRef]
- Albright, B.S.; Nellissery, J.; Szczepaniak, R.; Weller, S.K. Disulfide Bond Formation in the Herpes Simplex Virus 1 UL6 Protein Is Required for Portal Ring Formation and Genome Encapsidation. J. Virol. 2011, 85, 8616–8624. [Google Scholar] [CrossRef]
- Singer, G.P.; Newcomb, W.W.; Thomsen, D.R.; Homa, F.L.; Brown, J.C. Identification of a region in the herpes simplex virus scaffolding protein required for interaction with the portal. J. Virol. 2005, 79, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Baines, J.D. Domain within herpes simplex virus 1 scaffold proteins required for interaction with portal protein in infected cells and incorporation of the portal vertex into capsids. J. Virol. 2008, 82, 5021–5030. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Baines, J.D. Proline and tyrosine residues in scaffold proteins of herpes simplex virus 1 critical to the interaction with portal protein and its incorporation into capsids. J. Virol. 2009, 83, 8076–8081. [Google Scholar] [CrossRef]
- Bowman, B.R.; Baker, M.L.; Rixon, F.J.; Chiu, W.; Quiocho, F.A. Structure of the herpesvirus major capsid protein. EMBO J. 2003, 22, 757–765. [Google Scholar] [CrossRef]
- Heymann, J.B.; Trus, B.L.; Steven, A.C. Dynamics of the Protrusion Domain of Herpes Simplex Virus Capsid from Time-Resolved Cryo-EM and Molecular Modelling. Microsc. Microanal. 2005, 11, 1068–1069. [Google Scholar] [CrossRef]
- Meng, E.C.; Goddard, T.D.; Pettersen, E.F.; Couch, G.S.; Pearson, Z.J.; Morris, J.H.; Ferrin, T.E. UCSF ChimeraX: Tools for structure building and analysis. Prot. Sci. 2023, 32, e4792. [Google Scholar] [CrossRef]
- Huang, E.; Perkins, E.M.; Desai, P. Structural features of the scaffold interaction domain at the N terminus of the major capsid protein (VP5) of herpes simplex virus type. J. Virol. 2007, 81, 9396–9407. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.H.; Macnab, S.J.; Jakana, J.; Scott, L.R.; Chiu, W.; Rixon, F.J. Identification of the sites of interaction between the scaffold and outer shell in herpes simplex virus-1 capsids by difference electron imaging. Proc. Natl. Acad. Sci. USA 1998, 95, 2778–2783. [Google Scholar] [CrossRef]
- Saad, A.; Zhou, Z.H.; Jakana, J.; Chiu, W.; Rixon, F.J. Roles of triplex and scaffolding proteins in herpes simplex virus type 1 capsid formation suggested by structures of recombinant particles. J. Virol. 1999, 73, 6821–6830. [Google Scholar] [CrossRef]
- Borst, E.M.; Mathys, S.; Wagner, M.; Muranyi, W.; Messerle, M. Genetic evidence of an essential role for cytomegalovirus small capsid protein in viral growth. J. Virol. 2001, 75, 1450–1458. [Google Scholar] [CrossRef]
- Steven, A.C.; Heymann, J.B.; Cheng, N.; Trus, B.L.; Conway, J.F. Virus maturation: Dynamics and mechanism of a stabilizing structural transition that leads to infectivity. Curr. Opin. Struct. Biol. 2005, 15, 227–236. [Google Scholar] [CrossRef] [PubMed]
- Newcomb, W.W.; Trus, B.L.; Booy, F.P.; Steven, A.C.; Wall, J.S.; Brown, J.C. Structure of the herpes simplex virus capsid. Molecular composition of the pentons and the triplexes. J. Mol. Biol. 1993, 232, 499–511. [Google Scholar] [CrossRef]
- Szczepaniak, R.; Nellissery, J.; Jadwin, J.A.; Makhov, A.M.; Kosinski, A.; Conway, J.F.; Weller, S.K. Disulfide Bond Formation Contributes to Herpes Simplex Virus Capsid Stability and Retention of Pentons. J. Virol. 2011, 85, 8625–8634. [Google Scholar] [CrossRef]
- Chang, J.Y.; Balch, C.; Puccio, J.; Oh, H.S. A Narrative Review of Alternative Symptomatic Treatments for Herpes Simplex Virus. Viruses 2023, 15, 1314. [Google Scholar] [CrossRef]
- van Zeijl, M.; Fairhurst, J.; Jones, T.R.; Vernon, S.K.; Morin, J.; LaRocque, J.; Feld, B.; O’Hara, B.; Bloom, J.D.; Johann, S.V. Novel class of thiourea compounds that inhibit herpes simplex virus type 1 DNA cleavage and encapsidation: Resistance maps to the UL6 gene. J. Virol. 2000, 74, 9054–9061. [Google Scholar] [CrossRef]
- Newcomb, W.W.; Brown, J.C. Inhibition of herpes simplex virus replication by WAY-150138: Assembly of capsids depleted of the portal and terminase proteins involved in DNA encapsidation. J. Virol. 2002, 76, 10084–10088. [Google Scholar] [CrossRef] [PubMed]
- Visalli, R.J.; Fairhurst, J.; Srinivas, S.; Hu, W.; Feld, B.; DiGrandi, M.; Curran, K.; Ross, A.; Bloom, J.D.; van Zeijl, M.; et al. Identification of small molecule compounds that selectively inhibit varicella-zoster virus replication. J. Virol. 2003, 77, 2349–2358. [Google Scholar] [CrossRef] [PubMed]
- Inoue, N.; Matsushita, M.; Fukui, Y.; Yamada, S.; Tsuda, M.; Higashi, C.; Kaneko, K.; Hasegawa, H.; Yamaguchi, T. Identification of a varicella-zoster virus replication inhibitor that blocks capsid assembly by interacting with the floor domain of the major capsid protein. J. Virol. 2012, 86, 12198–12207. [Google Scholar] [CrossRef]
- Yasui, R.; Yoshida, C.; Yamaguchi, T.; Inoue, N. Characterization of an anti-varicella-zoster virus compound that targets the portal protein encoded by ORF54. Microbiol. Immunol. 2017, 61, 398–402. [Google Scholar] [CrossRef]
- Akanitapichat, P.; Lowden, C.T.; Bastow, K.F. 1,3-Dihydroxyacridone derivatives as inhibitors of herpes virus replication. Antivir. Res. 2000, 45, 123–134. [Google Scholar] [CrossRef]
- Akanitapichat, P.; Bastow, K.F. The antiviral agent 5-chloro-1,3-dihydroxyacridone interferes with assembly and maturation of herpes simplex virus. Antivir. Res. 2002, 53, 113–126. [Google Scholar] [CrossRef]
- Yang, K.; Wills, E.; Baines, J.D. A Herpes Simplex Virus Scaffold Peptide That Binds the Portal Vertex Inhibits Early Steps in Viral Replication. J. Virol. 2013, 87, 6876–6887. [Google Scholar] [CrossRef]
- Steven, A.C.; Roberts, C.R.; Hay, J.; Bisher, M.E.; Pun, T.; Trus, B.L. Hexavalent capsomers of herpes simplex virus type 2: Symmetry, shape, dimensions, and oligomeric status. J. Virol. 1986, 57, 578–584. [Google Scholar] [CrossRef]
- Desai, P.; Watkins, S.C.; Person, S. The size and symmetry of B capsids of herpes simplex virus type 1 are determined by the gene products of the UL26 open reading frame. J. Virol. 1994, 68, 5365–5374. [Google Scholar] [CrossRef] [PubMed]
- Mccombs, R.M.; Williams, G.A. Disruption of Herpes-Virus Nucleocapsids Using Lithium Iodide, Guanidine and Mercaptoethanol. J. Gen. Virol. 1973, 20, 395–400. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.C.; Yang, Y.Y.; Lin, K.L.; Lin, S.J. Different forms of HSV-1 VP22a within purified virion and infected cells. J. Microbiol. Immunol. Infect. 2000, 33, 141–148. [Google Scholar] [PubMed]
- Zweig, M.; Heilman, C.J.; Hampar, B. Identification of Disulfide-Linked Protein Complexes in the Nucleocapsids of Herpes-Simplex Virus Type-2. Virology 1979, 94, 442–450. [Google Scholar] [CrossRef]
- Suhanovsky, M.M.; Teschke, C.M. Nature’s favorite building block: Deciphering folding and capsid assembly of proteins with the HK97-fold. Virology 2015, 479, 487–497. [Google Scholar] [CrossRef]
- Maurer, J.B.; Oh, B.; Moyer, C.L.; Duda, R.L. Capsids and Portals Influence Each Other’s Conformation During Assembly and Maturation. J. Mol. Biol. 2020, 432, 2015–2029. [Google Scholar] [CrossRef]
- Duda, R.L.; Hempel, J.; Michel, H.; Shabanowitz, J.; Hunt, D.; Hendrix, R.W. Structural transitions during bacteriophage HK97 head assembly. J. Mol. Biol. 1995, 247, 618–635. [Google Scholar] [CrossRef]
- Huet, A.; Oh, B.; Maurer, J.; Duda, R.L.; Conway, J.F. A symmetry mismatch unraveled: How phage HK97 scaffold flexibly accommodates a 12-fold pore at a 5-fold viral capsid vertex. Sci. Adv. 2023, 9, eadg8868. [Google Scholar] [CrossRef]
- Ross, P.D.; Cheng, N.; Conway, J.F.; Firek, B.A.; Hendrix, R.W.; Duda, R.L.; Steven, A.C. Crosslinking renders bacteriophage HK97 capsid maturation irreversible and effects an essential stabilization. EMBO J. 2005, 24, 1352–1363. [Google Scholar] [CrossRef]
- Wikoff, W.R.; Liljas, L.; Duda, R.L.; Tsuruta, H.; Hendrix, R.W.; Johnson, J.E. Topologically linked protein rings in the bacteriophage HK97 capsid. Science 2000, 289, 2129–2133. [Google Scholar] [CrossRef]
- Conway, J.F.; Wikoff, W.R.; Cheng, N.; Duda, R.L.; Hendrix, R.W.; Johnson, J.E.; Steven, A.C. Virus maturation involving large subunit rotations and local refolding. Science 2001, 292, 744–748. [Google Scholar] [CrossRef]
- Helgstrand, C.; Wikoff, W.R.; Duda, R.L.; Hendrix, R.W.; Johnson, J.E.; Liljas, L. The refined structure of a protein catenane: The HK97 bacteriophage capsid at 3.44 A resolution. J. Mol. Biol. 2003, 334, 885–899. [Google Scholar] [CrossRef] [PubMed]
- Hasek, M.L.; Maurer, J.B.; Hendrix, R.W.; Duda, R.L. Flexible Connectors between Capsomer Subunits that Regulate Capsid Assembly. J. Mol. Biol. 2017, 429, 2474–2489. [Google Scholar] [CrossRef] [PubMed]
- Nemecek, D.; Boura, E.; Wu, W.; Cheng, N.; Plevka, P.; Qiao, J.; Mindich, L.; Heymann, J.B.; Hurley, J.H.; Steven, A.C. Subunit folds and maturation pathway of a dsRNA virus capsid. Structure 2013, 21, 1374–1383. [Google Scholar] [CrossRef] [PubMed]
- Gan, L.; Speir, J.A.; Conway, J.F.; Lander, G.; Cheng, N.; Firek, B.A.; Hendrix, R.W.; Duda, R.L.; Liljas, L.; Johnson, J.E. Capsid conformational sampling in HK97 maturation visualized by X-ray crystallography and cryo-EM. Structure 2006, 14, 1655–1665. [Google Scholar] [CrossRef]
- Hawkins, D.E.D.P.; Bayfield, O.W.; Fung, H.K.H.; Grba, D.N.; Huet, A.; Conway, J.F.; Antson, A.A. Insights into a viral motor: The structure of the HK97 packaging termination assembly. Nucl. Acids Res. 2023, 51, 7025–7035. [Google Scholar] [CrossRef]
Herpesvirus Map | PDB Code | EMDB Code | Resolution (Å) | References |
---|---|---|---|---|
Alphaherpesvirinae | ||||
HSV1 C-capsid/tegument | 6CGR | 7472 | 4.2 | [15] |
HSV1 virion portal vertex | 6ODM, 6OD7 | 9860 | 4.3 | [16] |
HSV1 A-capsid portal vertex | 9OP4 | 70678, 70683 | 3.6 | [17] |
HSV1 B-capsid portal vertex | 9OP5 | 70679, 70684, 70688 | 3.5 | [17] |
HSV1 C-capsid portal vertex | 9OPC, 9OPV | 70725 | 4.1 | [17] |
HSV1 D-capsid portal vertex | 9OPB, 9OP8 | 70682, 70687 | 6.6 | [17] |
HSV2 B-capsid | 5ZAP | 6907 | 3.1 | [18] |
HSV2 B-capsid portal vertex | 6M6I | 30125 | 4.1 | [19] |
VZV A-capsid | 7BW6 | 30228 | 3.7 | [20] |
VZV A-capsid | 6LGL | 0880 | 4.3 | [21] |
VZV C-capsid | 6LGN | 0881 | 5.3 | [21] |
VZV B-capsid † | 8XA * | 3819 * | 5.3 | [22] |
VZV C-capsid † | 8X9 * | 3818 * | 5.0 | [22] |
PRV C-capsid † | 7FJ1 | 31611 | 4.4 | [23] |
PRV A-capsid † | 7FJ3 | 31612 | 4.5 | [23] |
Betaherpesvirinae | ||||
CMV C-capsid/tegument | 5VKU | 8703 | 3.9 | [24] |
CMV (murine) virion | 6NHJ | 9366 | 5.0 | [25] |
CMV A-capsid † | 8HEU, 8HEV | 34698 | 3.9 | [26] |
CMV B-capsid † | 8HEX, 8HEY | 34699 | 3.7 | [26] |
HV6B virion | 6Q1F | 20557 | 9.0 | [27] |
Gammaherpesvirinae | ||||
EBV virion † | 6W19 | 21504 | 5.5 | [28] |
EBV virion † | 7BSI | 30162 | 4.1 | [29] |
KSHV virion | 6B43 | 7047 | 4.2 | [30] |
HSHV virion † | 6PPI,6PPB | 20430 | 7.6 | [31] |
Protein | Alphaherpesvirinae | Betaherpesvirinae | Gammaherpesvirinae | ||||||
---|---|---|---|---|---|---|---|---|---|
HSV1 HHV1 | HSV2 HHV2 | VZV HHV3 | CMV HHV5 | HV6A HHV6A | HV6B HHV6B | HV7 HHV7 | EBV HHV4 | KSHV HHV8 | |
Outer shell—capsid | |||||||||
MCP | UL19/VP5 | UL19 | ORF40 | UL86 | U57 | U57 | U57 | BcLF1 | ORF25 |
Tri1 | UL38/VP19C | UL38 | ORF20 | UL46 | U29 | U29 | U29 | BORF1 | ORF62 |
Tri2 | UL18/VP23 | UL18 | ORF41 | UL85 | U56 | U56 | U56 | BDLF1 | ORF26 |
SCP | UL35/VP26 | UL35 | ORF23 | UL48/9 | U32 | U32 | U32 | BFRF3 | ORF65 |
PP | UL6 | UL6 | ORF54 | UL104 | U76 | U76 | U76 | BBRF1 | ORF43 |
Inner shell—scaffold | |||||||||
MPSP | UL26/ VP21+VP24 | UL26 | ORF33 | UL80/ ACpra | U53 | U53 | U53 | BVRF2 | ORF17 |
SP | UL26.5/VP22a (ICP35) | UL26.5 | ORF33.5 | UL80.5/ pAP | U53.5 | U53.5 | U53.5 | BdRF1 | ORF17.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heymann, J.B. The Triplex-Centric Assembly and Maturation of the Herpesvirus Procapsid. Viruses 2025, 17, 1153. https://doi.org/10.3390/v17091153
Heymann JB. The Triplex-Centric Assembly and Maturation of the Herpesvirus Procapsid. Viruses. 2025; 17(9):1153. https://doi.org/10.3390/v17091153
Chicago/Turabian StyleHeymann, J. Bernard. 2025. "The Triplex-Centric Assembly and Maturation of the Herpesvirus Procapsid" Viruses 17, no. 9: 1153. https://doi.org/10.3390/v17091153
APA StyleHeymann, J. B. (2025). The Triplex-Centric Assembly and Maturation of the Herpesvirus Procapsid. Viruses, 17(9), 1153. https://doi.org/10.3390/v17091153