A Pan-H5N1 Multiepitope DNA Vaccine Construct Targeting Some Key Proteins of the Clade 2.3.4.4b Using AI-Assisted Epitope Mapping and Molecular Docking
Abstract
1. Introduction
2. Materials and Methods
2.1. Retrieval of the H5N1 Clade 2.3.4.4b Protein Sequences
2.2. The Multiple Sequence Alignment (MSA) and Phylogenetic Analysis
2.3. Mapping B Cell Epitopes Within the Avian H5N1 Clade 2.3.4.4b Major Proteins (HA, NA, NP, and M2)
2.3.1. Prediction of the Linear B Cell Epitopes
2.3.2. Prediction of the Discontinuous/Conformational B Cell Epitopes
2.4. Mapping of the T-Lymphocyte Epitopes Within the Avian H5N1 Clade 2.3.4.4b Major Proteins (HA, NA, NP, and M2)
2.4.1. Prediction of the Cytotoxic T-Lymphocyte Epitopes (MHC Class I Molecules)
2.4.2. Prediction of the Helper T-Lymphocyte Epitopes (MHC Class II Molecules)
2.5. Molecular Docking and Analysis of the Binding Interaction Between the Predicted T Cell Epitopes with Chicken MHC-I and MHC-II Alleles
2.6. Assembly of the Multiepitope Using the Top-Ranked Epitopes
2.7. Codon Optimization and In Silico Cloning of the Multiepitope Vaccine Construct
2.8. Assessment of the Physiochemical Properties of the Designed Multiepitope H5N1 Clade 2.3.4.4b DNA Vaccine
2.9. Prediction of the Secondary and Tertiary Structures of the Designed Multiepitope Vaccine
2.10. Molecular Docking of the Designed Multiepitope Vaccine Construct with the Chicken Toll-like Receptors (TLRs)
2.11. In Silico Immune Simulation of the Designed Multiepitope H5N1 Clade 2.3.4.4b DNA Vaccine
3. Results
3.1. Multiple Sequence Alignment and Phylogenetic Analysis of Circulating H5N1 Clade 2.3.4.4b Isolates
3.2. Results of the Prediction of the B Cell Epitopes (Linear and Discontinuous) Within the Major Proteins of H5N1 Clade 2.3.4.4b
3.3. Results of the Prediction of the Cytotoxic T Lymphocyte Epitopes (MHC Class I Molecules) Within the Major Proteins of H5N1 Clade 2.3.4.4b
3.4. Results of the Prediction of the Helper T Lymphocyte Epitope Prediction Within the Major Proteins of H5N1 Clade 2.3.4.4b
3.5. Evaluation of the Antigenicity, Allergenicity, and Toxicity of the Predicted MHC I and MHC II Epitopes Within the Major Proteins of H5N1 Clade 2.3.4.4b (HA, NA, NP, M2)
3.6. Results of the Molecular Docking of the Selected MHC Class I and II Epitopes with the Chicken Alleles
3.7. The Structure and Design of the Multiepitope DNA-Based Vaccine Against H5N1 Clade 2.3.4.4b Spanning Top-Ranked Epitopes Within the Four Major Viral Proteins (HA, NA, NP, and M2)
3.8. D Structural Comparison and Comparative Epitope Mapping with Monoclonal Antibodies Targeting HA
3.9. Results of the Physiochemical Properties of the Designed Multiepitope DNA-Based Vaccine Against H5N1 Clade 2.3.4.4b
3.10. Results of the Secondary and Tertiary Structures of the Designed Vaccine Construct
3.11. Visualization of B Cell and T Cell Epitopes from the Final Vaccine Construct with Its Native Proteins
3.12. Results of the Molecular Docking of the Designed Vaccine Construct with the Chickens’ Toll-like Receptors (TLR3 and TLR7)
3.13. In Silico Cloning of the H5N1 Clade 2.3.4.4b Multiepitope-Based Vaccine Spanning Key Epitopes Within the Major Proteins (HA, NA, NP, and M2)
3.14. In Silico Immune Simulation of the Designed H5N1 Clade 2.3.4.4b Multiepitope-Based Vaccine Spanning Key Epitopes Within the HA, NA, NP, and M2 Proteins
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HA | Hemagglutinin |
NA | Neuraminidase |
NP | Nucleoprotein |
M | Matrix protein |
HPAI | Highly pathogenic avian influenza |
ML | Machine learning |
AI | Artificial intelligence |
IL8 | Interleukin-8 |
NA | Not applicable |
mAbs | Monoclonal antibodies |
RMSD | Root mean square deviation |
References
- Burrough, E.R.; Magstadt, D.R.; Petersen, B.; Timmermans, S.J.; Gauger, P.C.; Zhang, J.; Siepker, C.; Mainenti, M.; Li, G.; Thompson, A.C.; et al. Highly Pathogenic Avian Influenza A(H5N1) Clade 2.3.4.4b Virus Infection in Domestic Dairy Cattle and Cats, USA, 2024. Emerg. Infect. Dis. 2024, 30, 1335–1343. [Google Scholar] [CrossRef]
- Cui, P.; Shi, J.; Wang, C.; Zhang, Y.; Xing, X.; Kong, H.; Yan, C.; Zeng, X.; Liu, L.; Tian, G.; et al. Global dissemination of H5N1 influenza viruses bearing the clade 2.3.4.4b HA gene and biologic analysis of the ones detected in China. Emerg. Microbes Infect. 2022, 11, 1693–1704. [Google Scholar] [CrossRef] [PubMed]
- Pulit-Penaloza, J.A.; Brock, N.; Belser, J.A.; Sun, X.; Pappas, C.; Kieran, T.J.; Basu Thakur, P.; Zeng, H.; Cui, D.; Frederick, J.; et al. Highly pathogenic avian influenza A(H5N1) virus of clade 2.3.4.4b isolated from a human case in Chile causes fatal disease and transmits between co-housed ferrets. Emerg. Microbes Infect. 2024, 13, 2332667. [Google Scholar] [CrossRef] [PubMed]
- Meade, P.S.; Bandawane, P.; Bushfield, K.; Hoxie, I.; Azcona, K.R.; Burgos, D.; Choudhury, S.; Diaby, A.; Diallo, M.; Gaynor, K.; et al. Detection of clade 2.3.4.4b highly pathogenic H5N1 influenza virus in New York City. J. Virol. 2024, 98, e0062624. [Google Scholar] [CrossRef] [PubMed]
- Raoufi, E.; Hemmati, M.; Eftekhari, S.; Khaksaran, K.; Mahmodi, Z.; Farajollahi, M.M.; Mohsenzadegan, M. Epitope Prediction by Novel Immunoinformatics Approach: A State-of-the-art Review. Int. J. Pept. Res. Ther. 2020, 26, 1155–1163. [Google Scholar] [CrossRef]
- Dadonaite, B.; Gilbertson, B.; Knight, M.L.; Trifkovic, S.; Rockman, S.; Laederach, A.; Brown, L.E.; Fodor, E.; Bauer, D.L.V. The structure of the influenza A virus genome. Nat. Microbiol. 2019, 4, 1781–1789. [Google Scholar] [CrossRef]
- Chen, X.; Liu, S.; Goraya, M.U.; Maarouf, M.; Huang, S.; Chen, J.L. Host Immune Response to Influenza A Virus Infection. Front. Immunol. 2018, 9, 320. [Google Scholar] [CrossRef]
- Zhang, B.; Xu, S.; Liu, M.; Wei, Y.; Wang, Q.; Shen, W.; Lei, C.Q.; Zhu, Q. The nucleoprotein of influenza A virus inhibits the innate immune response by inducing mitophagy. Autophagy 2023, 19, 1916–1933. [Google Scholar] [CrossRef]
- Wang, R.; Zhu, Y.; Lin, X.; Ren, C.; Zhao, J.; Wang, F.; Gao, X.; Xiao, R.; Zhao, L.; Chen, H.; et al. Influenza M2 protein regulates MAVS-mediated signaling pathway through interacting with MAVS and increasing ROS production. Autophagy 2019, 15, 1163–1181. [Google Scholar] [CrossRef]
- Britto, C.; Alter, G. The next frontier in vaccine design: Blending immune correlates of protection into rational vaccine design. Curr. Opin. Immunol. 2022, 78, 102234. [Google Scholar] [CrossRef]
- Peter, A.S.; Hoffmann, D.S.; Klier, J.; Lange, C.M.; Moeller, J.; Most, V.; Wust, C.K.; Beining, M.; Gulesen, S.; Junker, H.; et al. Strategies of rational and structure-driven vaccine design for Arenaviruses. Infect. Genet. Evol. 2024, 123, 105626. [Google Scholar] [CrossRef]
- Rappuoli, R.; Alter, G.; Pulendran, B. Transforming vaccinology. Cell 2024, 187, 5171–5194. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.; Abraham, A.; Baldwin, J.; Piplani, S.; Petrovsky, N. Artificial Intelligence in Vaccine and Drug Design. Methods Mol. Biol. 2022, 2410, 131–146. [Google Scholar] [CrossRef] [PubMed]
- Lamb, Y.N. BNT162b2 mRNA COVID-19 Vaccine: First Approval. Drugs 2021, 81, 495–501. [Google Scholar] [CrossRef] [PubMed]
- Stachyra, A.; Gora-Sochacka, A.; Sirko, A. DNA vaccines against influenza. Acta Biochim. Pol. 2014, 61, 515–522. [Google Scholar] [CrossRef]
- Sawaengsak, C.; Mori, Y.; Yamanishi, K.; Srimanote, P.; Chaicumpa, W.; Mitrevej, A.; Sinchaipanid, N. Intranasal chitosan-DNA vaccines that protect across influenza virus subtypes. Int. J. Pharm. 2014, 473, 113–125. [Google Scholar] [CrossRef]
- Nguyen, T.N.; Lai, D.C.; Sillman, S.; Petro-Turnquist, E.; Weaver, E.A.; Vu, H.L.X. Lipid nanoparticle-encapsulated DNA vaccine confers protection against swine and human-origin H1N1 influenza viruses. mSphere 2024, 9, e0028324. [Google Scholar] [CrossRef]
- Letunic, I.; Bork, P. Interactive Tree of Life (iTOL) v6: Recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Res. 2024, 52, W78–W82. [Google Scholar] [CrossRef]
- El-Manzalawy, Y.; Dobbs, D.; Honavar, V. Predicting linear B-cell epitopes using string kernels. J. Mol. Recognit. 2008, 21, 243–255. [Google Scholar] [CrossRef]
- Clifford, J.N.; Hoie, M.H.; Deleuran, S.; Peters, B.; Nielsen, M.; Marcatili, P. BepiPred-3.0: Improved B-cell epitope prediction using protein language models. Protein Sci. 2022, 31, e4497. [Google Scholar] [CrossRef]
- Elshafei, S.O.; Mahmoud, N.A.; Almofti, Y.A. Immunoinformatics, molecular docking and dynamics simulation approaches unveil a multi epitope-based potent peptide vaccine candidate against avian leukosis virus. Sci. Rep. 2024, 14, 2870. [Google Scholar] [CrossRef]
- Awadelkareem, E.A.; Ali, S.A. Vaccine design of coronavirus spike (S) glycoprotein in chicken: Immunoinformatics and computational approaches. Transl. Med. Commun. 2020, 5, 13. [Google Scholar] [CrossRef]
- Mugunthan, S.P.; Venkatesan, D.; Govindasamy, C.; Selvaraj, D.; Harish, M.C. Systems approach to design multi-epitopic peptide vaccine candidate against fowl adenovirus structural proteins for Gallus gallus domesticus. Front. Cell. Infect. Microbiol. 2024, 14, 1351303. [Google Scholar] [CrossRef]
- Maupetit, J.; Tuffery, P.; Derreumaux, P. A coarse-grained protein force field for folding and structure prediction. Proteins 2007, 69, 394–408. [Google Scholar] [CrossRef]
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.A.P.; Rempfer, C.; Bordoli, L.; et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018, 46, W296–W303. [Google Scholar] [CrossRef] [PubMed]
- Kozakov, D.; Beglov, D.; Bohnuud, T.; Mottarella, S.E.; Xia, B.; Hall, D.R.; Vajda, S. How good is automated protein docking? Proteins 2013, 81, 2159–2166. [Google Scholar] [CrossRef] [PubMed]
- Kozakov, D.; Hall, D.R.; Xia, B.; Porter, K.A.; Padhorny, D.; Yueh, C.; Beglov, D.; Vajda, S. The ClusPro web server for protein-protein docking. Nat. Protoc. 2017, 12, 255–278. [Google Scholar] [CrossRef] [PubMed]
- Laskowski, R.A.; Jablonska, J.; Pravda, L.; Varekova, R.S.; Thornton, J.M. PDBsum: Structural summaries of PDB entries. Protein Sci. 2018, 27, 129–134. [Google Scholar] [CrossRef]
- Hung, L.H.; Li, H.P.; Lien, Y.Y.; Wu, M.L.; Chaung, H.C. Adjuvant effects of chicken interleukin-18 in avian Newcastle disease vaccine. Vaccine 2010, 28, 1148–1155. [Google Scholar] [CrossRef]
- Li, K.; Gao, H.; Gao, L.; Qi, X.; Gao, Y.; Qin, L.; Wang, Y.; Wang, X. Adjuvant effects of interleukin-18 in DNA vaccination against infectious bursal disease virus in chickens. Vaccine 2013, 31, 1799–1805. [Google Scholar] [CrossRef]
- Grote, A.; Hiller, K.; Scheer, M.; Munch, R.; Nortemann, B.; Hempel, D.C.; Jahn, D. JCat: A novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Res. 2005, 33, W526–W531. [Google Scholar] [CrossRef]
- Doytchinova, I.A.; Flower, D.R. VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinform. 2007, 8, 4. [Google Scholar] [CrossRef] [PubMed]
- Dimitrov, I.; Flower, D.R.; Doytchinova, I. AllerTOP—A server for in silico prediction of allergens. BMC Bioinform. 2013, 14 (Suppl. S6), S4. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.; Naorem, L.D.; Jain, S.; Raghava, G.P.S. ToxinPred2: An improved method for predicting toxicity of proteins. Brief. Bioinform. 2022, 23, bbac174. [Google Scholar] [CrossRef] [PubMed]
- McGuffin, L.J.; Bryson, K.; Jones, D.T. The PSIPRED protein structure prediction server. Bioinformatics 2000, 16, 404–405. [Google Scholar] [CrossRef]
- Duraisamy, N.; Khan, M.Y.; Shah, A.U.; Elalaoui, R.N.; Cherkaoui, M.; Hemida, M.G. Machine learning tools used for mapping some immunogenic epitopes within the major structural proteins of the bovine coronavirus (BCoV) and for the in silico design of the multiepitope-based vaccines. Front. Vet. Sci. 2024, 11, 1468890. [Google Scholar] [CrossRef]
- Bordes, L.; Vreman, S.; Heutink, R.; Roose, M.; Venema, S.; Pritz-Verschuren, S.B.E.; Rijks, J.M.; Gonzales, J.L.; Germeraad, E.A.; Engelsma, M.; et al. Highly Pathogenic Avian Influenza H5N1 Virus Infections in Wild Red Foxes (Vulpes vulpes) Show Neurotropism and Adaptive Virus Mutations. Microbiol. Spectr. 2023, 11, e0286722. [Google Scholar] [CrossRef]
- Leguia, M.; Garcia-Glaessner, A.; Munoz-Saavedra, B.; Juarez, D.; Barrera, P.; Calvo-Mac, C.; Jara, J.; Silva, W.; Ploog, K.; Amaro, L.; et al. Highly pathogenic avian influenza A (H5N1) in marine mammals and seabirds in Peru. Nat. Commun. 2023, 14, 5489. [Google Scholar] [CrossRef]
- Ananya; Panchariya, D.C.; Karthic, A.; Singh, S.P.; Mani, A.; Chawade, A.; Kushwaha, S. Vaccine design and development: Exploring the interface with computational biology and AI. Int. Rev. Immunol. 2024, 43, 361–380. [Google Scholar] [CrossRef]
- Testa, J.S.; Shetty, V.; Hafner, J.; Nickens, Z.; Kamal, S.; Sinnathamby, G.; Philip, R. MHC class I-presented T cell epitopes identified by immunoproteomics analysis are targets for a cross reactive influenza-specific T cell response. PLoS ONE 2012, 7, e48484. [Google Scholar] [CrossRef]
- Hou, Y.; Guo, Y.; Wu, C.; Shen, N.; Jiang, Y.; Wang, J. Prediction and identification of T cell epitopes in the H5N1 influenza virus nucleoprotein in chicken. PLoS ONE 2012, 7, e39344. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Wu, S.; Peng, W.; Zhao, M.; Yue, C.; Wen, W.; Cai, W.; Zhang, T.; Wallny, H.-J.; Avila, D.W.; et al. Minor differences in peptide presentation between chicken MHC class I molecules can explain differences in disease susceptibility. bioRxiv 2022. [Google Scholar] [CrossRef]
- Dashti, F.; Raisi, A.; Pourali, G.; Razavi, Z.S.; Ravaei, F.; Sadri Nahand, J.; Kourkinejad-Gharaei, F.; Mirazimi, S.M.A.; Zamani, J.; Tarrahimofrad, H.; et al. A computational approach to design a multiepitope vaccine against H5N1 virus. Virol. J. 2024, 21, 67. [Google Scholar] [CrossRef] [PubMed]
- Kaur, B.; Karnwal, A.; Bansal, A.; Malik, T. An Immunoinformatic-Based In Silico Identification on the Creation of a Multiepitope-Based Vaccination Against the Nipah Virus. BioMed Res. Int. 2024, 2024, 4066641. [Google Scholar] [CrossRef]
- Fathollahi, M.; Motamedi, H.; Hossainpour, H.; Abiri, R.; Shahlaei, M.; Moradi, S.; Dashtbin, S.; Moradi, J.; Alvandi, A. Designing a novel multi-epitopes pan-vaccine against SARS-CoV-2 and seasonal influenza: In silico and immunoinformatics approach. J. Biomol. Struct. Dyn. 2024, 42, 10761–10784. [Google Scholar] [CrossRef]
- Sami, S.A.; Marma, K.K.S.; Mahmud, S.; Khan, M.A.N.; Albogami, S.; El-Shehawi, A.M.; Rakib, A.; Chakraborty, A.; Mohiuddin, M.; Dhama, K.; et al. Designing of a Multi-epitope Vaccine against the Structural Proteins of Marburg Virus Exploiting the Immunoinformatics Approach. ACS Omega 2021, 6, 32043–32071. [Google Scholar] [CrossRef]
- Mortazavi, B.; Molaei, A.; Fard, N.A. Multi-epitopevaccines, from design to expression; an in silico approach. Hum. Immunol. 2024, 85, 110804. [Google Scholar] [CrossRef]
- Eldaghayes, I.; Rothwell, L.; Skinner, M.; Dayhum, A.; Kaiser, P. Efficacy of Fowlpox Virus Vector Vaccine Expressing VP2 and Chicken Interleukin-18 in the Protection against Infectious Bursal Disease Virus. Vaccines 2023, 11, 1716. [Google Scholar] [CrossRef]
- Lim, K.L.; Jazayeri, S.D.; Yeap, S.K.; Alitheen, N.B.; Bejo, M.H.; Ideris, A.; Omar, A.R. Co-administration of avian influenza virus H5 plasmid DNA with chicken IL-15 and IL-18 enhanced chickens immune responses. BMC Vet. Res. 2012, 8, 132. [Google Scholar] [CrossRef]
- Jia, Y.; Wu, Q.; Li, Y.; Ma, M.; Song, W.; Chen, R.; Yao, Y.; Nair, V.; Zhang, N.; Liao, M.; et al. Revealing novel and conservative T-cell epitopes with MHC B2 restriction on H9N2 avian influenza virus (AIV). J. Biol. Chem. 2024, 300, 107395. [Google Scholar] [CrossRef]
- Hassan, A.O.; Amen, O.; Sayedahmed, E.E.; Vemula, S.V.; Amoah, S.; York, I.; Gangappa, S.; Sambhara, S.; Mittal, S.K. Adenovirus vector-based multi-epitope vaccine provides partial protection against H5, H7, and H9 avian influenza viruses. PLoS ONE 2017, 12, e0186244. [Google Scholar] [CrossRef]
- Ekiert, D.C.; Bhabha, G.; Elsliger, M.A.; Friesen, R.H.; Jongeneelen, M.; Throsby, M.; Goudsmit, J.; Wilson, I.A. Antibody recognition of a highly conserved influenza virus epitope. Science 2009, 324, 246–251. [Google Scholar] [CrossRef] [PubMed]
- Beukenhorst, A.L.; Frallicciardi, J.; Koch, C.M.; Klap, J.M.; Phillips, A.; Desai, M.M.; Wichapong, K.; Nicolaes, G.A.F.; Koudstaal, W.; Alter, G.; et al. The influenza hemagglutinin stem antibody CR9114: Evidence for a narrow evolutionary path towards universal protection. Front. Virol. 2022, 2, 1049134. [Google Scholar] [CrossRef]
- Bajic, G.; van der Poel, C.E.; Kuraoka, M.; Schmidt, A.G.; Carroll, M.C.; Kelsoe, G.; Harrison, S.C. Autoreactivity profiles of influenza hemagglutinin broadly neutralizing antibodies. Sci. Rep. 2019, 9, 3492. [Google Scholar] [CrossRef] [PubMed]
- Jiao, C.; Wang, B.; Chen, P.; Jiang, Y.; Liu, J. Analysis of the conserved protective epitopes of hemagglutinin on influenza A viruses. Front. Immunol. 2023, 14, 1086297. [Google Scholar] [CrossRef]
- Wan, H.; Yang, H.; Shore, D.A.; Garten, R.J.; Couzens, L.; Gao, J.; Jiang, L.; Carney, P.J.; Villanueva, J.; Stevens, J.; et al. Structural characterization of a protective epitope spanning A(H1N1)pdm09 influenza virus neuraminidase monomers. Nat. Commun. 2015, 6, 6114. [Google Scholar] [CrossRef]
- Duan, H.; Chi, X.; Yang, X.; Pan, S.; Liu, X.; Gao, P.; Zhang, F.; Zhang, X.; Dong, X.; Liao, Y.; et al. Computational design and improvement of a broad influenza virus HA stem targeting antibody. Structure 2025, 33, 489–503.E5. [Google Scholar] [CrossRef]
- Wu, N.C.; Wilson, I.A. Influenza Hemagglutinin Structures and Antibody Recognition. Cold Spring Harb. Perspect. Med. 2020, 10, a038778. [Google Scholar] [CrossRef]
- Madsen, A.; Okba, N.M.A.; Pholcharee, T.; Matz, H.C.; Lv, H.; Ibanez Trullen, M.; Zhou, J.Q.; Turner, J.S.; Schmitz, A.J.; Han, F.; et al. Identification of a seasonal influenza vaccine-induced broadly protective neuraminidase antibody. J. Exp. Med. 2025, 222, e20241930. [Google Scholar] [CrossRef]
- Wu, N.C.; Ellebedy, A.H. Targeting neuraminidase: The next frontier for broadly protective influenza vaccines. Trends Immunol. 2024, 45, 11–19. [Google Scholar] [CrossRef]
- Liu, H.; Liu, T.; Wang, X.; Zhu, X.; He, J.; Wang, H.; Fan, A.; Zhang, D. Design and development of a novel multi-epitope DNA vaccine candidate against infectious bronchitis virus: An immunoinformatic approach. Arch. Microbiol. 2025, 207, 84. [Google Scholar] [CrossRef]
- Chen, Y.H.; Wu, K.H.; Wu, H.P. Unraveling the Complexities of Toll-like Receptors: From Molecular Mechanisms to Clinical Applications. Int. J. Mol. Sci. 2024, 25, 5037. [Google Scholar] [CrossRef]
- Suleman, M.; Rashid, F.; Ali, S.; Sher, H.; Luo, S.; Xie, L.; Xie, Z. Immunoinformatic-based design of immune-boosting multiepitope subunit vaccines against monkeypox virus and validation through molecular dynamics and immune simulation. Front. Immunol. 2022, 13, 1042997. [Google Scholar] [CrossRef]
- Bashir, S.; Abd-elrahman, A.K.; Hassan, A.M.; Almofti, A.Y. Multi Epitope Based Peptide Vaccine against Marekís Disease Virus Serotype 1 Glycoprotein H and B. Am. J. Microbiol. Res. 2018, 6, 124–139. [Google Scholar]
- Mugunthan, S.P.; Mani Chandra, H. A Computational Reverse Vaccinology Approach for the Design and Development of Multi-Epitopic Vaccine Against Avian Pathogen Mycoplasma gallisepticum. Front. Vet. Sci. 2021, 8, 721061. [Google Scholar] [CrossRef]
Starting Position | Epitope Prediction | Score | Antigen/Non-Antigen Property | |
---|---|---|---|---|
IEDB | BCpred | |||
HA protein | ||||
168 | KKNDAYPTIKISYNNTNR | KKNDAYPTIKISYNNTNRED | 0.897 | 1.1073 |
221 | STLNQRLAPKIATRSQVNGQRGINSSMPFHNI | LNQRLAPKIATRSQVNGQRG | 0.825 | 1.0247 |
270 | RNSPLREKRRKR | ATGLRNSPLREKRRKRGLFG | 0.828 | 0.9293 |
NP protein | ||||
5 | GTKRSYEQMETGGERQNATE | GTKRSYEQMETGGERQNATE | 0.985 | 0.5451 |
200 | GINDRNFWRGENGRRTRIAY | RNFWRGENGRRTRI | 0.757 | 0.9417 |
345 | SFIRGTRVVPRGQLSTERAT | RGTRVVPRGQLS | 0.743 | 0.4891 |
NA protein | ||||
33 | WVSHSIQTGNQYQPEPCNQS | QTGNQYQPEPCNQS | 0.892 | 0.6502 |
209 | NGIITDTIKSWRNNILRTQE | TDTIKSWRNNILRT | 0.836 | 0.5221 |
338 | MSSNGAYGVKGFSFKYGNGV | GNGV | 0.77 | 0.9688 |
M2 protein | ||||
6 | EVETPTKNEWECNCSDSSDP | EVETPTKNEWE | 0.976 | 0.7082 |
56 | KYGLKGGPSTEGVPESMREE | KYGLKGGPSTEGVPESMREEYRQEQQSAVDVDDGHFV | 0.918 | 0.8569 |
72 | MREEYRQEQQSAVDVDDGHF | KYGLKGGPSTEGVPESMREEYRQEQQSAVDVDDGHFV | 0.87 | 0.8804 |
Predicted Discontinuous Epitope(s) | ||||
---|---|---|---|---|
No. | Protein | Peptide | No. of Residues | Score |
1 | HA | A:I505, A:C506, A:I507 | 3 | 0.993 |
2 | A:E2, A:N3, A:I4, A:V5, A:L6, A:L7, A:L8, A:A9, A:I10, A:V11, A:S12, A:L13, A:V14, A:K15, A:S16, A:D17, A:D405, A:K406, A:V407, A:R408, A:L409, A:Q410, A:L411, A:R412, A:D413, A:N414, A:A415, A:E424, A:F425, A:Y426, A:H427, A:K428, A:C429, A:D430, A:N431, A:E432, A:C433, A:M434, A:E435, A:S436, A:V437, A:R438, A:N439, A:G440, A:T441, A:Y442, A:D443, A:Y444, A:P445, A:Q446, A:Y447, A:S448, A:E449, A:E450, A:A451, A:R452, A:L453, A:K454, A:R455, A:E456, A:E457, A:I458, A:S459, A:G460, A:V461, A:K462, A:L463, A:E464, A:S465, A:V466, A:G467, A:T468, A:Y469, A:Q470, A:I471, A:L472, A:S473, A:I474, A:S476, A:T477, A:A478, A:A479, A:S480, A:S481, A:L482, A:A483, A:L484, A:A485, A:I486, A:M487, A:M488, A:A489, A:G490, A:L491, A:S492, A:L493, A:W494, A:M495, A:C496, A:S497, A:N498, A:G499, A:S500, A:L501, A:Q502, A:C503 | 106 | 0.831 | |
3 | A:K177, A:I178, A:S179 | 3 | 0.721 | |
A:L105, A:C106, A:Y107, A:P108, A:G109, A:F127, A:E128, A:K129, A:I130, A:L131, A:I132, A:I133, A:P134, A:K135, A:S136, A:S137, A:W138, A:P139, A:N140, A:H141, A:E142, A:T143, A:S144, A:L145, A:G146, A:V147, A:S148, A:A149, A:A150, A:C151, A:P152, A:G155, A:A156, A:P157, A:S158, A:F159, A:F160, A:V163, A:V164, A:W165, A:L166, A:I167, A:K168, A:K169, A:N170, A:D171, A:A172, A:Y173, A:P174, A:T175, A:I176, A:Y180, A:N181, A:N182, A:T183, A:N184, A:E186, A:D187, A:L188, A:L189, A:W192, A:G193, A:I194, A:H195, A:H196, A:S197, A:N198, A:N199, A:A200, A:E201, A:E202, A:Q203, A:T204, A:N205, A:L206, A:Y207, A:K208, A:N209, A:P210, A:T211, A:T212, A:Y213, A:I214, A:S215, A:V216, A:G217, A:T218, A:S219, A:T220, A:L221, A:N222, A:Q223, A:R224, A:L225, A:A226, A:P227, A:K228, A:I229, A:A230, A:T231, A:R232 | 101 | 0.676 | ||
4 | A:N357, A:L358, A:I362, A:N364, A:L365, A:K368 | |||
5 | A:N357, A:L358, A:I362, A:N364, A:L365, A:K368 | 6 | 0.582 | |
6 | A:N313, A:E314, A:Q315 | 3 | 0.579 | |
7 | A:G286, A:L287, A:F288, A:G289, A:A290, A:I291, A:A292, A:G293, A:F294, A:I295, A:E296, A:G297, A:G298, A:W299, A:M302 | 15 | 0.533 | |
8 | A:D70, A:G79, A:N80, A:P81, A:M82, A:D84, A:I87, A:N100, A:P101, A:A102, A:N103, A:Y153, A:Q154, A:R161, A:S233, A:Q234, A:V235, A:N236, A:G237 | 19 | 0.531 | |
1 | NA | A:R99, A:D101, A:G102, A:K103, A:W104 | 5 | 0.892 |
2 | A:R8, A:S9, A:E11, A:Q12, A:E14, A:T15, A:G16, A:G17, A:E18 | 9 | 0.865 | |
3 | A:G200, A:I201, A:N202, A:D203, A:N205, A:F206, A:W207, A:R208, A:G209, A:E210, A:N211, A:G212, A:R213, A:R214, A:T215 | 15 | 0.856 | |
4 | A:D420, A:M421, A:S422, A:N423 | 4 | 0.85 | |
5 | A:M1, A:A2, A:S3, A:Q4, A:G5, A:T6, A:K7 | 7 | 0.739 | |
6 | A:G402, A:V403, A:F404, A:E405, A:L406, A:T407, A:D408, A:E409, A:K410, A:A411, A:T412, A:N413, A:P414, A:I415, A:V416, A:P417, A:S418, A:F419 | 18 | 0.729 | |
7 | A:R216, A:I217, A:E220, A:T232, A:A233, A:A234, A:A237, A:D240, A:Q241, A:R243, A:E244, A:S245, A:N247, A:P248, A:G249, A:N250, A:A251, A:E252, A:E254, A:I265, A:R348, A:G349, A:T350, A:V352, A:V353, A:P354, A:G356, A:Q357, A:L358, A:S359, A:T360, A:E361, A:A363, A:T364, A:I365, A:M366, A:A367, A:A368, A:F369, A:T370, A:G371, A:N372, A:T373, A:E374, A:G375, A:R376, A:T377, A:S378, A:D379, A:M380, A:R381, A:T382, A:E383, A:I384, A:I385, A:R386, A:M387, A:M388, A:E389, A:N390, A:A391, A:R392, A:P393, A:E394, A:D395 | 65 | 0.724 | |
8 | A:Q42, A:T45, A:E46, A:L47, A:K48, A:L49, A:S50, A:D51, A:Y52, A:E53, A:R55, A:F71, A:D72, A:N76, A:K77, A:Y78, A:L79, A:E80, A:E81, A:H82, A:P83, A:S84, A:A85, A:G86, A:K87, A:D88, A:P89, A:K90, A:K91, A:R98, A:R106, A:E107, A:L108, A:I109, A:L110, A:Y111, A:D112, A:K113, A:E114, A:E115, A:R117, A:R118, A:I119, A:Q122, A:S310, A:Q311 | 46 | 0.69 | |
1 | NP | A:Q45, A:P46, A:E47, A:P48, A:C49, A:N50 | 6 | 0.947 |
2 | A:M1, A:N2, A:P3, A:N4, A:Q5, A:K6, A:I7, A:T8, A:T9, A:I10, A:G11, A:S12, A:I13, A:C14, A:M15, A:V16, A:I17, A:G18, A:I19, A:V20, A:S21, A:L22, A:M23, A:L24, A:Q25, A:I26, A:G27, A:N28, A:I29, A:I30, A:S31, A:I32, A:W33, A:V34, A:S35, A:H36, A:S37, A:I38, A:Q39, A:T40, A:G41, A:N42, A:Q43 | 43 | 0.93 | |
3 | A:E57, A:N58, A:N59, A:T60 | 4 | 0.894 | |
4 | A:Q51, A:S52, A:I53, A:I54, A:T55, A:Y56 | 6 | 0.878 | |
5 | A:V62, A:N63, A:Q64, A:T65, A:Y66, A:V67, A:N68, A:I69, A:S70, A:N71, A:T72, A:N73 | 12 | 0.764 | |
6 | A:L140, A:N141, A:D142, A:K143 | 4 | 0.723 | |
7 | A:I108, A:G109, A:S110, A:K111, A:G112 | 5 | 0.664 | |
8 | A:G105, A:H144, A:S145, A:N146, A:G147, A:T148, A:V149, A:K150, A:I427, A:G429, A:R430, A:P431, A:K432, A:E433, A:N434, A:T435, A:I436, A:T438, A:D459, A:G460, A:A461, A:L463, A:P464, A:F465, A:T466, A:I467, A:D468 | 27 | 0.624 | |
1 | M2 | A:S2, A:L3, A:L4, A:T5, A:E6, A:V7, A:E8, A:T9, A:P10, A:T11, A:K12, A:N13, A:E14, A:E16, A:N18 | 15 | 0.804 |
2 | A:A83, A:V84, A:D85, A:V86, A:D87, A:D88, A:G89, A:H90, A:F91, A:V92, A:N93, A:I94, A:E95 | 13 | 0.774 | |
3 | A:G61, A:G62, A:P63, A:S64, A:T65, A:E66 | 6 | 0.574 | |
4 | A:S20, A:D21, A:S22, A:S23, A:D24, A:P25, A:L26, A:A29, A:A30, A:I33 | 10 | 0.556 |
MHC Class I Molecules | ||||||
---|---|---|---|---|---|---|
Protein | Allele | Chicken Allele | Peptide | IC50 < 50 nM | Per Rank % | Antigenicity Score |
HA | HLA-A * 11:01 | BF2 * 2101 | STLNQRLAPK | 7.41 | 0.02 | 1.1473 |
HLA-A * 02:03 | RLKREEISGV | 7.72 | 0.09 | 0.9344 | ||
HLA-A * 68:01 | NTQFEAVGR | 10.06 | 0.08 | 1.2894 | ||
HLA-B * 40:01 | REEISGVKL | 14.22 | 0.04 | 0.6846 | ||
HLA-A * 02:03 | YIVERANPA | 14.9 | 0.24 | 0.7800 | ||
HLA-A * 68:01 | MNTQFEAVGR | 16.2 | 0.16 | 1.1615 | ||
HLA-B * 15:01 | GQRGINSSM | 22.36 | 0.07 | 1.0202 | ||
HLA-A * 03:01 | TLNQRLAPK | 30.75 | 0.08 | 1.1779 | ||
HLA-A * 30:01 | KVRLQLRDNA | 36.27 | 0.17 | 1.5926 | ||
HLA-A * 68:01 | MNTQFEAVGR | 16.2 | 0.16 | 1.1615 | ||
HLA-B * 15:01 | GQRGINSSM | 22.36 | 0.07 | 1.0202 | ||
HLA-A * 03:01 | TLNQRLAPK | 30.75 | 0.08 | 1.1779 | ||
NP | HLA-C * 16:01 | ATYQRTRAL | 14.58 | 0.04 | 0.5864 | |
HLA-A * 33:01 | DLRVSSFIR | 38.08 | 0.06 | 0.7704 | ||
HLA-A * 02:06 | FQGRGVFEL | 8.03 | 0.06 | 1.2783 | ||
HLA-A * 11:01 | GVFELTDEK | 36.27 | 0.17 | 1.1503 | ||
HLA-C * 12:03 | IAYERMCNI | 9.03 | 0.03 | 0.9843 | ||
HLA-B * 07:02 | KDPKKTGGPI | 21.15 | 0.07 | 0.6982 | ||
HLA-A * 68:02 | NATEIRASV | 17.19 | 0.13 | 0.4532 | ||
HLA-A * 68:01 | NLNDATYQR | 25.72 | 0.28 | 0.6676 | ||
HLA-A * 30:01 | RTRALVRTGM | 14.07 | 0.05 | 0.5749 | ||
HLA-A * 30:01 | STERATIMAA | 14.96 | 0.06 | 0.4494 | ||
HLA-A * 68:01 | VASGYDFER | 32.46 | 0.35 | 0.8489 | ||
NA | HLA-A * 11:01 | CYPDAGDIM | 15.29 | 0.09 | 0.4201 | |
HLA-A * 68:01 | FISCSHLECR | 30.11 | 0.4 | 1.0798 | ||
M2 | HLA-B * 44:02 | VETPTKNEW | 108.42 | 0.1 | 0.6266 | |
HLA-A * 30:01 | VYRRLKYGLK | 77.63 | 0.39 | 1.2596 |
MHC Class II Molecules | ||||||
---|---|---|---|---|---|---|
Protein | Allele | Chicken Allele | Peptide | IC50 < 50 nM | Per Rank % | Antigenicity Score |
HA | HLA-DRB1 * 01:01 | * Gaga_BLB1 * Gaga_BLB2 | RVPEWSYIVERANPA | 10.08 | 2.1 | 0.7022 |
HLA-DRB1 * 13:02 | WLIKKNDAYPTIKIS | 13.85 | 0.46 | 0.9804 | ||
HLA-DRB5 * 01:01 | ATYQRTRALVRTGMD | 10.99 | 0.15 | 0.4153 | ||
HLA-DRB1 * 01:01 | AELLVLMENERTLDF | 15.51 | 4.2 | 1.0504 | ||
HLA-DRB1 * 01:01 | ELLVLMENERTLDFH | 19.4 | 5.8 | 1.0452 | ||
HLA-DRB1 * 13:02 | LIKKNDAYPTIKISY | 21.09 | 0.99 | 1.0760 | ||
HLA-DRB1 * 13:02 | RNVVWLIKKNDAYPT | 25.07 | 1.3 | 1.2023 | ||
HLA-DRB1 * 13:02 | TIKISYNNTNREDLL | 33.13 | 2.1 | 0.7852 | ||
HLA-DRB1 * 04:01 | PEWSYIVERANPAND | 33.88 | 0.55 | 0.7539 | ||
HLA-DRB1 * 11:01 | FRNVVWLIKKNDAYP | 37.72 | 2 | 1.1509 | ||
HLA-DRB1 * 13:02 | AYPTIKISYNNTNRE | 38.33 | 2.5 | 0.8365 | ||
HLA-DRB1 * 13:02 | PTIKISYNNTNREDL | 41.05 | 2.8 | 0.7790 | ||
NP | HLA-DRB1 * 11:01 | MELIRMIKRGINDRN | 9.21 | 0.14 | 0.5862 | |
HLA-DRB1 * 07:01 | AEIEDLIFLARSALI | 10.77 | 0.29 | 0.8823 | ||
HLA-DRB5 * 01:01 | ATYQRTRALVRTGMD | 10.99 | 0.15 | 0.4153 | ||
HLA-DRB1 * 15:01 | EDLIFLARSALILRG | 14.06 | 0.17 | 0.7376 | ||
HLA-DRB1 * 07:01 | EIEDLIFLARSALIL | 14.83 | 0.74 | 0.9266 | ||
HLA-DRB1 * 01:01 | PRMCSLMQGSTLPRR | 15.32 | 4.1 | 0.4574 | ||
HLA-DRB5 * 01:01 | DATYQRTRALVRTGM | 15.37 | 0.53 | 0.5614 | ||
HLA-DRB1 * 01:01 | RMCSLMQGSTLPRRS | 16.83 | 4.8 | 0.5336 | ||
HLA-DRB5 * 01:01 | GRFYIQMCTELKLSD | 17.36 | 0.64 | 0.4565 | ||
HLA-DRB1 * 01:01 | DPRMCSLMQGSTLPR | 20.4 | 6.1 | 0.4614 | ||
HLA-DQA1 * 05:01/DQB1 * 03:01 | PRRSGAAGAAVKGVG | 28.48 | 1.2 | 0.9345 | ||
HLA-DQA1 * 05:01/DQB1 * 03:01 | LPRRSGAAGAAVKGV | 29.2 | 1.2 | 0.8733 | ||
HLA-DRB5 * 01:01 | SSFIRGTRVVPRGQL | 30.02 | 1.8 | 0.5929 | ||
HLA-DQA1 * 04:01/DQB1 * 04:02 | ARSALILRGSVAHKS | 41.48 | 0.49 | 0.6766 | ||
HLA-DRB5 * 01:01 | RSALILRGSVAHKSC | 41.78 | 2.9 | 0.6269 | ||
HLA-DQA1 * 05:01/DQB1 * 03:01 | TLPRRSGAAGAAVKG | 42.77 | 2.3 | 0.8370 | ||
HLA-DQA1 * 04:01/DQB1 * 04:02 | RSALILRGSVAHKSC | 45.19 | 0.7 | 0.6269 | ||
HLA-DPA1 * 03:01/DPB1 * 04:02 | GRRTRIAYERMCNIL | 46.18 | 0.71 | 0.6312 | ||
HLA-DRB5 * 01:01 | VGTMVMELIRMIKRG | 48.56 | 3.6 | 0.4815 | ||
HLA-DPA1 * 01:03/DPB1 * 02:01 | FEDLRVSSFIRGTRV | 49.13 | 1.4 | 0.8472 | ||
HLA-DQA1 * 05:01/DQB1 * 03:01 | LPRRSGAAGAAVKGV | 29.2 | 1.2 | 0.8733 | ||
HLA-DRB5 * 01:01 | SSFIRGTRVVPRGQL | 30.02 | 1.8 | 0.5929 | ||
NA | HLA-DRB3 * 01:01 | WAIYSKDNGIRIGSK | 16.43 | 0.21 | 0.9819 | |
HLA-DRB1 * 01:01 | SFKYGNGVWIGRTKS | 25.69 | 7.9 | 1.2583 | ||
M2 | HLA-DRB1 * 11:01 | VETPTKNEW | 108.42 | 0.1 | 0.6266 | |
HLA-DRB1 * 01:01 | VYRRLKYGLK | 77.63 | 0.39 | 1.2596 | ||
HLA-DRB5 * 01:01 | DRLFFKCVYRRLKYG | 23.64 | 0.92 | 0.4858 | ||
HLA-DPA1 * 01:03/DPB1 * 02:01 | SFKYGNGVWIGRTKS | 25.69 | 7.9 | 1.2583 | ||
HLA-DRB5 * 01:01 | CVYRRLKYGLKGGPS | 103.77 | 8.3 | 1.1811 | ||
HLA-DRB3 * 01:01 | DRLFFKCVYRRLKYG | 115.81 | 3.8 | 0.4858 | ||
HLA-DRB3 * 01:01 | KCVYRRLKYGLKGGP | 76.56 | 6.1 | 0.9916 | ||
HLA-DRB5 * 01:01 | QQSAVDVDDGHFVNI | 113.4 | 2.6 | 1.0804 | ||
HLA-DRB1 * 11:01 | QSAVDVDDGHFVNIE | 134.91 | 3 | 1.1815 |
S.No | Protein | Start | Peptide | Antigenicity Score | Docking Score | Confidence Score (>0.8) |
---|---|---|---|---|---|---|
MHC class I molecules | ||||||
1 | HA | 406 | KVRLQLRDNA | 1.5926 | −188.17 | 0.6821 |
2 | NP | 398 | FQGRGVFEL | 1.2783 | −214.75 | 0.7850 |
3 | NA | 121 | FISCSHLECR | 1.0798 | −214.75 | 0.7850 |
4 | M2 | 51 | VYRRLKYGLK | 1.2596 | −178.50 | 0.6388 |
MHC class II molecules | ||||||
1 | HA | 41 | RNVVWLIKKNDAYPT | 1.2023 | −263.89 | 0.9070 |
2 | NP | 252 | EIEDLIFLARSALIL | 0.9266 | −214.79 | 0.7851 |
3 | NA | 350 | SFKYGNGVWIGRTKS | 1.2583 | −255.61 | 0.8921 |
4 | M2 | 51 | VYRRLKYGLKGGPST | 1.2088 | −249.52 | 0.8798 |
B cell epitopes | ||||||
1 | HA | 168 | KKNDAYPTIKISYNNTNRED | 1.1073 | ||
2 | NP | 200 | MSSNGAYGVKGFSFKYGNGV | 0.9688 | ||
3 | NA | 338 | GINDRNFWRGENGRRTRIAY | 0.9417 | ||
4 | M2 | 56 | KYGLKGGPSTEGVPESMREE | 0.8569 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duraisamy, N.; Shah, A.U.; Khan, M.Y.; Cherkaoui, M.; Hemida, M.G. A Pan-H5N1 Multiepitope DNA Vaccine Construct Targeting Some Key Proteins of the Clade 2.3.4.4b Using AI-Assisted Epitope Mapping and Molecular Docking. Viruses 2025, 17, 1152. https://doi.org/10.3390/v17091152
Duraisamy N, Shah AU, Khan MY, Cherkaoui M, Hemida MG. A Pan-H5N1 Multiepitope DNA Vaccine Construct Targeting Some Key Proteins of the Clade 2.3.4.4b Using AI-Assisted Epitope Mapping and Molecular Docking. Viruses. 2025; 17(9):1152. https://doi.org/10.3390/v17091152
Chicago/Turabian StyleDuraisamy, Nithyadevi, Abid Ullah Shah, Mohd Yasir Khan, Mohammed Cherkaoui, and Maged Gomaa Hemida. 2025. "A Pan-H5N1 Multiepitope DNA Vaccine Construct Targeting Some Key Proteins of the Clade 2.3.4.4b Using AI-Assisted Epitope Mapping and Molecular Docking" Viruses 17, no. 9: 1152. https://doi.org/10.3390/v17091152
APA StyleDuraisamy, N., Shah, A. U., Khan, M. Y., Cherkaoui, M., & Hemida, M. G. (2025). A Pan-H5N1 Multiepitope DNA Vaccine Construct Targeting Some Key Proteins of the Clade 2.3.4.4b Using AI-Assisted Epitope Mapping and Molecular Docking. Viruses, 17(9), 1152. https://doi.org/10.3390/v17091152