Viral Infections in Type 2 Diabetes: A Dangerous Liaison
Abstract
1. Introduction
2. Viral Infections in the Context of Type 2 Diabetes
2.1. The Role of Inflammatory Mediators in Virus-Induced Diabetes
2.2. SARS-CoV-2
2.3. Hepatitis C Virus (HCV)
2.4. Cytomegalovirus (CMV)
2.5. Human Immunodeficiency Virus (HIV)
2.6. Human Papillomavirus (HPV)
2.7. Herpes Simplex Virus (HSV)
2.8. Hepatitis B Virus (HBV)
2.9. Changes to Gut Microbiota by Viral Infections That May Influence Cell Metabolism
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- World Health Organization Diabetes. Available online: https://www.who.int/health-topics/diabetes#tab=tab_1 (accessed on 30 June 2025).
- Haque, A.; Pant, A.B. Climate Change and Type 2 Diabetes in Senegal, a Sub-Saharan Country: Interconnected Threats to Health and Development. Brit. J. Healthc. Care. Med. Res. 2025, 12, 445–464. [Google Scholar] [CrossRef]
- Roy, S.; Pokharel, P.; Piganelli, J.D. Decoding the Immune Dance: Unraveling the Interplay between Beta Cells and Type 1 Diabetes. Mol. Metab. 2024, 88, 101998. [Google Scholar] [CrossRef]
- Roden, M.; Shulman, G.I. The Integrative Biology of Type 2 Diabetes. Nature 2019, 576, 51–60. [Google Scholar] [CrossRef]
- Rahman, M.S.; Hossain, K.S.; Das, S.; Kundu, S.; Adegoke, E.O.; Rahman, M.A.; Hannan, M.A.; Uddin, M.J.; Pang, M.-G. Role of Insulin in Health and Disease: An Update. Int. J. Mol. Sci. 2021, 22, 6403. [Google Scholar] [CrossRef] [PubMed]
- Scully, C. Endocrinology. In Scully’s Medical Problems in Dentistry; Elsevier: Amsterdam, The Netherlands, 2014; pp. 171–198. ISBN 9780702054013. [Google Scholar]
- Muniangi-Muhitu, H.; Akalestou, E.; Salem, V.; Misra, S.; Oliver, N.S.; Rutter, G.A. COVID-19 and Diabetes: A Complex Bidirectional Relationship. Front. Endocrinol. 2020, 11, 582936. [Google Scholar] [CrossRef]
- Rajsfus, B.F.; Mohana-Borges, R.; Allonso, D. Diabetogenic Viruses: Linking Viruses to Diabetes Mellitus. Heliyon 2023, 9, e15021. [Google Scholar] [CrossRef]
- Shoelson, S.; Lee, J.; Goldfine, A. Inflammation and Insulin Resistance. J. Clin. Investig. 2006, 116, 1793–1801. [Google Scholar] [CrossRef]
- Kumari, A. Exploring the Function of Inflammatory Routes in Insulin Resistance: Interpreting the Inflammatory Veil of Medusa. In Hypoglycemia—New Insights; IntechOpen: London, UK, 2024. [Google Scholar]
- Mohallem, R.; Aryal, U.K. Regulators of TNFα Mediated Insulin Resistance Elucidated by Quantitative Proteomics. Sci. Rep. 2020, 10, 20878. [Google Scholar] [CrossRef]
- Norouzirad, R.; González-Muniesa, P.; Ghasemi, A. Hypoxia in Obesity and Diabetes: Potential Therapeutic Effects of Hyperoxia and Nitrate. Oxid. Med. Cell. Longev. 2017, 2017, 5350267. [Google Scholar] [CrossRef]
- Caturano, A.; D’Angelo, M.; Mormone, A.; Russo, V.; Mollica, M.P.; Salvatore, T.; Galiero, R.; Rinaldi, L.; Vetrano, E.; Marfella, R.; et al. Oxidative Stress in Type 2 Diabetes: Impacts from Pathogenesis to Lifestyle Modifications. Curr. Issues Mol. Biol. 2023, 45, 6651–6666. [Google Scholar] [CrossRef]
- Darenskaya, M.A.; Kolesnikova, L.I.; Kolesnikov, S.I. Oxidative Stress: Pathogenetic Role in Diabetes Mellitus and Its Complications and Therapeutic Approaches to Correction. Bull. Exp. Biol. Med. 2021, 171, 179–189. [Google Scholar] [CrossRef]
- Tangvarasittichai, S. Oxidative Stress, Insulin Resistance, Dyslipidemia and Type 2 Diabetes Mellitus. World J. Diabetes 2015, 6, 456–480. [Google Scholar] [CrossRef]
- Wensveen, F.M.; Šestan, M.; Turk Wensveen, T.; Polić, B. “Beauty and the Beast” in Infection: How Immune-Endocrine Interactions Regulate Systemic Metabolism in the Context of Infection. Eur. J. Immunol. 2019, 49, 982–995. [Google Scholar] [CrossRef]
- Turk Wensveen, T.; Gašparini, D.; Rahelić, D.; Wensveen, F.M. Type 2 Diabetes and Viral Infection; Cause and Effect of Disease. Diabetes Res. Clin. Pract. 2021, 172, 108637. [Google Scholar] [CrossRef]
- Guo, W.; Li, M.; Dong, Y.; Zhou, H.; Zhang, Z.; Tian, C.; Qin, R.; Wang, H.; Shen, Y.; Du, K.; et al. Diabetes Is a Risk Factor for the Progression and Prognosis of COVID-19. Diabetes Metab. Res. Rev. 2020, 36, e3319. [Google Scholar] [CrossRef] [PubMed]
- Reiterer, M.; Rajan, M.; Gómez-Banoy, N.; Lau, J.D.; Gomez-Escobar, L.G.; Ma, L.; Gilani, A.; Alvarez-Mulett, S.; Sholle, E.T.; Chandar, V.; et al. Hyperglycemia in Acute COVID-19 Is Characterized by Insulin Resistance and Adipose Tissue Infectivity by SARS-CoV-2. Cell Metab. 2021, 33, 2174–2188.e5. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Vázquez, A.; Bello-Chavolla, O.Y.; Ortiz-Brizuela, E.; Campos-Muñoz, A.; Mehta, R.; Villanueva-Reza, M.; Bahena-López, J.P.; Antonio-Villa, N.E.; González-Lara, M.F.; Ponce de León, A.; et al. Impact of Undiagnosed Type 2 Diabetes and Pre-Diabetes on Severity and Mortality for SARS-CoV-2 Infection. BMJ Open Diabetes Res. Care 2021, 9, e002026. [Google Scholar] [CrossRef]
- Yuan, S.; Li, H.; Chen, C.; Wang, F.; Wang, D.W. Association of Glycosylated Haemoglobin HbA1c Levels with Outcome in Patients with COVID-19: A Retrospective Study. J. Cell. Mol. Med. 2021, 25, 3484–3497. [Google Scholar] [CrossRef] [PubMed]
- Montefusco, L.; Ben Nasr, M.; D’Addio, F.; Loretelli, C.; Rossi, A.; Pastore, I.; Daniele, G.; Abdelsalam, A.; Maestroni, A.; Dell’Acqua, M.; et al. Acute and Long-Term Disruption of Glycometabolic Control after SARS-CoV-2 Infection. Nat. Metab. 2021, 3, 774–785. [Google Scholar] [CrossRef]
- Jeremiah, S.S.; Moin, A.S.M.; Butler, A.E. Virus-Induced Diabetes Mellitus: Revisiting Infection Etiology in Light of SARS-CoV-2. Metabolism 2024, 156, 155917. [Google Scholar] [CrossRef]
- Acosta-Martinez, M.; Maria, Z.C. The PI3K/Akt Pathway in Meta-Inflammation. Int. J. Mol. Sci. 2022, 23, 15330. [Google Scholar] [CrossRef]
- Jager, J.; Grémeaux, T.; Cormont, M.; Marchand-Brustel, Y.L.; Tanti, J.-F. Interleukin-1beta-Induced Insulin Resistance in Adipocytes through down-Regulation of Insulin Receptor Substrate-1 Expression. Endocrinology 2007, 148, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Haque, A.; Pant, A.B. The Coevolution of COVID-19 and Host Immunity. Explor. Med. 2024, 5, 167–184. [Google Scholar] [CrossRef]
- Shoukat, M.; Khan, H.; Nazish, M.; Rehman, A.; Raashid, S.; Ahmed, S.; Munir, W.; Alrefaei, A.F.; Umair, M.; Bin Abid, M.O.; et al. Comparative Analysis of C-Reactive Protein Levels among Non-Comorbid, Comorbid, and Multimorbid Hospitalized COVID-19 Patients. BMC Infect. Dis. 2025, 25, 59. [Google Scholar] [CrossRef]
- Zhou, Y.; Chi, J.; Lv, W.; Wang, Y. Obesity and Diabetes as High-Risk Factors for Severe Coronavirus Disease 2019 (COVID-19). Diabetes Metab. Res. Rev. 2021, 37, e3377. [Google Scholar] [CrossRef]
- Drucker, D.J. Diabetes, Obesity, Metabolism, and SARS-CoV-2 Infection: The End of the Beginning. Cell Metab. 2021, 33, 479–498. [Google Scholar] [CrossRef]
- Abu-Farha, M.; Al-Mulla, F.; Thanaraj, T.A.; Kavalakatt, S.; Ali, H.; Abdul Ghani, M.; Abubaker, J. Impact of Diabetes in Patients Diagnosed with COVID-19. Front. Immunol. 2020, 11, 576818. [Google Scholar] [CrossRef]
- Sosale, A.; Sosale, B.; Kesavadev, J.; Chawla, M.; Reddy, S.; Saboo, B.; Misra, A. Steroid Use during COVID-19 Infection and Hyperglycemia—What a Physician Should Know. Diabetes Metab. Syndr. 2021, 15, 102167. [Google Scholar] [CrossRef]
- Ueki, K.; Kondo, T.; Kahn, C.R. Suppressor of Cytokine Signaling 1 (SOCS-1) and SOCS-3 Cause Insulin Resistance through Inhibition of Tyrosine Phosphorylation of Insulin Receptor Substrate Proteins by Discrete Mechanisms. Mol. Cell. Biol. 2004, 24, 5434–5446. [Google Scholar] [CrossRef]
- Zhang, L.; Badgwell, D.B.; Bevers, J.J., III; Schlessinger, K.; Murray, P.J.; Levy, D.E.; Watowich, S.S. IL-6 Signaling via the STAT3/SOCS3 Pathway: Functional Analysis of the Conserved STAT3 N-Domain. Mol. Cell. Biochem. 2006, 288, 179–189. [Google Scholar] [CrossRef]
- Wan, L.; Gao, Q.; Deng, Y.; Ke, Y.; Ma, E.; Yang, H.; Lin, H.; Li, H.; Yang, Y.; Gong, J.; et al. GP73 Is a Glucogenic Hormone Contributing to SARS-CoV-2-Induced Hyperglycemia. Nat. Metab. 2022, 4, 29–43. [Google Scholar] [CrossRef] [PubMed]
- Haque, A.; Pant, A.B. Mitigating COVID-19 in the Face of Emerging Virus Variants, Breakthrough Infections and Vaccine Hesitancy. J. Autoimmun. 2022, 127, 102792. [Google Scholar] [CrossRef]
- Li, M.-Y.; Li, L.; Zhang, Y.; Wang, X.-S. Expression of the SARS-CoV-2 Cell Receptor Gene ACE2 in a Wide Variety of Human Tissues. Infect. Dis. Poverty 2020, 9, 45. [Google Scholar] [CrossRef]
- Roca-Ho, H.; Riera, M.; Palau, V.; Pascual, J.; Soler, M.J. Characterization of ACE and ACE2 Expression within Different Organs of the NOD Mouse. Int. J. Mol. Sci. 2017, 18, 563. [Google Scholar] [CrossRef]
- Shin, J.; Toyoda, S.; Nishitani, S.; Onodera, T.; Fukuda, S.; Kita, S.; Fukuhara, A.; Shimomura, I. SARS-CoV-2 Infection Impairs the insulin/IGF Signaling Pathway in the Lung, Liver, Adipose Tissue, and Pancreatic Cells via IRF1. Metabolism 2022, 133, 155236. [Google Scholar] [CrossRef]
- Darweesh, M.; Mohammadi, S.; Rahmati, M.; Al-Hamadani, M.; Al-Harrasi, A. Metabolic Reprogramming in Viral Infections: The Interplay of Glucose Metabolism and Immune Responses. Front. Immunol. 2025, 16, 1578202. [Google Scholar] [CrossRef]
- Banerjee, S.; Saito, K.; Ait-Goughoulte, M.; Meyer, K.; Ray, R.B.; Ray, R. Hepatitis C Virus Core Protein Upregulates Serine Phosphorylation of Insulin Receptor Substrate-1 and Impairs the Downstream Akt/protein Kinase B Signaling Pathway for Insulin Resistance. J. Virol. 2008, 82, 2606–2612. [Google Scholar] [CrossRef] [PubMed]
- Banks, A.S.; Li, J.; McKeag, L.; Hribal, M.L.; Kashiwada, M.; Accili, D.; Rothman, P.B. Deletion of SOCS7 Leads to Enhanced Insulin Action and Enlarged Islets of Langerhans. J. Clin. Investig. 2005, 115, 2462–2471. [Google Scholar] [CrossRef] [PubMed]
- Parvaiz, F.; Manzoor, S.; Iqbal, J.; Sarkar-Dutta, M.; Imran, M.; Waris, G. Hepatitis C Virus NS5A Promotes Insulin Resistance through IRS-1 Serine Phosphorylation and Increased Gluconeogenesis. World J. Gastroenterol. 2015, 21, 12361–12369. [Google Scholar] [CrossRef]
- Aytug, S. Impaired IRS-1/PI3-Kinase Signaling in Patients with HCV: A Mechanism for Increased Prevalence of Type 2 Diabetes. Hepatology 2003, 38, 1384–1392. [Google Scholar]
- Hsieh, M.-J.; Lan, K.-P.; Liu, H.-Y.; Zhang, X.-Z.; Lin, Y.-F.; Chen, T.-Y.; Chiou, H.-L. Hepatitis C Virus E2 Protein Involve in Insulin Resistance through an Impairment of Akt/PKB and GSK3β Signaling in Hepatocytes. BMC Gastroenterol. 2012, 12, 74. [Google Scholar] [CrossRef] [PubMed]
- Nawaz, R.; Zahid, S.; Idrees, M.; Rafique, S.; Shahid, M.; Ahad, A.; Amin, I.; Almas, I.; Afzal, S. HCV-Induced Regulatory Alterations of IL-1β, IL-6, TNF-α, and IFN-ϒ Operative, Leading Liver En-Route to Non-Alcoholic Steatohepatitis. Inflamm. Res. 2017, 66, 477–486. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, W.; Zou, Z.; Fan, Q.; Hu, Z.; Feng, Z.; Zhu, B.; Xiong, J. Monocyte Chemoattractant Protein 1 Released from Macrophages Induced by Hepatitis C Virus Promotes Monocytes Migration. Virus Res. 2017, 240, 190–196. [Google Scholar] [CrossRef]
- Sartipy, P.; Loskutoff, D.J. Monocyte Chemoattractant Protein 1 in Obesity and Insulin Resistance. Proc. Natl. Acad. Sci. USA 2003, 100, 7265–7270. [Google Scholar] [CrossRef] [PubMed]
- Brault, C.; Levy, P.L.; Bartosch, B. Hepatitis C Virus-Induced Mitochondrial Dysfunctions. Viruses 2013, 5, 954–980. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wang, F.; Zhou, Y.; Jiang, J.; Ksimu, S.; Zhang, X.; Li, J.Z.; Niu, J.; Wang, Q. Chronic Hepatitis C Virus Infection Impairs Insulin Secretion by Regulation of p38δ MAPK-Dependent Exocytosis in Pancreatic β-Cells. Clin. Sci. 2020, 134, 529–542. [Google Scholar] [CrossRef]
- de Jong, M.D.; Galasso, G.J.; Gazzard, B.; Griffiths, P.D.; Jabs, D.A.; Kern, E.R.; Spector, S.A. Summary of the II International Symposium on Cytomegalovirus. Antivir. Res. 1998, 39, 141–162. [Google Scholar] [CrossRef]
- Yoo, S.G.; Han, K.D.; Lee, K.H.; La, Y.; Kwon, D.E.; Han, S.H. Impact of Cytomegalovirus Disease on New-Onset Type 2 Diabetes Mellitus: Population-Based Matched Case-Control Cohort Study. Diabetes Metab. J. 2019, 43, 815–829. [Google Scholar] [CrossRef]
- Pak, C.Y.; Eun, H.M.; McArthur, R.G.; Yoon, J.W. Association of Cytomegalovirus Infection with Autoimmune Type 1 Diabetes. Lancet 1988, 2, 1–4. [Google Scholar] [CrossRef]
- Löhr, J.M.; Oldstone, M.B. Detection of Cytomegalovirus Nucleic Acid Sequences in Pancreas in Type 2 Diabetes. Lancet 1990, 336, 644–648. [Google Scholar] [CrossRef]
- Wang, X.; Chen, J.; Cao, Z.; Yu, X. Associations between Human Cytomegalovirus Infection and Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. BMJ Open 2023, 13, e071934. [Google Scholar] [CrossRef] [PubMed]
- Fleck-Derderian, S.; McClellan, W.; Wojcicki, J.M. The Association between Cytomegalovirus Infection, Obesity, and Metabolic Syndrome in U.S. Adult Females. Obesity 2017, 25, 626–633. [Google Scholar] [CrossRef] [PubMed]
- Al Mana, H.; Yassine, H.M.; Younes, N.N.; Al-Mohannadi, A.; Al-Sadeq, D.W.; Alhababi, D.; Nasser, E.A.; Nasrallah, G.K. The Current Status of Cytomegalovirus (CMV) Prevalence in the MENA Region: A Systematic Review. Pathogens 2019, 8, 213. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, S.; Brown, T.T. Diabetes in People with HIV. Curr. Diab. Rep. 2021, 21, 13. [Google Scholar] [CrossRef]
- Hernandez-Romieu, A.C.; Garg, S.; Rosenberg, E.S.; Thompson-Paul, A.M.; Skarbinski, J. Is Diabetes Prevalence Higher among HIV-Infected Individuals Compared with the General Population? Evidence from MMP and NHANES 2009–2010. BMJ Open Diabetes Res. Care 2017, 5, e000304. [Google Scholar] [CrossRef]
- Chireshe, R.; Manyangadze, T.; Naidoo, K. Diabetes Mellitus and Associated Factors among HIV-Positive Patients at Primary Health Care Facilities in Harare, Zimbabwe: A Descriptive Cross-Sectional Study. BMC Prim. Care 2024, 25, 28. [Google Scholar] [CrossRef]
- Gkrania-Klotsas, E.; Klotsas, A.-E. HIV and HIV Treatment: Effects on Fats, Glucose and Lipids. Br. Med. Bull. 2007, 84, 49–68. [Google Scholar] [CrossRef]
- Li, K.; Hu, L.; Li, X.; Yuan, Z.; He, J.; Liu, D.; Yang, G.; Yuan, L. Effect of C-Reactive Protein Deficiency on Insulin Resistance Reversal in Rats with Polycystic Ovary Syndrome through Augmented Leptin Action. Diabetol. Metab. Syndr. 2023, 15, 180. [Google Scholar] [CrossRef]
- Rochira, V.; Guaraldi, G. Growth Hormone Deficiency and Human Immunodeficiency Virus. Best Pract. Res. Clin. Endocrinol. Metab. 2017, 31, 91–111. [Google Scholar] [CrossRef]
- Nijenhuis-Noort, E.C.; Berk, K.A.; Neggers, S.J.C.M.M.; van der Lely, A.J. The Fascinating Interplay between Growth Hormone, Insulin-like Growth Factor-1, and Insulin. Endocrinol. Metab. 2024, 39, 83–89. [Google Scholar] [CrossRef]
- Willig, A.L.; Overton, E.T. Metabolic Complications and Glucose Metabolism in HIV Infection: A Review of the Evidence. Curr. HIV/AIDS Rep. 2016, 13, 289–296. [Google Scholar] [CrossRef]
- Kemnic, T.R.; Gulick, P.G. HIV Antiretroviral Therapy; StatPearls Publishing: Treasure Island, FL, USA, 2018. [Google Scholar]
- Koster, J.C.; Remedi, M.S.; Qiu, H.; Nichols, C.G.; Hruz, P.W. HIV Protease Inhibitors Acutely Impair Glucose-Stimulated Insulin Release. Diabetes 2003, 52, 1695–1700. [Google Scholar] [CrossRef]
- Lee, G.A.; Seneviratne, T.; Noor, M.A.; Lo, J.C.; Schwarz, J.-M.; Aweeka, F.T.; Mulligan, K.; Schambelan, M.; Grunfeld, C. The Metabolic Effects of Lopinavir/ritonavir in HIV-Negative Men. AIDS 2004, 18, 641–649. [Google Scholar] [CrossRef]
- Di Gennaro, F.; Vergori, A.; Bavaro, D.F. HIV and Co-Infections: Updates and Insights. Viruses 2023, 15, 1097. [Google Scholar] [CrossRef]
- Bosch, F.X.; Lorincz, A.; Muñoz, N.; Meijer, C.J.L.M.; Shah, K.V. The Causal Relation between Human Papillomavirus and Cervical Cancer. J. Clin. Pathol. 2002, 55, 244–265. [Google Scholar] [CrossRef] [PubMed]
- Haque, A.; Kouriba, B.; Aïssatou, N.; Pant, A. Eliminating Cervical Cancer in Mali and Senegal, Two Sub-Saharan Countries: Insights and Optimizing Solutions. Vaccines 2020, 8, 181. [Google Scholar] [CrossRef]
- Turhan Cakir, A.; Sel, G.; Balci, S.; Harma, M.; Harma, M.I. Evaluation of HPV, Smear and Colposcopy Results in Patients with Diabetes. Diabetes Metab. Syndr. 2022, 16, 102335. [Google Scholar] [CrossRef] [PubMed]
- Yue, C.; Zhang, C.; Ying, C.; Jiang, H. Diabetes Associated with HPV Infection in Women Aged over 50 Years: A Cross-Sectional Study from China’s Largest Academic Woman’s Hospital. Front. Endocrinol. 2022, 13, 972963. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Wei, X.C.; Xu, H.Y.; Hu, H.B.; Li, F.X.; Zhou, W.J.; Chen, Y.; Liu, Z. Blood Glucose Levels and the Risk of HPV Multiple Infections in High-Grade Squamous Intraepithelial Lesions: A Retrospective Cross-Sectional Study of Chinese Patients. Medicine 2022, 101, e30494. [Google Scholar] [CrossRef]
- Woelfle, T.; Linkohr, B.; Waterboer, T.; Thorand, B.; Seissler, J.; Chadeau-Hyam, M.; Peters, A. Health Impact of Seven Herpesviruses on (pre)diabetes Incidence and HbA1c: Results from the KORA Cohort. Diabetologia 2022, 65, 1328–1338. [Google Scholar] [CrossRef] [PubMed]
- Zameer, U.; Saqib, E.; Munshi, M.S.; Rohail, S. Connecting the Dots: How Herpes Viruses Influence Type 2 Diabetes: Insights from Experimental Researches. Clin. Med. Insights Endocrinol. Diabetes 2024, 17, 11795514241249013. [Google Scholar] [CrossRef]
- Kareem, R.A.; Sameer, H.N.; Athab, Z.H.; Adil, M.; Yaseen, A.; Allela, O.Q.B. A Review of the Relationship between Type 2 Diabetes Mellitus and Different Stages of Hepatitis B Infection (HCC, CHB, OBI). Microb. Pathog. 2025, 206, 107748. [Google Scholar] [CrossRef]
- Loria, P.; Lonardo, A.; Anania, F. Liver and Diabetes. A Vicious Circle: Liver and T2D. Hepatol. Res. 2013, 43, 51–64. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, X.; Ji, Y.; Li, H.; Hou, F.; Xiao, C.; Yuan, P. Increased Risk of Hepatitis B Virus Infection amongst Individuals with Diabetes Mellitus. Biosci. Rep. 2019, 39, BSR20181715. [Google Scholar] [CrossRef]
- Younossi, Z.; Kochems, K.; de Ridder, M.; Curran, D.; Bunge, E.M.; de Moerlooze, L. Should Adults with Diabetes Mellitus Be Vaccinated against Hepatitis B Virus? A Systematic Review of Diabetes Mellitus and the Progression of Hepatitis B Disease. Hum. Vaccin. Immunother. 2017, 13, 2695–2706. [Google Scholar] [CrossRef]
- Xie, J.; Lin, X.; Fan, X.; Wang, X.; Pan, D.; Li, J.; Hao, Y.; Jie, Y.; Zhang, L.; Gu, J. Global Burden and Trends of Primary Liver Cancer Attributable to Comorbid Type 2 Diabetes Mellitus among People Living with Hepatitis B: An Observational Trend Study from 1990 to 2019. J. Epidemiol. Glob. Health 2024, 14, 398–410. [Google Scholar] [CrossRef] [PubMed]
- Paradis, V.; Perlemuter, G.; Bonvoust, F.; Dargere, D.; Parfait, B.; Vidaud, M.; Conti, M.; Huet, S.; Ba, N.; Buffet, C.; et al. High Glucose and Hyperinsulinemia Stimulate Connective Tissue Growth Factor Expression: A Potential Mechanism Involved in Progression to Fibrosis in Nonalcoholic Steatohepatitis. Hepatology 2001, 34, 738–744. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Wang, X.; Wang, X.; Li, J.; Jie, Y.; Hao, Y.; Gu, J. Assessing the Impact of Comorbid Type 2 Diabetes Mellitus on the Disease Burden of Chronic Hepatitis B Virus Infection and Its Complications in China from 2006 to 2030: A Modeling Study. Glob. Health Res. Policy 2024, 9, 5. [Google Scholar] [CrossRef]
- Mei, Z.; Wang, F.; Bhosle, A.; Dong, D.; Mehta, R.; Ghazi, A.; Zhang, Y.; Liu, Y.; Rinott, E.; Ma, S.; et al. Strain-Specific Gut Microbial Signatures in Type 2 Diabetes Identified in a Cross-Cohort Analysis of 8,117 Metagenomes. Nat. Med. 2024, 30, 2265–2276. [Google Scholar] [CrossRef]
- Yoo, J.Y.; Groer, M.; Dutra, S.V.O.; Sarkar, A.; McSkimming, D.I. Gut Microbiota and Immune System Interactions. Microorganisms 2020, 8, 1587. [Google Scholar] [CrossRef]
- Li, Z.; Chen, J.; Li, Y.; Li, L.; Zhan, Y.; Yang, J.; Wu, H.; Li, S.; Mo, X.; Wang, X.; et al. Impact of SARS-CoV-2 Infection on Respiratory and Gut Microbiome Stability: A Metagenomic Investigation in Long-Term-Hospitalized COVID-19 Patients. NPJ Biofilms Microbiomes 2024, 10, 126. [Google Scholar] [CrossRef]
- Xiao, Z.; Pan, M.; Li, X.; Zhao, C. Impact of SARS-CoV2 Infection on Gut Microbiota Dysbiosis. Microbiome Res. Rep. 2024, 3, 7. [Google Scholar] [CrossRef] [PubMed]
- Hur, K.Y.; Lee, M.-S. Gut Microbiota and Metabolic Disorders. Diabetes Metab. J. 2015, 39, 198–203. [Google Scholar] [CrossRef] [PubMed]
- Wiertsema, S.P.; van Bergenhenegouwen, J.; Garssen, J.; Knippels, L.M.J. The Interplay between the Gut Microbiome and the Immune System in the Context of Infectious Diseases throughout Life and the Role of Nutrition in Optimizing Treatment Strategies. Nutrients 2021, 13, 886. [Google Scholar] [CrossRef]
- Kim, H.S. Do an Altered Gut Microbiota and an Associated Leaky Gut Affect COVID-19 Severity? mBio 2021, 12, e03022–e03120. [Google Scholar] [CrossRef]
- Xu, E.; Xie, Y.; Al-Aly, Z. Long-Term Gastrointestinal Outcomes of COVID-19. Nat. Commun. 2023, 14, 983. [Google Scholar] [CrossRef] [PubMed]
- Inoue, T.; Nakayama, J.; Moriya, K.; Kawaratani, H.; Momoda, R.; Ito, K.; Iio, E.; Nojiri, S.; Fujiwara, K.; Yoneda, M.; et al. Gut Dysbiosis Associated with Hepatitis C Virus Infection. Clin. Infect. Dis. 2018, 67, 869–877. [Google Scholar] [CrossRef]
- Pan, Z.; Wu, N.; Jin, C. Intestinal Microbiota Dysbiosis Promotes Mucosal Barrier Damage and Immune Injury in HIV-Infected Patients. Can. J. Infect. Dis. Med. Microbiol. 2023, 2023, 3080969. [Google Scholar] [CrossRef]
- Li, R.; Yi, X.; Yang, J.; Zhu, Z.; Wang, Y.; Liu, X.; Huang, X.; Wan, Y.; Fu, X.; Shu, W.; et al. Gut Microbiome Signatures in the Progression of Hepatitis B Virus-Induced Liver Disease. Front. Microbiol. 2022, 13, 916061. [Google Scholar] [CrossRef]
Virus | Targets | Impacts of Treatment | Metabolic Response | Immune Response |
---|---|---|---|---|
SARS-CoV-2 | ● ACE-2 virus receptor expression in the pancreas ● Direct infection of the GI tract | ● Steroids used in the treatment of severe or critical COVID-19 increase blood sugar | ● Disrupts adiponectin hormone production ● Golgi protein 73 (stress-induced) activates glucogenesis | ● Secretion of IL-6 and IL-1β cytokines, which are well known for inducing insulin resistance ● Generation of pro-inflammatory markers (C-reactive protein, procalcitonin, and ferritin expression) contributes to chronic inflammation and insulin resistance ● Increased SOCS3 and SOCS7, known insulin inhibitors ● Activation of IRF1 impairs IRS1 |
HCV | ● Direct infection of pancreatic β-cells results in reduced insulin secretion | ● Successful treatment could lead to improved glycemic control | ● Increases blood sugar ● Viral core protein mediates phosphorylation of IRS1 ● Viral protein 5A and E2 affect glucose metabolism by increasing serine phosphorylation | ● Stimulates the production of IL-1β and IL-6 cytokines, which are well known for inducing insulin resistance ● Induces MCP1 chemokine, promoting insulin resistance ● Increased SOCS3 and SOCS7, known insulin inhibitors |
HIV | ● Direct infection of the GI tract, including gut-associated lymphoid tissue and lymphocytes in the gut | ● ARTs are implicated in the development of insulin resistance ● Some medications impair glucose metabolism by interfering with glucose transporter type 4 (GLUT-4) | ● Dysregulates glucose ● Growth hormone deficiency abets insulin resistance | ● Augmented levels of inflammatory molecules like TNFα and C-reactive protein can impact insulin resistance |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haque, A.; Pant, A.B. Viral Infections in Type 2 Diabetes: A Dangerous Liaison. Viruses 2025, 17, 1150. https://doi.org/10.3390/v17091150
Haque A, Pant AB. Viral Infections in Type 2 Diabetes: A Dangerous Liaison. Viruses. 2025; 17(9):1150. https://doi.org/10.3390/v17091150
Chicago/Turabian StyleHaque, Azizul, and Anudeep B. Pant. 2025. "Viral Infections in Type 2 Diabetes: A Dangerous Liaison" Viruses 17, no. 9: 1150. https://doi.org/10.3390/v17091150
APA StyleHaque, A., & Pant, A. B. (2025). Viral Infections in Type 2 Diabetes: A Dangerous Liaison. Viruses, 17(9), 1150. https://doi.org/10.3390/v17091150