Soluble Neuropilin-1 as a Marker for Distinguishing Bacterial and Viral Sepsis in Critically Ill Patients—A Prospective, Multicenter, Observational Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Blood Sampling and Cytokine Measurement
2.3. Data Collection
2.4. Statistical Analysis
3. Results
3.1. Treatment
3.2. Inflammatory Markers
3.3. sNRP-1
3.4. Subgroup Analysis of Patients with Respiratory Focus
4. Discussion
Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ICU | Intensive care unit |
SARS-CoV-2 | Severe acute respiratory distress syndrome corona virus 2 |
IL-6 | Interleukin-6 |
CRP | C-reactive protein |
PCT | Procalcitonin |
NRP-1 | Neuropilin-1 |
sNRP-1 | Soluble Neuropilin-1 |
IMV | Invasive mechanical ventilation |
NHF | Nasal high flow |
CPAP | Continuous positive airway pressure |
NIV | Non-invasive ventilation |
AKI | Acute kidney injury |
KDIGO | Kidney Disease: Improving Global Outcomes |
IQR | Interquartile range |
AUC | Area under the ROC curve |
ESM | Electronic Supplemental Material |
References
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef]
- Lin, G.L.; McGinley, J.P.; Drysdale, S.B.; Pollard, A.J. Epidemiology and Immune Pathogenesis of Viral Sepsis. Front. Immunol. 2018, 9, 2147. [Google Scholar] [CrossRef]
- Phua, J.; Ngerng, W.J.; See, K.C.; Tay, C.K.; Kiong, T.; Lim, H.F.; Chew, M.Y.; Yip, H.S.; Tan, A.; Khalizah, H.J.; et al. Characteristics and outcomes of culture-negative versus culture-positive severe sepsis. Crit. Care 2013, 17, R202. [Google Scholar] [CrossRef] [PubMed]
- Leligdowicz, A.; Dodek, P.M.; Norena, M.; Wong, H.; Kumar, A.; Group C-oAToSSDR. Association between source of infection and hospital mortality in patients who have septic shock. Am. J. Respir. Crit. Care Med. 2014, 189, 1204–1213. [Google Scholar] [CrossRef] [PubMed]
- Mayr, F.B.; Yende, S.; Angus, D.C. Epidemiology of severe sepsis. Virulence 2014, 5, 4–11. [Google Scholar] [CrossRef]
- Koch, R.M.; Kox, M.; de Jonge, M.I.; van der Hoeven, J.G.; Ferwerda, G.; Pickkers, P. Patterns in Bacterial- and Viral-Induced Immunosuppression and Secondary Infections in the ICU. Shock 2017, 47, 5–12. [Google Scholar] [CrossRef]
- Dong, E.; Du, H.; Gardner, L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect. Dis. 2020, 20, 533–534. [Google Scholar] [CrossRef]
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; Mcintyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock 2021. Intensive Care Med. 2021, 47, 1181–1247. [Google Scholar] [CrossRef]
- Gavazzi, I. Semaphorin-neuropilin-1 interactions in plasticity and regeneration of adult neurons. Cell Tissue Res. 2001, 305, 275–284. [Google Scholar] [CrossRef]
- Djordjevic, S.; Driscoll, P.C. Targeting VEGF signalling via the neuropilin co-receptor. Drug Discov. Today 2013, 18, 447–455. [Google Scholar] [CrossRef]
- Janssen, B.J.; Malinauskas, T.; Weir, G.A.; Cader, M.Z.; Siebold, C.; Jones, E.Y. Neuropilins lock secreted semaphorins onto plexins in a ternary signaling complex. Nat. Struct. Mol. Biol. 2012, 19, 1293–1299. [Google Scholar] [CrossRef] [PubMed]
- Glinka, Y.; Prud’homme, G.J. Neuropilin-1 is a receptor for transforming growth factor beta-1, activates its latent form, and promotes regulatory T cell activity. J. Leukoc. Biol. 2008, 84, 302–310. [Google Scholar] [CrossRef]
- Romeo, P.H.; Lemarchandel, V.; Tordjman, R. Neuropilin-1 in the immune system. Adv. Exp. Med. Biol. 2002, 515, 49–54. [Google Scholar]
- Tordjman, R.; Lepelletier, Y.; Lemarchandel, V.; Cambot, M.; Gaulard, P.; Hermine, O.; Roméo, P.-H. A neuronal receptor, neuropilin-1, is essential for the initiation of the primary immune response. Nat. Immunol. 2002, 3, 477–482. [Google Scholar] [CrossRef] [PubMed]
- Sarris, M.; Andersen, K.G.; Randow, F.; Mayr, L.; Betz, A.G. Neuropilin-1 expression on regulatory T cells enhances their interactions with dendritic cells during antigen recognition. Immunity 2008, 28, 402–413. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, B.; Khaled, Y.S.; Ammori, B.J.; Elkord, E. Neuropilin 1: Function and therapeutic potential in cancer. Cancer Immunol. Immunother. 2014, 63, 81–99. [Google Scholar] [CrossRef]
- Lu, Y.; Xiang, H.; Liu, P.; Tong, R.R.; Watts, R.J.; Koch, A.W.; Sandoval, W.N.; Damico, L.A.; Wong, W.L.; Meng, Y.G. Identification of circulating neuropilin-1 and dose-dependent elevation following anti-neuropilin-1 antibody administration. MAbs 2009, 1, 364–369. [Google Scholar] [CrossRef]
- Vrettou, C.S.; Keskinidou, C.; Vassiliou, A.G.; Poupouzas, G.; Jahaj, E.; Issaris, V.; Theodorou, E.; Halioti, A.; Giannopoulou, V.; Lotsios, N.S.; et al. High levels of soluble neuropilin-1 in critically ill multiple trauma/surgical patients. Adv. Med. Sci. 2025, 70, 191–196. [Google Scholar] [CrossRef]
- Pohlan, J.; Witham, D.; Muench, G.; Kwon, H.J.; Zimmermann, E.; Böhm, M.; Praetger, D.; Dewey, M. Computed tomography for detection of septic foci: Retrospective analysis of patients presenting to the emergency department. Clin. Imaging 2021, 69, 223–227. [Google Scholar] [CrossRef]
- Pohlan, J.; Möckel, M.; Slagman, A.; Tenenbaum, H.; Stolz, J.; Rubarth, K.; Winning, J.; Bauer, M.; Reinhart, K.; Stacke, A.; et al. Computed tomography in patients with sepsis presenting to the emergency department: Exploring its role in light of patient outcomes. Eur. Radiol. 2024, 34, 6466–6474. [Google Scholar] [CrossRef]
- Khwaja, A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin. Pract. 2012, 120, c179–c184. [Google Scholar] [CrossRef]
- Harris, P.A.; Taylor, R.; Thielke, R.; Payne, J.; Gonzalez, N.; Conde, J.G. Research electronic data capture (REDCap)—a metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inform. 2009, 42, 377–381. [Google Scholar] [CrossRef]
- Harris, P.A.; Taylor, R.; Minor, B.L.; Elliott, V.; Fernandez, M.; O’Neal, L.; McLeod, L.; Delacqua, G.; Delacqua, F.; Kirby, J.; et al. The REDCap consortium: Building an international community of software platform partners. J. Biomed. Inform. 2019, 95, 103208. [Google Scholar] [CrossRef]
- Sultan, R.H.; Elesawy, B.H.; Ali, T.M.; Abdallah, M.; Assal, H.H.; Ahmed, A.E.; Ahmetd, O.M. Correlations between Kidney and Heart Function Bioindicators and the Expressions of Toll-Like, ACE2, and NRP-1 Receptors in COVID-19. Vaccines 2022, 10, 1106. [Google Scholar] [CrossRef]
- Li, D.; Wu, M. Pattern recognition receptors in health and diseases. Signal Transduct. Target. Ther. 2021, 6, 291. [Google Scholar] [CrossRef] [PubMed]
- Takeda, K.; Akira, S. TLR signaling pathways. Semin. Immunol. 2004, 16, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.L.; Wang, C.X.; Wang, Z.Y.; Li, W.J.; Liu, Y.C.; Shou, S.T.; Chai, Y.F. Targeting Neuropilin-1 Suppresses the Stability of CD4+ CD25+ Regulatory T Cells via the NF-κB Signaling Pathway in Sepsis. Infect. Immun. 2021, 89, e00399-20. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Huang, S.-Y.; Sun, J.-H.; Zhang, H.-C.; Cai, Q.-L.; Gao, C.; Li, L.; Cao, J.; Xu, F.; Zhou, Y.; et al. Sepsis-induced immunosuppression: Mechanisms, diagnosis and current treatment options. Mil. Med. Res. 2022, 9, 56. [Google Scholar]
- Perschinka, F.; Mayerhöfer, T.; Lehner, G.F.; Hasslacher, J.; Klein, S.J.; Joannidis, M. Immunologic response in bacterial sepsis is different from that in COVID-19 sepsis. Infection 2022, 50, 1035–1037. [Google Scholar] [CrossRef]
- Song, J.; Park, D.W.; Moon, S.; Cho, H.-J.; Park, J.H.; Seok, H.; Choi, W.S. Diagnostic and prognostic value of interleukin-6, pentraxin 3, and procalcitonin levels among sepsis and septic shock patients: A prospective controlled study according to the Sepsis-3 definitions. BMC Infect. Dis. 2019, 19, 968. [Google Scholar] [CrossRef]
- Gagnon, M.L.; Bielenberg, D.R.; Gechtman, Z.; Miao, H.Q.; Takashima, S.; Soker, S.; Klagsbrun, M. Identification of a natural soluble neuropilin-1 that binds vascular endothelial growth factor: In vivo expression and antitumor activity. Proc. Natl. Acad. Sci. USA 2000, 97, 2573–2578. [Google Scholar] [CrossRef]
- Okon, I.S.; Coughlan, K.A.; Zhang, C.; Moriasi, C.; Ding, Y.; Song, P.; Zhang, W.; Li, G.; Zou, M.-H. Protein kinase LKB1 promotes RAB7-mediated neuropilin-1 degradation to inhibit angiogenesis. J. Clin. Investig. 2014, 124, 4590–4602. [Google Scholar] [CrossRef]
Bacterial (n = 37) | Viral (n = 14) | p | |
---|---|---|---|
Age ° | 66 (53–71) | 65 (57–71) | 0.849 |
Sex (male) * | 26 (70.3%) | 11 (78.6%) | 0.553 |
BMI ° | 26.6 (24.7–30.6) | 26.2 (23.2–28.4) | 0.580 |
HbA1c% ° | 5.8 (5.6–6.4) | 6.0 (5.9–6.5) | 0.316 |
SOFA score ° | 9 (8–11) | 7 (6–8) | 0.001 |
SAPS III ° | 65 (61–76) | 61 (46–65) | 0.018 |
Vasopressor administration at admission * | 34 (94.4%) | 11 (78.5%) | 0.140 |
Norepinephrin at admission (µg/kg/min) ° | 0.23 (0.10–0.37) | 0.17 (0.08–0.21) | 0.137 |
Vasopressin at admission (U/hr) ° | 1.6 (1.6–1.6) | 0.8 (0.8–0.8) | 0.182 |
Inflammatory markers at ICU admission | |||
Interleukin-6 (ng/L) ° | 3900.5 (984.0–44,140.0) | 145.0 (68.4–190.0) | <0.001 |
C-reactive protein (mg/dL) ° | 17.8 (10.7–29.5) | 10.6 (4.6–19.5) | 0.080 |
Procalcitonin (µg/L) ° | 29.1 (5.5–63.8) | 0.3 (0.2–0.6) | <0.001 |
Comorbidities | |||
Hypertension * | 16 (43.2%) | 7 (50.0%) | 0.665 |
Coronary artery disease * | 16 (43.2%) | 6 (42.9%) | 0.980 |
Atrial fibrillation * | 9 (24.3%) | 3 (21.4%) | 0.828 |
COPD * | 8 (21.6%) | 1 (7.1%) | 0.226 |
Diabetes mellitus type I * | 1 (2.7%) | 0 | 0.534 |
Diabetes mellitus type II * | 7 (18.9%) | 3 (21.4%) | 0.840 |
Hepatic comorbidity * | 7 (18.9%) | 0 | 0.080 |
Pulmonary comorbidity * | 3 (8.1%) | 1 (7.1%) | 0.909 |
Chronic kidney disease * | 6 (16.2%) | 3 (21.4%) | 0.663 |
Focus of infection | |||
Respiratory * | 17 (45.9%) | 14 (100%) | 0.014 |
Gastrointestinal * | 6 (16.2%) | 0 | |
Genitourinary * | 4 (10.8%) | 0 | |
Cutaneous * | 7 (18.9%) | 0 | |
Other * | 3 (8.1%) | 0 | |
Hospital stay | |||
Length of stay in ICU ° | 7 (3–19) | 17 (7–25) | 0.062 |
Length of stay in hospital ° | 17 (7–48) | 24 (11–61) | 0.299 |
Bacterial co-infection during stay * | 15 (40.5%) | 9 (64.3%) | 0.129 |
Fungal co-infection during stay * | 17 (45.9%) | 9 (64.3%) | 0.242 |
ICU mortality * | 11 (29.7%) | 0 | 0.021 |
Hospital mortality * | 12 (32.4%) | 1 (7.1%) | 0.064 |
Bacterial Cohort (n = 37) | Viral Cohort (n = 14) | p | |
---|---|---|---|
Day 1 (nmol/L) | 3.06 (2.57–3.68) | 2.02 (1.26–2.75) | 0.004 |
Day 2 (nmol/L) | 3.38 (2.63–3.76) | 1.84 (1.44–2.09) | <0.001 |
Day 3 (nmol/L) | 3.34 (2.38–3.84) | 1.87 (1.32–2.54) | <0.001 |
Day 4 (nmol/L) | 3.16 (2.59–3.61) | 1.93 (1.31–2.49) | 0.025 |
Day 5 (nmol/L) | 2.99 (2.39–3.40) | 1.84 (1.44–2.29) | 0.009 |
Day 6 (nmol/L) | 2.64 (2.11–3.29) | 1.91 (1.50–2.10) | 0.009 |
Day 7 (nmol/L) | 2.58 (1.92–3.22) | 2.00 (1.44–2.37) | 0.040 |
AUC (95% CI) | |
---|---|
Day 1 | 0.777 (0.630–0.924) |
Day 2 | 0.846 (0.718–0.974) |
Day 3 | 0.823 (0.686–0.960) |
Day 4 | 0.744 (0.545–0.943) |
Day 5 | 0.807 (0.617–0.997) |
Day 6 | 0.800 (0.619–0.981) |
Day 7 | 0.739 (0.540–0.938) |
Bacterial Cohort (n = 17) | Viral Cohort (n = 14) | ||
---|---|---|---|
Day 1 (nmol/L) | 2.75 (2.48–3.43) | 2.02 (1.26–2.75) | 0.043 |
Day 2 (nmol/L) | 3.25 (2.63–3.49) | 1.84 (1.44–2.09) | 0.001 |
Day 3 (nmol/L) | 3.00 (2.25–3.76) | 1.87 (1.32–2.54) | 0.004 |
Day 4 (nmol/L) | 3.04 (2.62–3.50) | 1.93 (1.31–2.49) | 0.030 |
Day 5 (nmol/L) | 2.93 (2.55–3.47) | 1.84 (1.44–2.29) | 0.016 |
Day 6 (nmol/L) | 2.61 (2.55–3.29) | 1.91 (1.50–2.10) | 0.016 |
Day 7 (nmol/L) | 2.56 (1.91–3.03) | 2.00 (1.44–2.37) | 0.099 |
AUC (95% CI) | |
---|---|
Day 1 | 0.725 (0.533–0.918) |
Day 2 | 0.837 (0.677–0.996) |
Day 3 | 0.810 (0.645–0.976) |
Day 4 | 0.769 (0.556–0.982) |
Day 5 | 0.818 (0.608–1.000) |
Day 6 | 0.809 (0.605–1.000) |
Day 7 | 0.718 (0.492–0.944) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perschinka, F.; Lehner, G.F.; Mayerhöfer, T.; Hartig, F.; Zassler, B.; Bösch, J.; Fries, D.; Bellmann, R.; Joannidis, M. Soluble Neuropilin-1 as a Marker for Distinguishing Bacterial and Viral Sepsis in Critically Ill Patients—A Prospective, Multicenter, Observational Study. Viruses 2025, 17, 997. https://doi.org/10.3390/v17070997
Perschinka F, Lehner GF, Mayerhöfer T, Hartig F, Zassler B, Bösch J, Fries D, Bellmann R, Joannidis M. Soluble Neuropilin-1 as a Marker for Distinguishing Bacterial and Viral Sepsis in Critically Ill Patients—A Prospective, Multicenter, Observational Study. Viruses. 2025; 17(7):997. https://doi.org/10.3390/v17070997
Chicago/Turabian StylePerschinka, Fabian, Georg Franz Lehner, Timo Mayerhöfer, Frank Hartig, Birgit Zassler, Johannes Bösch, Dietmar Fries, Romuald Bellmann, and Michael Joannidis. 2025. "Soluble Neuropilin-1 as a Marker for Distinguishing Bacterial and Viral Sepsis in Critically Ill Patients—A Prospective, Multicenter, Observational Study" Viruses 17, no. 7: 997. https://doi.org/10.3390/v17070997
APA StylePerschinka, F., Lehner, G. F., Mayerhöfer, T., Hartig, F., Zassler, B., Bösch, J., Fries, D., Bellmann, R., & Joannidis, M. (2025). Soluble Neuropilin-1 as a Marker for Distinguishing Bacterial and Viral Sepsis in Critically Ill Patients—A Prospective, Multicenter, Observational Study. Viruses, 17(7), 997. https://doi.org/10.3390/v17070997