Emerging Arthropod-Borne Viruses Hijack the Host Cell Cytoskeleton During Neuroinvasion
Abstract
1. Introduction
2. Emerging Neurotropic Arboviruses
3. Neuroinvasion and the Neuropathogenesis of Arboviruses
4. Neurotropic Arboviruses Hijack the Host Cell Cytoskeleton for Efficient Replication
5. Modulation of Cytoskeletal Protein Expression During Arbovirus Neuroinvasion
6. Discussion
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sangkachai, N.; Gummow, B.; Hayakijkosol, O.; Suwanpakdee, S.; Wiratsudakul, A. A Review of Risk Factors at the Human-Animal-Environmental Interface of Garbage Dumps That Are Driving Current and Emerging Zoonotic Diseases. One Health 2024, 19, 100915. [Google Scholar] [CrossRef]
- Gebreyes, W.A.; Dupouy-Camet, J.; Newport, M.J.; Oliveira, C.J.B.; Schlesinger, L.S.; Saif, Y.M.; Kariuki, S.; Saif, L.J.; Saville, W.; Wittum, T.; et al. The Global One Health Paradigm: Challenges and Opportunities for Tackling Infectious Diseases at the Human, Animal, and Environment Interface in Low-Resource Settings. PLoS Negl. Trop. Dis. 2014, 8, e3257. [Google Scholar] [CrossRef]
- Grace, D.; Mutua, F.; Ochungo, P.; Kruska, R.; Jones, K.; Brierley, L.; Lapar, L.; Said, M.; Herrero, M.; Phuc, P.M.; et al. Mapping of Poverty and Likely Zoonoses Hotspots. Available online: https://cgspace.cgiar.org/items/c879acdd-6b11-4166-aa8d-48049783b453 (accessed on 9 May 2025).
- Hedrich, N.; Bekker-Nielsen Dunbar, M.; Grobusch, M.P.; Schlagenhauf, P. Aedes-Borne Arboviral Human Infections in Europe from 2000 to 2023: A Systematic Review and Meta-Analysis. Travel. Med. Infect. Dis. 2025, 64, 102799. [Google Scholar] [CrossRef] [PubMed]
- Akello, W. Climate Change and Veterinary Medicine: A Call to Action for a Healthier Planet. F1000Research 2024, 13, 1360. [Google Scholar] [CrossRef] [PubMed]
- Branda, F.; Pavia, G.; Ciccozzi, A.; Quirino, A.; Marascio, N.; Matera, G.; Romano, C.; Locci, C.; Azzena, I.; Pascale, N.; et al. Zoonotic Paramyxoviruses: Evolution, Ecology, and Public Health Strategies in a Changing World. Viruses 2024, 16, 1688. [Google Scholar] [CrossRef] [PubMed]
- Sharan, M.; Vijay, D.; Yadav, J.P.; Bedi, J.S.; Dhaka, P. Surveillance and Response Strategies for Zoonotic Diseases: A Comprehensive Review. Sci. One Health 2023, 2, 100050. [Google Scholar] [CrossRef]
- De Conto, F. Avian Influenza A Viruses Modulate the Cellular Cytoskeleton during Infection of Mammalian Hosts. Pathogens 2024, 13, 249. [Google Scholar] [CrossRef]
- Salimi, H.; Cain, M.D.; Klein, R.S. Encephalitic Arboviruses: Emergence, Clinical Presentation, and Neuropathogenesis. Neurotherapeutics 2016, 13, 514–534. [Google Scholar] [CrossRef]
- Girard, M.; Nelson, C.B.; Picot, V.; Gubler, D.J. Arboviruses: A Global Public Health Threat. Vaccine 2020, 38, 3989–3994. [Google Scholar] [CrossRef]
- Kraemer, M.U.G.; Reiner, R.C.; Brady, O.J.; Messina, J.P.; Gilbert, M.; Pigott, D.M.; Yi, D.; Johnson, K.; Earl, L.; Marczak, L.B.; et al. Past and Future Spread of the Arbovirus Vectors Aedes Aegypti and Aedes Albopictus. Nat. Microbiol. 2019, 4, 854–863. [Google Scholar] [CrossRef]
- Blitvich, B. Arboviruses: Molecular Biology, Evolution and Control. Nikos Vasilakis and Duane J. Gubler. Am. Soc. Trop. Med. Hyg. 2016, 95, 488–489. [Google Scholar] [CrossRef] [PubMed]
- Laverdeur, J.; Desmecht, D.; Hayette, M.-P.; Darcis, G. Dengue and Chikungunya: Future Threats for Northern Europe? Front. Epidemiol. 2024, 4, 1342723. [Google Scholar] [CrossRef] [PubMed]
- Dusfour, I.; Chaney, S.C. Mosquito Control: Success, Failure and Expectations in the Context of Arbovirus Expansion and Emergence. In Mosquitopia: The Place of Pests in a Healthy World; Hall, M., Tamïr, D., Eds.; Routledge: New York, NY, USA, 2002; Chapter 14. [Google Scholar]
- Karesh, W.B. Shifting from Wildlife Disease Threats to Wildlife Health. Rev. Sci. Tech. l’OIE 2024, Special Edition, 141–144. [Google Scholar] [CrossRef] [PubMed]
- Bakhiyi, B.; Irace-Cima, A.; Ludwig, A.; Rakotoarinia, M.R.; Therrien, C.; Dusfour, I.; Adam-Poupart, A. Public Health Contributions of Entomological Surveillance of West Nile Virus (WNV) and Other Mosquito-Borne Arboviruses in a Context of Climate Change. Can. Commun. Dis. Rep. 2024, 50, 294–304. [Google Scholar] [CrossRef]
- World Health Organization. To Identify Pathogens That Could Cause Future Outbreaks and Pandemics. Available online: https://www.who.int/news/item/21-11-2022-who-to-identify-pathogens-that-could-cause-future-outbreaks-and-pandemics (accessed on 1 March 2025).
- Starolis, M.W.; Perez, O.; Powell, E.A. Clinical Features and Laboratory Diagnosis of Emerging Arthropod-Transmitted Viruses: A Report from the Pan American Society for Clinical Virology Clinical Practice Committee. J. Clin. Virol. 2020, 132, 104651. [Google Scholar] [CrossRef]
- World Health Organization. Global Arbovirus Initiative. Available online: https://www.who.int/initiatives/global-arbovirus-initiative#:~:text=Pillars%3A,Build%20a%20Coalition%20of%20Partners (accessed on 1 March 2025).
- Srichawla, B.S.; Manan, M.R.; Kipkorir, V.; Dhali, A.; Diebel, S.; Sawant, T.; Zia, S.; Carrion-Alvarez, D.; Suteja, R.C.; Nurani, K.; et al. Neuroinvasion of Emerging and Re-Emerging Arboviruses: A Scoping Review. SAGE Open Med. 2024, 12, 20503121241229847. [Google Scholar] [CrossRef]
- Al-Obaidi, J.M.M.; Bahadoran, A.; Wang, S.M.; Manikam, R.; Raju, C.S.; Sekaran, S.D. Disruption of the Blood Brain Barrier Is Vital Property of Neurotropic Viral Infection of the Central Nervous System. Acta Virol. 2018, 62, 16–27. [Google Scholar] [CrossRef]
- Clé, M.; Eldin, P.; Briant, L.; Lannuzel, A.; Simonin, Y.; Van De Perre, P.; Cabié, A.; Salinas, S. Neurocognitive Impacts of Arbovirus Infections. J. Neuroinflam. 2020, 17, 233. [Google Scholar] [CrossRef]
- Nath, A.; Kolson, D.L. Reemerging Infectious Diseases and Neuroimmunologic Complications. Neurol. Neuroimmunol. Neuroinflam. 2025, 12, e200356. [Google Scholar] [CrossRef]
- Murugesan, A.; Manoharan, M. Dengue Virus. In Emerging and Reemerging Viral Pathogens; Elsevier: Amsterdam, The Netherlands, 2020; pp. 281–359. [Google Scholar]
- Calderón-Peláez, M.A.; Coronel-Ruiz, C.; Castellanos, J.E.; Velandia-Romero, M.L. Endothelial Dysfunction, HMGB1, and Dengue: An Enigma to Solve. Viruses 2022, 14, 1765. [Google Scholar] [CrossRef]
- Francelino, E.d.O.; Puccioni-Sohler, M. Dengue e Dengue Grave Com Complicações Neurológicas: Um Desafio Para a Prevenção e o Controle. Arq. Neuropsiquiatr. 2024, 82, 1–6. [Google Scholar] [PubMed]
- World Health Organization. Zika Virus Disease. Available online: https://www.who.int/health-topics/zika-virus-disease#tab=tab_1 (accessed on 1 March 2025).
- Pierson, T.C.; Diamond, M.S. The Emergence of Zika Virus and Its New Clinical Syndromes. Nature 2018, 560, 573–581. [Google Scholar] [CrossRef] [PubMed]
- Haley, M.; Retter, A.S.; Fowler, D.; Gea-Banacloche, J.; O’grady, N.P. The Role for Intravenous Immunoglobulin in the Treatment of West Nile Virus Encephalitis. Clin. Infect. Dis. 2003, 37, e88–e90. [Google Scholar] [CrossRef]
- Rai, T.K.; Chakravarty, J.; Kashyap, S.; Chatterjee, S.; Tiwari, V.D.; Rai, U.G.; Gangwar, M.; Sundar, S.; Nath, G. Etiology of Acute Encephalitis Syndrome in Adults in a Tertiary Care Center in Eastern Uttar Pradesh. Am. J. Trop. Med. Hyg. 2025, 112, 194–199. [Google Scholar] [CrossRef]
- Mi, Y.; Guo, Y.; Luo, X.; Bai, Y.; Chen, H.; Wang, M.; Wang, Y.; Guo, J. Natural Products and Derivatives as Japanese Encephalitis Virus Antivirals. Pathog. Dis. 2024, 82, ftae022. [Google Scholar] [CrossRef]
- Curren, E.J.; Lindsey, N.P.; Fischer, M.; Hills, S.L. St. Louis Encephalitis Virus Disease in the United States, 2003–2017. Am. J. Trop. Med. Hyg. 2018, 99, 1074–1079. [Google Scholar] [CrossRef]
- Bogovic, P. Tick-Borne Encephalitis: A Review of Epidemiology, Clinical Characteristics, and Management. World J. Clin. Cases 2015, 3, 430. [Google Scholar] [CrossRef] [PubMed]
- Ndukwe, C.; Melville, A.C.; Osman, M.; Mohammed, Y.; Oduro, M.; Ankrah, P.K. Neurological Complications Associated with the Powassan Virus and Treatment Interventions. Cureus 2024, 16, e71780. [Google Scholar] [CrossRef]
- World Health Organization. Chikungunya. Available online: https://www.who.int/health-topics/chikungunya#tab=tab_1 (accessed on 1 March 2025).
- Lanciotti, R.S.; Kosoy, O.L.; Laven, J.J.; Panella, A.J.; Velez, J.O.; Lambert, A.J.; Campbell, G.L. Chikungunya Virus in US Travelers Returning from India, 2006. Emerg. Infect. Dis. 2007, 13, 764–767. [Google Scholar] [CrossRef]
- Rezza, G. Climate Change and the Spread of Aedes Mosquito-Borne Viruses in Europe. Pathog. Glob. Health 2024, 118, 358–359. [Google Scholar] [CrossRef]
- Kordowitzki, P. Eastern Equine Encephalitis Virus: The Importance of Metabolism and Aging. Int. J. Mol. Sci. 2024, 25, 13318. [Google Scholar] [CrossRef] [PubMed]
- Acosta-Ampudia, Y.; Monsalve, D.M.; Rodríguez, Y.; Pacheco, Y.; Anaya, J.M.; Ramírez-Santana, C. Mayaro: An Emerging Viral Threat? Emerg. Microbes Infect. 2018, 7, 163. [Google Scholar] [CrossRef] [PubMed]
- Pisano, M.B.; Oria, G.; Beskow, G.; Aguilar, J.; Konigheim, B.; Cacace, M.L.; Aguirre, L.; Stein, M.; Contigiani, M.S. Venezuelan Equine Encephalitis Viruses (VEEV) in Argentina: Serological Evidence of Human Infection. PLoS Negl. Trop. Dis. 2013, 7, e2551. [Google Scholar] [CrossRef]
- Afshar Moghaddam, N.; Yekanipour, Z.; Akbarzadeh, S.; Molavi Nia, S.; Abarghooi Kahaki, F.; Kalantar, M.H.; Gholizadeh, O. Recent Advances in Treatment and Detection of Rift Valley Fever Virus: A Comprehensive Overview. Virus Genes 2025. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Clinical Overview of Oropouche Virus Disease. Available online: https://www.cdc.gov/oropouche/hcp/clinical-overview/index.html#:~:text=Clinical%20features,chills%2C%20myalgia%2C%20and%20arthralgia (accessed on 1 March 2025).
- Vernal, S.; Martini, C.C.R.; da Fonseca, B.A.L. Oropouche Virus–Associated Aseptic Meningoencephalitis, Southeastern Brazil. Emerg. Infect. Dis. 2019, 25, 380–382. [Google Scholar] [CrossRef]
- Welte, T.; Reagan, K.; Fang, H.; Machain-Williams, C.; Zheng, X.; Mendell, N.; Chang, G.J.J.; Wu, P.; Blair, C.D.; Wang, T. Toll-like Receptor 7-Induced Immune Response to Cutaneous West Nile Virus Infection. J. Gen. Virol. 2009, 90, 2660–2668. [Google Scholar] [CrossRef]
- Daffis, S.; Samuel, M.A.; Suthar, M.S.; Keller, B.C.; Gale, M.; Diamond, M.S. Interferon Regulatory Factor IRF-7 Induces the Antiviral Alpha Interferon Response and Protects against Lethal West Nile Virus Infection. J. Virol. 2008, 82, 8465–8475. [Google Scholar] [CrossRef]
- Dang, J.; Tiwari, S.K.; Lichinchi, G.; Qin, Y.; Patil, V.S.; Eroshkin, A.M.; Rana, T.M. Zika Virus Depletes Neural Progenitors in Human Cerebral Organoids through Activation of the Innate Immune Receptor TLR3. Cell Stem Cell 2016, 19, 258–265. [Google Scholar] [CrossRef]
- Fredericksen, B.L.; Keller, B.C.; Fornek, J.; Katze, M.G.; Gale, M. Establishment and Maintenance of the Innate Antiviral Response to West Nile Virus Involves Both RIG-I and MDA5 Signaling through IPS-1. J. Virol. 2008, 82, 609–616. [Google Scholar] [CrossRef]
- Potokar, M.; Korva, M.; Jorgacěvski, J.; Avšič-Županc, T.; Zorec, R. Tick-Borne Encephalitis Virus Infects Rat Astrocytes but Does Not Affect Their Viability. PLoS ONE 2014, 9, e86219. [Google Scholar] [CrossRef]
- Růžek, D.; Vancová, M.; Tesařová, M.; Ahantarig, A.; Kopecký, J.; Grubhoffer, L. Morphological Changes in Human Neural Cells Following Tick-Borne Encephalitis Virus Infection. J. Gen. Virol. 2009, 90, 1649–1658. [Google Scholar] [CrossRef]
- Lee, E.; Lobigs, M. Substitutions at the Putative Receptor-Binding Site of an Encephalitic Flavivirus Alter Virulence and Host Cell Tropism and Reveal a Role for Glycosaminoglycans in Entry. J. Virol. 2000, 74, 8867–8875. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.; Hall, R.A.; Lobigs, M. Common E Protein Determinants for Attenuation of Glycosaminoglycan-Binding Variants of Japanese Encephalitis and West Nile Viruses. J. Virol. 2004, 78, 8271–8280. [Google Scholar] [CrossRef] [PubMed]
- Aguilar, P.V.; Adams, A.P.; Wang, E.; Kang, W.; Carrara, A.-S.; Anishchenko, M.; Frolov, I.; Weaver, S.C. Structural and Nonstructural Protein Genome Regions of Eastern Equine Encephalitis Virus Are Determinants of Interferon Sensitivity and Murine Virulence. J. Virol. 2008, 82, 4920–4930. [Google Scholar] [CrossRef] [PubMed]
- Samuel, M.A.; Morrey, J.D.; Diamond, M.S. Caspase 3-Dependent Cell Death of Neurons Contributes to the Pathogenesis of West Nile Virus Encephalitis. J. Virol. 2007, 81, 2614–2623. [Google Scholar] [CrossRef] [PubMed]
- Myint, K.S.A.; Kipar, A.; Jarman, R.G.; Gibbons, R.V.; Perng, G.C.; Flanagan, B.; Mongkolsirichaikul, D.; Van Gessel, Y.; Solomon, T. Neuropathogenesis of Japanese Encephalitis in a Primate Model. PLoS Negl. Trop. Dis. 2014, 8, e2980. [Google Scholar] [CrossRef]
- Li, H.; Saucedo-Cuevas, L.; Yuan, L.; Ross, D.; Johansen, A.; Sands, D.; Stanley, V.; Guemez-Gamboa, A.; Gregor, A.; Evans, T.; et al. Zika Virus Protease Cleavage of Host Protein Septin-2 Mediates Mitotic Defects in Neural Progenitors HHS Public Access. Neuron 2019, 101, 1089–1098. [Google Scholar] [CrossRef]
- Li, M.; Peng, D.; Cao, H.; Yang, X.; Li, S.; Qiu, H.J.; Li, L.F. The Host Cytoskeleton Functions as a Pleiotropic Scaffold: Orchestrating Regulation of the Viral Life Cycle and Mediating Host Antiviral Innate Immune Responses. Viruses 2023, 15, 1354. [Google Scholar] [CrossRef]
- Fuchs, E.; Cleveland, D.W. A Structural Scaffolding of Intermediate Filaments in Health and Disease. Science (1979) 1998, 279, 514–519. [Google Scholar] [CrossRef]
- Słońska, A.; Polowy, R.; Golke, A.; Cymerys, J. Role of Cytoskeletal Motor Proteins in Viral Infection. Postepy Hig. Med. Dosw. 2012, 66, 810–817. [Google Scholar] [CrossRef]
- MacTaggart, B.; Kashina, A. Posttranslational Modifications of the Cytoskeleton. Cytoskeleton 2021, 78, 142–173. [Google Scholar] [CrossRef] [PubMed]
- Buxboim, A.; Kronenberg-Tenga, R.; Salajkova, S.; Avidan, N.; Shahak, H.; Thurston, A.; Medalia, O. Scaffold, Mechanics and Functions of Nuclear Lamins. FEBS Lett. 2023, 597, 2791–2805. [Google Scholar] [CrossRef]
- Buchwalter, A. Intermediate, but Not Average: The Unusual Lives of the Nuclear Lamin Proteins. Curr. Opin. Cell Biol. 2023, 84, 102220. [Google Scholar] [CrossRef]
- De Conto, F.; Mancabelli, L.; Prandini, E.; Ventura, M. Highly Dynamic Cytoskeletal Networks Support Productive Viral Infection and Host Innate Immune Response Activation. Curr. Clin. Microbiol. Rep. 2025, 12, 5. [Google Scholar] [CrossRef]
- Ploubidou, A.; Way, M. Viral Transport and the Cytoskeleton. Curr. Opin. Cell Biol. 2001, 13, 97–105. [Google Scholar] [CrossRef]
- Döhner, K.; Sodeik, B. The Role of the Cytoskeleton During Viral Infection. In Membrane Trafficking in Viral Replication; Springer: Berlin/Heidelberg, Germany, 2005; pp. 67–108. [Google Scholar]
- Furnon, W.; Fender, P.; Confort, M.P.; Desloire, S.; Nangola, S.; Kitidee, K.; Leroux, C.; Ratinier, M.; Arnaud, F.; Lecollinet, S.; et al. Remodeling of the Actin Network Associated with the Non-Structural Protein 1 (NS1) of West Nile Virus and Formation of NS1-Containing Tunneling Nanotubes. Viruses 2019, 11, 901. [Google Scholar] [CrossRef] [PubMed]
- Chu, J.J.H.; Choo, B.G.H.; Lee, J.W.M.; Ng, M.L. Actin Filaments Participate in West Nile (Sarafend) Virus Maturation Process. J. Med. Virol. 2003, 71, 463–472. [Google Scholar] [CrossRef]
- Huang, X.; Xing, Y.; Cui, Y.; Ji, B.; Ding, B.; Zhong, J.; Jiu, Y. Actomyosin-Dependent Cell Contractility Orchestrates Zika Virus Infection. J. Cell Sci. 2023, 136, jcs261301. [Google Scholar] [CrossRef]
- Wolf, B.; Diop, F.; Ferraris, P.; Wichit, S.; Busso, C.; Missé, D.; Gönczy, P. Zika Virus Causes Supernumerary Foci with Centriolar Proteins and Impaired Spindle Positioning. Open Biol. 2017, 7, 160231. [Google Scholar] [CrossRef]
- Robinson, B.V.; Faundez, V.; Lerit, D.A. Understanding Microcephaly through the Study of Centrosome Regulation in Drosophila Neural Stem Cells. Biochem. Soc. Trans. 2020, 48, 2101–2115. [Google Scholar] [CrossRef]
- Cortese, M.; Goellner, S.; Acosta, E.G.; Neufeldt, C.J.; Oleksiuk, O.; Lampe, M.; Haselmann, U.; Funaya, C.; Schieber, N.; Ronchi, P.; et al. Ultrastructural Characterization of Zika Virus Replication Factories. Cell Rep. 2017, 18, 2113–2123. [Google Scholar] [CrossRef] [PubMed]
- Perry, A.K.; Chow, E.K.; Goodnough, J.B.; Yeh, W.C.; Cheng, G. Differential Requirement for TANK-Binding Kinase-1 in Type I Interferon Responses to Toll-like Receptor Activation and Viral Infection. J. Exp. Med. 2004, 199, 1651–1658. [Google Scholar] [CrossRef]
- Wang, L.; Li, S.; Dorf, M.E. NEMO Binds Ubiquitinated TANK-Binding Kinase 1 (TBK1) to Regulate Innate Immune Responses to RNA Viruses. PLoS ONE 2012, 7, e43756. [Google Scholar] [CrossRef] [PubMed]
- Kodani, A.; Knopp, K.A.; Di Lullo, E.; Retallack, H.; Kriegstein, A.R.; DeRisi, J.L.; Reiter, J.F. Zika Virus Alters Centrosome Organization to Suppress the Innate Immune Response. EMBO Rep. 2022, 23, e52211. [Google Scholar] [CrossRef]
- Pérez-Yanes, S.; Lorenzo-Sánchez, I.; Cabrera-Rodríguez, R.; García-Luis, J.; Trujillo-González, R.; Estévez-Herrera, J.; Valenzuela-Fernández, A. The ZIKV NS5 Protein Aberrantly Alters the Tubulin Cytoskeleton, Induces the Accumulation of Autophagic P62 and Affects IFN Production: HDAC6 Has Emerged as an Anti-NS5/ZIKV Factor. Cells 2024, 13, 598. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Waeckerlin, R.; Urbanowski, M.D.; van Marle, G.; Hobman, T.C. West Nile Virus Infection Causes Endocytosis of a Specific Subset of Tight Junction Membrane Proteins. PLoS ONE 2012, 7, e37886. [Google Scholar] [CrossRef]
- Hunsperger, E.; Roehrig, J. Nocodazole Delays Viral Entry into the Brain Following Footpad Inoculation with West Nile Virus in Mice. J. Neurovirol. 2009, 15, 211–218. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, W.; Li, J.; Wu, W.; Jiu, Y. The Role of Host Cytoskeleton in Flavivirus Infection. Virol. Sin. 2019, 34, 30–41. [Google Scholar] [CrossRef]
- Cuartas-López, A.M.; Hernández-Cuellar, C.E.; Gallego-Gómez, J.C. Disentangling the Role of PI3K/Akt, Rho GTPase and the Actin Cytoskeleton on Dengue Virus Infection. Virus Res. 2018, 256, 153–165. [Google Scholar] [CrossRef]
- Jhan, M.K.; Tsai, T.T.; Chen, C.L.; Tsai, C.C.; Cheng, Y.L.; Lee, Y.C.; Ko, C.Y.; Lin, Y.S.; Chang, C.P.; Lin, L.T.; et al. Dengue Virus Infection Increases Microglial Cell Migration. Sci. Rep. 2017, 7, 91. [Google Scholar] [CrossRef]
- Chen, W.; Gao, N.; Wang, J.L.; Tian, Y.P.; Chen, Z.T.; An, J. Vimentin Is Required for Dengue Virus Serotype 2 Infection but Microtubules Are Not Necessary for This Process. Arch. Virol. 2008, 153, 1777–1781. [Google Scholar] [CrossRef]
- Teo, C.S.H.; Chu, J.J.H. Cellular Vimentin Regulates Construction of Dengue Virus Replication Complexes through Interaction with NS4A Protein. J. Virol. 2014, 88, 1897–1913. [Google Scholar] [CrossRef] [PubMed]
- Khadka, S.; Vangeloff, A.D.; Zhang, C.; Siddavatam, P.; Heaton, N.S.; Wang, L.; Sengupta, R.; Sahasrabudhe, S.; Randall, G.; Gribskov, M.; et al. A Physical Interaction Network of Dengue Virus and Human Proteins. Mol. Cell. Proteom. 2011, 10, M111-012187. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Cao, M.; Song, H.; Chen, S.; Qian, X.; Zhao, P.; Ren, H.; Tang, H.; Wang, Y.; Wei, Y.; et al. Caveolin-1-Mediated Japanese Encephalitis Virus Entry Requires a Two-Step Regulation of Actin Reorganization. Future Microbiol. 2016, 11, 1227–1248. [Google Scholar] [CrossRef] [PubMed]
- Kalia, M.; Khasa, R.; Sharma, M.; Nain, M.; Vrati, S. Japanese Encephalitis Virus Infects Neuronal Cells through a Clathrin-Independent Endocytic Mechanism. J. Virol. 2013, 87, 148–162. [Google Scholar] [CrossRef]
- Gil, P.I.; Albrieu-Llinás, G.; Mlewski, E.C.; Monetti, M.; Fozzatti, L.; Cuffini, C.; Fernández Romero, J.; Kunda, P.; Paglini, M.G. Pixuna Virus Modifies Host Cell Cytoskeleton to Secure Infection. Sci. Rep. 2017, 7, 5757. [Google Scholar] [CrossRef]
- Issac, T.H.K.; Tan, E.L.; Chu, J.J.H. Proteomic Profiling of Chikungunya Virus-Infected Human Muscle Cells: Reveal the Role of Cytoskeleton Network in CHIKV Replication. J. Proteom. 2014, 108, 445–464. [Google Scholar] [CrossRef]
- Gerrard, S.R.; Rollin, P.E.; Nichol, S.T. Bidirectional Infection and Release of Rift Valley Fever Virus in Polarized Epithelial Cells. Virology 2002, 301, 226–235. [Google Scholar] [CrossRef]
- Bamia, A.; Marcato, V.; Boissière, M.; Mansuroglu, Z.; Tamietti, C.; Romani, M.; Simon, D.; Tian, G.; Niedergang, F.; Panthier, J.-J.; et al. The NSs Protein Encoded by the Virulent Strain of Rift Valley Fever Virus Targets the Expression of Abl2 and the Actin Cytoskeleton of the Host, Affecting Cell Mobility, Cell Shape, and Cell-Cell Adhesion. J. Virol. 2020, 95, e01768-20. [Google Scholar] [CrossRef]
- Huang, Y.; Peng, Q.; Tian, X.; Chen, C.; Zhu, X.; Huang, C.; Huo, Z.; Liu, Y.; Yang, C.; Liu, C.; et al. Nuclear Membrane Protein SUN2 Promotes Replication of Flaviviruses through Modulating Cytoskeleton Reorganization Mediated by NS1. Nat. Commun. 2024, 15, 296. [Google Scholar] [CrossRef]
- Kanlaya, R.; Pattanakitsakul, S.N.; Sinchaikul, S.; Chen, S.T.; Thongboonkerd, V. Alterations in Actin Cytoskeletal Assembly and Junctional Protein Complexes in Human Endothelial Cells Induced by Dengue Virus Infection and Mimicry of Leukocyte Transendothelial Migration. J. Proteome Res. 2009, 8, 2551–2562. [Google Scholar] [CrossRef]
- Fraisier, C.; Koraka, P.; Belghazi, M.; Bakli, M.; Granjeaud, S.; Pophillat, M.; Lim, S.M.; Osterhaus, A.; Martina, B.; Camoin, L.; et al. Kinetic Analysis of Mouse Brain Proteome Alterations Following Chikungunya Virus Infection before and after Appearance of Clinical Symptoms. PLoS ONE 2014, 9, e91397. [Google Scholar] [CrossRef]
- Dhanwani, R.; Khan, M.; Alam, S.I.; Rao, P.V.L.; Parida, M. Differential Proteome Analysis of Chikungunya Virus-infected New-born Mice Tissues Reveal Implication of Stress, Inflammatory and Apoptotic Pathways in Disease Pathogenesis. Proteomics 2011, 11, 1936–1951. [Google Scholar] [CrossRef] [PubMed]
- Castro, F.L.d.; Brustolini, O.J.B.; Geddes, V.E.V.; Souza, J.P.B.M.d.; Alves-Leon, S.V.; Aguiar, R.S.; Vasconcelos, A.T.R. Modulation of HERV Expression by Four Different Encephalitic Arboviruses during Infection of Human Primary Astrocytes. Viruses 2022, 14, 2505. [Google Scholar] [CrossRef]
- Dhingra, V.; Li, Q.; Allison, A.B.; Stallknecht, D.E.; Fu, Z.F. Proteomic Profiling and Neurodegeneration in West-Nile-Virus-Infected Neurons. J. Biomed. Biotechnol. 2005, 2005, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Fraisier, C.; Camoin, L.; Lim, S.; Bakli, M.; Belghazi, M.; Fourquet, P.; Granjeaud, S.; Osterhaus, A.D.M.E.; Koraka, P.; Martina, B.; et al. Altered Protein Networks and Cellular Pathways in Severe West Nile Disease in Mice. PLoS ONE 2013, 8, e68318. [Google Scholar] [CrossRef]
- Ye, J.; Zhang, H.; He, W.; Zhu, B.; Zhou, D.; Chen, Z.; Ashraf, U.; Wei, Y.; Liu, Z.; Fu, Z.F.; et al. Quantitative Phosphoproteomic Analysis Identifies the Critical Role of JNK1 in Neuroinflammation Induced by Japanese Encephalitis Virus. Sci. Signal. 2016, 9, ra98. [Google Scholar] [CrossRef]
- Balakrishnan, V.S. WHO Launches Global Initiative for Arboviral Diseases. Lancet Microbe 2022, 3, e407. [Google Scholar] [CrossRef]
- Huang, Y.J.S.; Higgs, S.; Vanlandingham, D.L. Emergence and Re-Emergence of Mosquito-Borne Arboviruses. Curr Opin Virol 2019, 34, 104–109. [Google Scholar] [CrossRef]
- Pohl, M.O.; Martin-Sancho, L.; Ratnayake, R.; White, K.M.; Riva, L.; Chen, Q.-Y.; Lieber, G.; Busnadiego, I.; Yin, X.; Lin, S.; et al. Sec61 Inhibitor Apratoxin S4 Potently Inhibits SARS-CoV-2 and Exhibits Broad-Spectrum Antiviral Activity. ACS Infect. Dis. 2022, 8, 1265–1279. [Google Scholar] [CrossRef]
- Shaban, M.S.; Mayr-Buro, C.; Meier-Soelch, J.; Albert, B.V.; Schmitz, M.L.; Ziebuhr, J.; Kracht, M. Thapsigargin: Key to New Host-Directed Coronavirus Antivirals? Trends Pharmacol. Sci. 2022, 43, 557–568. [Google Scholar] [CrossRef] [PubMed]
- Horníková, L.; Bruštíková, K.; Huérfano, S.; Forstová, J. Nuclear Cytoskeleton in Virus Infection. Int. J. Mol. Sci. 2022, 23, 578. [Google Scholar] [CrossRef]
- Paulin, D.; Lilienbaum, A.; Kardjian, S.; Agbulut, O.; Li, Z. Vimentin: Regulation and Pathogenesis. Biochimie 2022, 197, 96–112. [Google Scholar] [CrossRef] [PubMed]
- Delorme-Axford, E.; Coyne, C.B. The Actin Cytoskeleton as a Barrier to Virus Infection of Polarized Epithelial Cells. Viruses 2011, 3, 2462–2477. [Google Scholar] [CrossRef]
- Khasa, R.; Sharma, P.; Vaidya, A.; Vrati, S.; Kalia, M. Proteins Involved in Actin Filament Organization Are Key Host Factors for Japanese Encephalitis Virus Life-Cycle in Human Neuronal Cells. Microb. Pathog. 2020, 149, 104565. [Google Scholar] [CrossRef] [PubMed]
- Saha, S.; Sugumar, P.; Bhandari, P.; Rangarajan, P.N. Identification of Japanese Encephalitis Virus-Inducible Genes in Mouse Brain and Characterization of GARG39/IFIT2 as a Microtubule-Associated Protein. J. Gen. Virol. 2006, 87, 3285–3289. [Google Scholar] [CrossRef]
- de Souza, W.M.; Fumagalli, M.J.; de Lima, S.T.S.; Parise, P.L.; Carvalho, D.C.M.; Hernandez, C.; de Jesus, R.; Delafiori, J.; Candido, D.S.; Carregari, V.C.; et al. Pathophysiology of Chikungunya Virus Infection Associated with Fatal Outcomes. Cell Host Microbe 2024, 32, 606–622.e8. [Google Scholar] [CrossRef]
- Beauchamp, A.; Yee, Y.; Darwin, B.C.; Raznahan, A.; Mars, R.B.; Lerch, J.P. Whole-Brain Comparison of Rodent and Human Brains Using Spatial Transcriptomics. Elife 2022, 11, e79418. [Google Scholar] [CrossRef]
- Almeida, G.M.; Silva, B.M.; Arruda, E.; Sebollela, A. Human Brain Tissue Cultures: A Unique Ex Vivo Model to Unravel the Pathogenesis of Neurotropic Arboviruses. Curr. Opin. Virol. 2025, 70, 101453. [Google Scholar] [CrossRef]
Virus | Family | Vector | Other Routes of Transmission | Diseases | References |
---|---|---|---|---|---|
Dengue virus (DENV) | Flaviviridae | Mosquito | Dengue fever, severe shock syndrome, and endothelial disfunction | [24,25,26] | |
Zika virus (ZIKV) | Flaviviridae | Mosquito (mainly Aedes aegypti) | Mother to foetus, sexual contact, blood transfusion, and organ transplantation | Microcephaly in neonates, Guillain-Barré syndrome, radiculomyelitis, and meningoencephalitis | [27,28] |
West Nile virus (WNV) | Flaviviridae | Mosquito (Culex spp.) | Meningitis, encephalitis, and paralysis cognitive dysfunction | [29] | |
Japanese encephalitis virus (JEV) | Flaviviridae | Mosquito (Culex spp.) | Oral shedding | Acute encephalitis | [30,31] |
Saint Louis encephalitis virus (SLEV) | Flaviviridae | Mosquito (Culex spp.) | Neuroinvasion is more frequent in immunocompromised and solid-organ-transplanted subjects | [32] | |
Tick-borne encephalitis virus (TBEV) | Flaviviridae | Ixodes spp. | Meningitis and encephalitis, cognitive dysfunction, and memory impairment | [33] | |
Powassan virus (POWV) | Flaviviridae | Ixodes spp. | Encephalitis and meningitis | [34] | |
Chikungunya virus (CHIKV) | Togaviridae | Mosquito (most frequently Aedes aegypti and Aedes albopictus) | Neurological manifestations and haemorrhagic diseases | [35,36,37] | |
Eastern equine encephalitis virus (EEEV) | Togaviridae | Mosquito | Encephalitis | [38] | |
Mayaro virus (MAYV) | Togaviridae | Mosquito (Haemagogus spp.) | Myalgia, rash, and neurological issues | [39] | |
Pixuna virus (PIXV) | Togaviridae | Mosquito | Severe encephalomyelitis | [40] | |
Rift Valley virus (RVV) | Phenuiviridae | Mosquito | Severe neurological manifestations (meningoencephalitis) | [41] | |
Oropouche virus (OROV) | Peribunyaviridae | Biting midges and some mosquitoes | Encephalitis and meningoencephalitis fever, headache, myalgia, and arthralgia | [42,43] |
Cytoskeletal Protein | Cytoskeleton-Associated Signalling Pathways/Cytoskeleton Regulatory Proteins | Host | Virus | Role | Effects | References |
---|---|---|---|---|---|---|
Restin | Rat (cortical neurons) | WNV | Inhibits cell proliferation to induce apoptosis by binding to tropomyosin | Up-regulation | [94] | |
Actin and Tubulin | Dynamin-1 | Mouse (brain) | WNV | Cytoskeleton organization | Up-regulation | [95] |
MAP1B and MAP2 | Mouse (brain) | WNV | Nervous system development and neurogenesis | Down-regulation | [95] | |
Rho GTPase signalling | Mouse (brain) | WNV | Actin remodelling and clathrin-mediated endocytosis activation | Up-regulation | [95] | |
Dynamin-1 | Mouse (brain) | CHIKV | Clathrin-mediated endocytosis activation | Up-regulation | [91] | |
Rho GTPase signalling | Mouse (brain) | CHIKV | Actin remodelling | Up-regulation | [91] | |
ARPCB1 | Mouse (brain) | CHIKV | MT filament formation | Up-regulation | [91] | |
TUBB3 | Mouse (brain) | CHIKV | Cytoskeleton organization | Up-regulation | [91] | |
CORO2B and MYPT1 | Mouse (brain) | CHIKV | Cytoskeleton rearrangement/motility | Up-regulation | [91] | |
CORO1A | Mouse (brain) | CHIKV | Functioning in the invagination of plasma membrane and in forming the protrusions of the plasma membrane involved in cell locomotion | Up-regulation | [91] | |
Tubulin | Mouse (brain) | CHIKV | Cytoskeleton organization | Up-regulation | [91] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Conto, F. Emerging Arthropod-Borne Viruses Hijack the Host Cell Cytoskeleton During Neuroinvasion. Viruses 2025, 17, 908. https://doi.org/10.3390/v17070908
De Conto F. Emerging Arthropod-Borne Viruses Hijack the Host Cell Cytoskeleton During Neuroinvasion. Viruses. 2025; 17(7):908. https://doi.org/10.3390/v17070908
Chicago/Turabian StyleDe Conto, Flora. 2025. "Emerging Arthropod-Borne Viruses Hijack the Host Cell Cytoskeleton During Neuroinvasion" Viruses 17, no. 7: 908. https://doi.org/10.3390/v17070908
APA StyleDe Conto, F. (2025). Emerging Arthropod-Borne Viruses Hijack the Host Cell Cytoskeleton During Neuroinvasion. Viruses, 17(7), 908. https://doi.org/10.3390/v17070908