Amino Acid Polymorphisms in the Basic Region of Meq of Vaccine Strain CVI988 Drastically Diminish the Virulence of Marek’s Disease Virus
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Plasmids
2.3. Dual-Luciferase Reporter Assay
2.4. Cells
2.5. Generation of Recombinant Viruses
2.6. In Vitro Replication of the Recombinant Viruses
2.7. Expression of Meq mRNA in Cells Infected with Recombinant Viruses in Vitro
2.8. In Vivo Characterization of Recombinant Viruses
2.8.1. First Animal Experiment
In Vivo Kinetics of Recombinant Viruses and T Cell Subset Dynamics
Virulence of Recombinant Viruses
2.8.2. Second Animal Experiment
2.9. Histopathological Analysis of rMDV-Infected Chickens
2.10. Flow Cytometric Analysis
2.10.1. Staining of Mononuclear Cells from Spleen and Thymus
2.10.2. Staining of PBMCs
2.11. Quantification of Viral Loads
2.12. Statistical Analyses
3. Results
3.1. Effects of Polymorphisms in CVI988-Meq on Transcriptional Regulation Activity of RB-1B-Meq
3.2. Generation and Characterization of Recombinant Viruses in Vitro
3.3. Virulence of rMDVs In Vivo
3.4. Changes in Lymphoid Organ Weight in Chickens Infected with rMDVs
3.5. Histopathological Analysis of Chickens Infected with rMDVs
3.6. In Vivo Replication of rMDVs
3.7. Dynamics of CD4+ T and Meq+ Cells in the Spleens of Chickens Infected with rMDVs
3.8. Dynamics of CD8+ T and γδ T Cells in the Spleens of Chickens Infected with rMDVs
3.9. Dynamics of T Cell Subsets in the Thymus of Chickens Infected with rMDVs
3.10. Dynamics of T Cell Subsets in PBMCs of Chickens Infected with rMDVs
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MDV | Marek’s disease virus |
MD | Marek’s disease |
rMDV | Recombinant Marek’s disease virus |
NK | Natural killer |
PRRs | Proline-rich repeats |
bZIP | Basic leucine zipper |
CEFs | Chicken embryo fibroblasts |
BAC | Bacterial artificial chromosome |
IRL | Internal repeat long |
TRL | Terminal repeat long |
RFLP | Restriction fragment length polymorphism |
qPCR | Quantitative PCR |
PBS | Phosphate-buffered saline |
icp4 | Infected cell protein 4 |
i-nos | Inducible nitric oxide synthase |
mAb | Monoclonal antibody |
FITC | Fluorescein-5-isothiocyanate |
APC | Allophycocyanin |
dpi | Days post-infection |
pfu | Plaque-forming units |
PBMCs | Peripheral blood mononuclear cells |
Cy | Cyanine |
vvMDV | Very virulent Marek’s disease virus |
vv+MDV | Very virulent plus Marek’s disease virus |
References
- Davison, F.; Nair, V. Use of Marek’s disease vaccines: Could they be driving the virus to increasing virulence? Expert. Rev. Vaccines 2005, 4, 77–88. [Google Scholar] [CrossRef]
- Gimeno, I.M. Marek’s disease vaccines: A solution for today but a worry for tomorrow? Vaccine 2008, 26 (Suppl. S3), C31–C41. [Google Scholar] [CrossRef]
- Othman, I.; Aklilu, E. Marek’s disease herpesvirus Serotype 1 in broiler breeder and layer chickens in Malaysia. Vet. World 2019, 12, 472–476. [Google Scholar] [CrossRef]
- Raja, A.; Dhinakar_Raj, G.; Bhuvaneswari, P.; Balachand_Ran, C.; Kumanan, K. Detection of Virulent Marek’s Disease Virus in Poultry in India. Acta Virol. 2009, 53, 255–260. [Google Scholar] [CrossRef]
- Shi, M.Y.; Li, M.; Wang, W.W.; Deng, Q.M.; Li, Q.H.; Gao, Y.L.; Wang, P.K.; Huang, T.; Wei, P. The Emergence of a vv + MDV Can Break through the Protections Provided by the Current vaccines. Viruses 2020, 12, 1048. [Google Scholar] [CrossRef]
- Sun, G.R.; Zhang, Y.P.; Lv, H.C.; Zhou, L.Y.; Cui, H.Y.; Gao, Y.L.; Qi, X.L.; Wang, Y.Q.; Li, K.; Gao, L.; et al. A Chinese variant Marek’s disease virus strain with divergence between virulence and vaccine resistance. Viruses 2017, 9, 71. [Google Scholar] [CrossRef]
- Sung, H.W. Recent increase of Marek’s disease in Korea related to the virulence increase of the virus. Avian Dis. 2002, 46, 517–524. [Google Scholar] [CrossRef]
- Zhuang, X.; Zou, H.; Shi, H.; Shao, H.; Ye, J.; Miao, J.; Wu, G.; Qin, A. Outbreak of Marek’s disease in a vaccinated broiler breeding flock during its peak egg-laying period in China. BMC Vet. Res. 2015, 11, 157. [Google Scholar] [CrossRef]
- Witter, R.L.; Calnek, B.W.; Buscaglia, C.; Gimeno, I.M.; Schat, K.A. Classification of Marek’s disease viruses according to pathotype: Philosophy and methodology. Avian Pathol. 2005, 34, 75–90. [Google Scholar] [CrossRef]
- Wajid, S.J.; Walkden-Brown, S.W.; Vanselow, B.A.; Islam, A.F.M.F.; Renz, K.G. In Vivo Characterisation of Two Australian Isolates of Marek’s Disease Virus Including Pathology, Viral Load and Neuropathotyping Based on Clinical Signs. Aust. Vet. J. 2015, 93, 240–247. [Google Scholar] [CrossRef]
- Liu, J.-L.; Teng, M.; Zheng, L.-P.; Zhu, F.-X.; Ma, S.-X.; Li, L.-Y.; Zhang, Z.-H.; Chai, S.-J.; Yao, Y.; Luo, J. Emerging Hypervirulent Marek’s Disease Virus Variants Significantly Overcome Protection Conferred by Commercial Vaccines. Viruses 2023, 15, 1434. [Google Scholar] [CrossRef]
- Teng, M.; Zheng, L.-P.; Li, H.-Z.; Ma, S.-M.; Zhu, Z.-J.; Chai, S.-J.; Yao, Y.; Nair, V.; Zhang, G.-P.; Luo, J. Pathogenicity and Pathotype Analysis of Henan Isolates of Marek’s Disease Virus Reveal Long-Term Circulation of Highly Virulent MDV Variant in China. Viruses 2022, 14, 1651. [Google Scholar] [CrossRef]
- Dunn, J.R.; Black Pyrkosz, A.; Steep, A.; Cheng, H.H. Identification of Marek’s Disease Virus Genes Associated with Virulence of US Strains. J. Gen. Virol. 2019, 100, 1132–1139. [Google Scholar] [CrossRef]
- Trimpert, J.; Groenke, N.; Jenckel, M.; He, S.; Kunec, D.; Szpara, M.L.; Spatz, S.J.; Osterrieder, N.; McMahon, D.P. A Phylogenomic Analysis of Marek’s Disease Virus Reveals Independent Paths to Virulence in Eurasia and North America. Evol. Appl. 2017, 10, 1091–1101. [Google Scholar] [CrossRef]
- Epstein, M.A. Historical background. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2001, 356, 413–420. [Google Scholar] [CrossRef]
- Boodhoo, N.; Gurung, A.; Sharif, S.; Behboudi, S. Marek’s disease in chickens: A review with focus on immunology. Vet. Res. 2016, 47, 119. [Google Scholar] [CrossRef]
- Calnek, B.W. Pathogenesis of Marek’s disease virus infection. In Marek’s Disease. Current Topics in Microbiology and Immunology; Hirai, K., Ed.; Springer: Berlin/Heidelberg, Germany, 2001; Volume 255, pp. 25–55. ISBN 978-3-540-67798-7. [Google Scholar] [CrossRef]
- Bertzbach, L.D.; Conradie, A.M.; You, Y.; Kaufer, B.B. Latest insights into Marek’s disease virus pathogenesis and tumorigenesis. Cancers 2020, 12, 647. [Google Scholar] [CrossRef]
- Bertzbach, L.D.; Laparidou, M.; Härtle, S.; Etches, R.J.; Kaspers, B.; Schusser, B.; Kaufer, B.B. Unraveling the role of B cells in the pathogenesis of an oncogenic avian herpesvirus. Proc. Natl. Acad. Sci. USA 2018, 115, 11603–11607. [Google Scholar] [CrossRef]
- Sabsabi, M.A.; Kheimar, A.; You, Y.; Von La Roche, D.; Härtle, S.; Göbel, T.W.; Von Heyl, T.; Schusser, B.; Kaufer, B.B. Unraveling the role of γδ T cells in the pathogenesis of an oncogenic avian herpesvirus. mBio 2024, 15, e0031524. [Google Scholar] [CrossRef]
- Morimura, T.; Ohashi, K.; Kon, Y.; Hattori, M.; Sugimoto, C.; Onuma, M. Apoptosis and CD8-down-regulation in the thymus of chickens infected with Marek’s disease virus. Arch. Virol. 1996, 141, 2243–2249. [Google Scholar] [CrossRef]
- Trapp-Fragnet, L.; Schermuly, J.; Kohn, M.; Bertzbach, L.D.; Pfaff, F.; Denesvre, C.; Kaufer, B.B.; Härtle, S. Marek’s Disease Virus Prolongs Survival of Primary Chicken B-Cells by Inducing a Senescence-like Phenotype. PLoS Pathog. 2021, 17, e1010006. [Google Scholar] [CrossRef]
- Mwangi, W.N.; Smith, L.P.; Baigent, S.J.; Beal, R.K.; Nair, V.; Smith, A.L. Clonal structure of rapid-onset MDV-driven CD4+ lymphomas and responding CD8+ T cells. PLOS Pathog. 2011, 7, e1001337. [Google Scholar] [CrossRef]
- Venugopal, K. Marek’s disease: An update on oncogenic mechanisms and control. Res. Vet. Sci. 2000, 69, 17–23. [Google Scholar] [CrossRef]
- Biggs, P.M. The leeuwenhoek lecture, 1997. Marek’s disease herpesvirus: Oncogenesis and prevention. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1997, 352, 1951–1962. [Google Scholar] [CrossRef]
- Osterrieder, N.; Kamil, J.P.; Schumacher, D.; Tischer, B.K.; Trapp, S. Marek’s disease virus: From miasma to model. Nat. Rev. Microbiol. 2006, 4, 283–294. [Google Scholar] [CrossRef]
- Burgess, S.C.; Davison, T.F. Identification of the neoplastically transformed cells in Marek’s disease herpesvirus-induced lymphomas: Recognition by the monoclonal antibody AV37. J. Virol. 2002, 76, 7276–7292. [Google Scholar] [CrossRef]
- Parvizi, P.; Read, L.R.; Abdul-Careem, M.F.; Sarson, A.J.; Lusty, C.; Lambourne, M.; Thanthrige-Don, N.; Burgess, S.C.; Sharif, S. Cytokine Gene Expression in Splenic CD4+ and CD8+ T Cell Subsets of Genetically Resistant and Susceptible Chickens Infected with Marek’s Disease Virus. Vet. Immunol. Immunopathol. 2009, 132, 209–217. [Google Scholar] [CrossRef]
- Couteaudier, M.; Denesvre, C. Marek’s disease virus and skin interactions. Vet. Res. 2014, 45, 36. [Google Scholar] [CrossRef]
- Bertzbach, L.D.; Van Haarlem, D.A.; Härtle, S.; Kaufer, B.B.; Jansen, C.A. Marek’s disease virus infection of natural killer cells. Microorganisms 2019, 7, 588. [Google Scholar] [CrossRef]
- Matsuyama-Kato, A.; Iseki, H.; Boodhoo, N.; Bavananthasivam, J.; Alqazlan, N.; Abdul-Careem, M.F.; Plattner, B.L.; Behboudi, S.; Sharif, S. Phenotypic characterization of gamma delta (γδ) T cells in chickens infected with or vaccinated against Marek’s disease virus. Virology 2022, 568, 115–125. [Google Scholar] [CrossRef]
- Matsuyama-Kato, A.; Shojadoost, B.; Boodhoo, N.; Raj, S.; Alizadeh, M.; Fazel, F.; Fletcher, C.; Zheng, J.; Gupta, B.; Abdul-Careem, M.F.; et al. Activated chicken gamma Delta T cells are involved in protective immunity against Marek’s disease. Viruses 2023, 15, 285. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Sun, S.; Heidari, M. Marek’s disease vaccine activates chicken macrophages. J. Vet. Sci. 2018, 19, 375–383. [Google Scholar] [CrossRef] [PubMed]
- Hao, X.; Li, S.; Li, J.; Yang, Y.; Qin, A.; Shang, S. An anti-tumor vaccine against Marek’s disease virus induces differential activation and memory response of Γδ T cells and CD8 T cells in chickens. Front. Immunol. 2021, 12, 645426. [Google Scholar] [CrossRef] [PubMed]
- Boodhoo, N.; Behboudi, S. Marek’s Disease Virus-Specific T Cells Proliferate, Express Antiviral Cytokines but Have Impaired Degranulation Response. Front. Immunol. 2022, 13, 973762. [Google Scholar] [CrossRef]
- Perumbakkam, S.; Hunt, H.D.; Cheng, H.H. Differences in CD8αα and cecal microbiome community during proliferation and late cytolytic phases of Marek’s disease virus infection are associated with genetic resistance to Marek’s disease. FEMS Microbiol. Ecol. 2016, 92, fiw188. [Google Scholar] [CrossRef]
- Liu, J.-L.; Kung, H.-J. Marek’s disease herpesvirus transforming protein MEQ: A c-Jun analogue with an alternative life style. In Molecular Evolution of Viruses—Past and Present; Becker, Y., Darai, G., Eds.; Springer: Boston, MA, USA, 2000; Volume 21, pp. 51–64. ISBN 978-1-4613-5688-2. [Google Scholar] [CrossRef]
- Lupiani, B.; Lee, L.F.; Cui, X.; Gimeno, I.; Anderson, A.; Morgan, R.W.; Silva, R.F.; Witter, R.L.; Kung, H.-J.; Reddy, S.M. Marek’s disease virus-encoded meq gene is involved in transformation of lymphocytes but is dispensable for replication. Proc. Natl. Acad. Sci. USA 2004, 101, 11815–11820. [Google Scholar] [CrossRef]
- Qian, Z.; Brunovskis, P.; Lee, L.; Vogt, P.K.; Kung, H.J. Novel DNA binding specificities of a putative herpesvirus bZIP oncoprotein. J. Virol. 1996, 70, 7161–7170. [Google Scholar] [CrossRef]
- Levy, A.M.; Gilad, O.; Xia, L.; Izumiya, Y.; Choi, J.; Tsalenko, A.; Yakhini, Z.; Witter, R.; Lee, L.; Cardona, C.J.; et al. Marek’s disease virus meq transforms chicken cells via the v-Jun transcriptional cascade: A converging transforming pathway for avian oncoviruses. Proc. Natl. Acad. Sci. USA 2005, 102, 14831–14836. [Google Scholar] [CrossRef]
- Deng, X.; Li, X.; Shen, Y.; Qiu, Y.; Shi, Z.; Shao, D.; Jin, Y.; Chen, H.; Ding, C.; Li, L.; et al. The meq oncoprotein of Marek’s disease virus interacts with P53 and inhibits its transcriptional and apoptotic activities. Virol. J. 2010, 7, 348. [Google Scholar] [CrossRef]
- Li, K.; Liu, Y.; Xu, Z.; Zhang, Y.; Luo, D.; Gao, Y.; Qian, Y.; Bao, C.; Liu, C.; Zhang, Y.; et al. Avian oncogenic herpesvirus antagonizes the cGAS-STING DNA-sensing pathway to mediate immune evasion. PLOS Pathog. 2019, 15, e1007999. [Google Scholar] [CrossRef]
- Shamblin, C.E.; Greene, N.; Arumugaswami, V.; Dienglewicz, R.L.; Parcells, M.S. Comparative analysis of Marek’s disease virus (MDV) glycoprotein-, lytic antigen pp38- and transformation antigen Meq-encoding genes: Association of meq mutations with MDVs of high virulence. Vet. Microbiol. 2004, 102, 147–167. [Google Scholar] [CrossRef] [PubMed]
- Conradie, A.M.; Bertzbach, L.D.; Trimpert, J.; Patria, J.N.; Murata, S.; Parcells, M.S.; Kaufer, B.B. Distinct polymorphisms in a single herpesvirus gene are capable of enhancing virulence and mediating vaccinal resistance. PLOS Pathog. 2020, 16, e1009104. [Google Scholar] [CrossRef]
- Schat, K.A. History of the first-generation Marek’s disease vaccines: The science and little-known facts. Avian Dis. 2016, 60, 715–724. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.I.; Takagi, M.; Ohashi, K.; Sugimoto, C.; Onuma, M. Difference in the meq gene between oncogenic and attenuated strains of Marek’s disease virus Serotype 1. J. Vet. Med. Sci. 2000, 62, 287–292. [Google Scholar] [CrossRef] [PubMed]
- Sato, J.; Murata, S.; Yang, Z.; Kaufer, B.B.; Fujisawa, S.; Seo, H.; Maekawa, N.; Okagawa, T.; Konnai, S.; Osterrieder, N.; et al. Effect of insertion and deletion in the meq protein encoded by highly oncogenic Marek’s disease virus on transactivation activity and virulence. Viruses 2022, 14, 382. [Google Scholar] [CrossRef]
- Conradie, A.M.; Bertzbach, L.D.; Bhandari, N.; Parcells, M.; Kaufer, B.B. A common live-attenuated avian herpesvirus vaccine expresses a very potent oncogene. mSphere 2019, 4, e00658-19. [Google Scholar] [CrossRef]
- Ajithdoss, D.K.; Liao, Y.; Reddy, S.M.; Lupiani, B. Marek’s disease virus (MDV) meq oncoprotein plays distinct roles in tumor incidence, distribution, and size. Viruses 2025, 17, 259. [Google Scholar] [CrossRef]
- Levy, A.M.; Izumiya, Y.; Brunovskis, P.; Xia, L.; Parcells, M.S.; Reddy, S.M.; Lee, L.; Chen, H.-W.; Kung, H.-J. Characterization of the Chromosomal Binding Sites andDimerization Partners of the Viral Oncoprotein Meq in Marek’sDisease Virus-Transformed TCells. J. Virol. 2003, 77, 12841–12851. [Google Scholar] [CrossRef]
- Rasschaert, P.; Gennart, I.; Boumart, I.; Dambrine, G.; Muylkens, B.; Rasschaert, D.; Laurent, S. Specific Transcriptional and Post-Transcriptional Regulation of the Major Immediate Early ICP4 Gene of GaHV-2 during the Lytic, Latent and Reactivation Phases. J. Gen. Virol. 2018, 99, 355–368. [Google Scholar] [CrossRef]
- Ajithdoss, D.K.; Reddy, S.M.; Suchodolski, P.F.; Lee, L.F.; Kung, H.-J.; Lupiani, B. In Vitro Characterization of the Meq Proteins of Marek’s Disease Virus Vaccine Strain CVI988. Virus Res. 2009, 142, 57–67. [Google Scholar] [CrossRef]
- Burgess, S.C.; Young, J.R.; Baaten, B.J.G.; Hunt, L.; Ross, L.N.J.; Parcells, M.S.; Kumar, P.M.; Tregaskes, C.A.; Lee, L.F.; Davison, T.F. Marek’s Disease Is a Natural Model for Lymphomas Overexpressing Hodgkin’s Disease Antigen (CD30). Proc. Natl. Acad. Sci. USA 2004, 101, 13879–13884. [Google Scholar] [CrossRef] [PubMed]
- Okada, T.; Takagi, M.; Murata, S.; Onuma, M.; Ohashi, K. Identification and Characterization of a Novel Spliced Form of the Meq Transcript in Lymphoblastoid Cell Lines Derived from Marek’s Disease Tumours. J. Gen. Virol. 2007, 88, 2111–2120. [Google Scholar] [CrossRef]
- Osterrieder, N. Sequence and initial characterization of the UL10 (glycoprotein M) and U(L)11 homologous genes of serotype 1 Marek’s disease virus. Arch. Virol. 1999, 144, 1853–1863. [Google Scholar] [CrossRef]
- Sato, J.; Motai, Y.; Yamagami, S.; Win, S.Y.; Horio, F.; Saeki, H.; Maekawa, N.; Okagawa, T.; Konnai, S.; Ohashi, K.; et al. Programmed cell Death-1 expression in T-cell subsets in chickens infected with Marek’s disease virus. Pathogens 2025, 14, 431. [Google Scholar] [CrossRef]
- Jarosinski, K.W.; Schat, K.A. Multiple alternative splicing to Exons II and III of viral interleukin-8 (vIL-8) in the Marek’s disease virus genome: The importance of vIL-8 exon I. Virus Genes 2007, 34, 9–22. [Google Scholar] [CrossRef] [PubMed]
- Tischer, B.K.; von Einem, J.; Kaufer, B.; Osterrieder, N. Two-step red-mediated recombination for versatile high-efficiency markerless DNA manipulation in Escherichia coli. BioTechniques 2006, 40, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Tischer, B.K.; Kaufer, B.B. Viral bacterial artificial chromosomes: Generation, mutagenesis, and removal of mini-F sequences. J. Biomed. Biotechnol. 2012, 2012, 472537. [Google Scholar] [CrossRef]
- Vychodil, T.; Conradie, A.M.; Trimpert, J.; Aswad, A.; Bertzbach, L.D.; Kaufer, B.B. Marek’s disease virus requires both copies of the inverted repeat regions for efficient In Vivo Replication and Pathogenesis. J. Virol. 2021, 95, e01256-20. [Google Scholar] [CrossRef]
- Engel, A.T.; Selvaraj, R.K.; Kamil, J.P.; Osterrieder, N.; Kaufer, B.B. Marek’s disease viral interleukin-8 promotes lymphoma formation through targeted recruitment of B cells and CD4+ CD25+ T cells. J. Virol. 2012, 86, 8536–8545. [Google Scholar] [CrossRef]
- Schumacher, D.; Tischer, B.K.; Fuchs, W.; Osterrieder, N. Reconstitution of Marek’s disease virus Serotype 1 (MDV-1) from DNA cloned as a bacterial artificial chromosome and characterization of a glycoprotein B-negative MDV-1 mutant. J. Virol. 2000, 74, 11088–11098. [Google Scholar] [CrossRef]
- Kurokawa, A.; Yamamoto, Y. Development of monoclonal antibodies specific to marek disease virus-EcoRI-Q (Meq) for the immunohistochemical diagnosis of marek disease using formalin-fixed, paraffin-embedded samples. J. Vet. Diagn. Investig. 2022, 34, 458–464. [Google Scholar] [CrossRef] [PubMed]
- Murata, S.; Chang, K.-S.; Lee, S.-I.; Konnai, S.; Onuma, M.; Ohashi, K. Development of a nested polymerase chain reaction method to detect oncogenic Marek’s disease virus from feather tips. J. Vet. Diagn. Investig. 2007, 19, 471–478. [Google Scholar] [CrossRef]
- Berthault, C.; Larcher, T.; Härtle, S.; Vautherot, J.-F.; Trapp-Fragnet, L.; Denesvre, C. Atrophy of primary lymphoid organs induced by Marek’s disease virus during early infection is associated with increased apoptosis, inhibition of cell proliferation and a severe B-lymphopenia. Vet. Res. 2018, 49, 31. [Google Scholar] [CrossRef] [PubMed]
- Umthong, S.; Dunn, J.R.; Cheng, H.H. Depletion of CD8αβ+ T cells in chickens demonstrates their involvement in protective immunity towards Marek’s disease with respect to tumor incidence and vaccinal protection. Vaccines 2020, 8, 557. [Google Scholar] [CrossRef]
- Laursen, A.M.S.; Kulkarni, R.R.; Taha-Abdelaziz, K.; Plattner, B.L.; Read, L.R.; Sharif, S. Characterizaton of gamma Delta T cells in Marek’s disease virus (gallid herpesvirus 2) infection of chickens. Virology 2018, 522, 56–64. [Google Scholar] [CrossRef]
- Roy, P.; Moffat, K.; Nair, V.; Yao, Y. CRISPR-mediated gene activation (CRISPRa) of Pp38/Pp24 orchestrates events triggering lytic infection in Marek’s disease virus-transformed cell lines. Microorganisms 2021, 9, 1681. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.L.; Ye, Y.; Qian, Z.; Qian, Y.; Templeton, D.J.; Lee, L.F.; Kung, H.J. Functional interactions between herpesvirus oncoprotein MEQ and cell cycle regulator CDK2. J. Virol. 1999, 73, 4208–4219. [Google Scholar] [CrossRef]
- Koyanagi, N.; Hengphasatporn, K.; Kato, A.; Nobe, M.; Takeshima, K.; Maruzuru, Y.; Maenaka, K.; Shigeta, Y.; Kawaguchi, Y. Regulatory mimicry of cyclin-dependent kinases by a conserved herpesvirus protein kinase. Proc. Natl. Acad. Sci. USA 2025, 122, e2500264122. [Google Scholar] [CrossRef]
- Pearlman, S.M.; Serber, Z.; Ferrell, J.E. A mechanism for the evolution of phosphorylation sites. Cell 2011, 147, 934–946. [Google Scholar] [CrossRef]
- Brown, A.C.; Baigent, S.J.; Smith, L.P.; Chattoo, J.P.; Petherbridge, L.J.; Hawes, P.; Allday, M.J.; Nair, V. Interaction of MEQ protein and C-terminal-binding protein is critical for induction of lymphomas by Marek’s disease virus. Proc. Natl. Acad. Sci. USA 2006, 103, 1687–1692. [Google Scholar] [CrossRef]
- Murata, S.; Okada, T.; Kano, R.; Hayashi, Y.; Hashiguchi, T.; Onuma, M.; Konnai, S.; Ohashi, K. Analysis of transcriptional activities of the meq proteins present in highly virulent Marek’s disease virus strains, RB1B and Md5. Virus Genes 2011, 43, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Dong, H.; Lenihan, D.; Gaddamanugu, S.; Katneni, U.; Shaikh, S.; Tavlarides-Hontz, P.; Reddy, S.M.; Peters, W.; Parcells, M.S. Selection of a Recombinant Marek’s Disease Virus In Vivo Through Expression of the Marek’s EcoRI-Q (Meq)–Encoded Oncoprotein: Characterization of an rMd5-Based Mutant Expressing the Meq of Strain RB-1B. Avian Dis. 2012, 56, 328–340. [Google Scholar] [CrossRef] [PubMed]
- Fiddaman, S.R.; Dimopoulos, E.A.; Lebrasseur, O.; Du Plessis, L.; Vrancken, B.; Charlton, S.; Haruda, A.F.; Tabbada, K.; Flammer, P.G.; Dascalu, S.; et al. Ancient Chicken Remains Reveal the Origins of Virulence in Marek’s Disease Virus. Science 2023, 382, 1276–1281. [Google Scholar] [CrossRef] [PubMed]
- Motai, Y.; Murata, S.; Sato, J.; Nishi, A.; Maekawa, N.; Okagawa, T.; Konnai, S.; Ohashi, K. Characterization of a very short meq protein isoform in a Marek’s disease virus strain in Japan. Vet. Sci. 2024, 11, 43. [Google Scholar] [CrossRef]
- Murata, S.; Machida, Y.; Isezaki, M.; Maekawa, N.; Okagawa, T.; Konnai, S.; Ohashi, K. Genetic characterization of a Marek’s disease virus strain isolated in Japan. Virol. J. 2020, 17, 186. [Google Scholar] [CrossRef]
- Patria, J.N.; Jwander, L.; Mbachu, I.; Parcells, L.; Ladman, B.; Trimpert, J.; Kaufer, B.B.; Tavlarides-Hontz, P.; Parcells, M.S. The meq genes of Nigerian Marek’s disease virus (MDV) field isolates contain mutations common to both European and US high virulence strains. Viruses 2024, 17, 56. [Google Scholar] [CrossRef]
- Woźniakowski, G.; Samorek-SalamonowiczA, E. Molecular evolution of Marek’s disease virus (MDV) field strains in a 40-year time period. Avian Dis. 2014, 58, 550–557. [Google Scholar] [CrossRef]
- Yamagami, S.; Sato, J.; Motai, Y.; Maekawa, N.; Okagawa, T.; Konnai, S.; Ohashi, K.; Murata, S. Genomic Characteristics and Distinctive Genetic Polymorphisms of Marek’s Disease Virus Strains Circulating in Japan. J. Vet. Med. Sci. 2025, 87, 517–531. [Google Scholar] [CrossRef]
- Renz, K.G.; Cooke, J.; Clarke, N.; Cheetham, B.F.; Hussain, Z.; Fakhrul Islam, A.F.M.; Tannock, G.A.; Walkden-Brown, S.W. Pathotyping of Australian isolates of Marek’s disease virus and association of pathogenicity with Meq gene polymorphism. Avian Pathol. 2012, 41, 161–176. [Google Scholar] [CrossRef]
Strain | Accession No. | Virulence | Country | Position | ||
---|---|---|---|---|---|---|
71 | 77 | 326/385 | ||||
Md5 | AY243438 | vv | US | A | K | T |
RB-1B | AY243332 | vv | US | A | K | T |
BC-1 a | AY362707 | v | US | S | A | T |
Jm a | AY243331 | v | US | S | A | T |
CVI988 a | AY243333-8 | m | The Netherlands | S | E | I |
Position in Meq | Substitution | Type | Sequence |
---|---|---|---|
71 | Serine-to-alanine | Forward | 5′-GAATCGTGACGCCGCTCGGAGAAGACG-3′ |
Reverse | 5′-CGTCTTCTCCGAGCGGCGTCACGATTC-3′ | ||
77 | Glutamic-acid-to-lysine | Forward | 5′-AGAAGACGCAGGGAGCAGACGTACT-3′ |
Reverse | 5′-AGTACGTCTGCTCCCTGCGTCTTCT-3′ | ||
326 | Threonine-to-isoleucine | Forward | 5′-AGGAAGCAGACGTACTATGTAGACA-3′ |
Reverse | 5′-TGTCTACATAGTACGTCTGCTTCCT-3′ |
Type | Type | Sequence | Reference |
---|---|---|---|
pp38 | Forward | 5′-GCTAGCGGCCGTGCCATTCTGAGAG-3′ | [50] |
Reverse | 5′-AAGCTTCCGTCCGACGAGAGCAAG-3′ | ||
pp14 | Forward | 5′-TAAGAGCTCCTTATCCTATACCGCCGCCTC-3′ | [50] |
Reverse | 5′-AATAAGCTTGAGAGCATCGCGAAGAGAGAA-3′ | ||
meq | Forward | 5′-GCTAGCCCACGTACTGACGAATTTAGTAC-3′ | [50] |
Reverse | 5′-AAGCTTATTCTTAACATTCCAGCACCAAC-3′ | ||
icp4 | Forward | 5′-TTCGAAGGGTTTAGGAGGGGCGCA -3′ | [51] |
Reverse | 5′-TGGTACCATTAGCCGCGACATCCATCT -3′ | ||
gb | Forward | 5′-TCAGATCTCAAGTCTCACTCACAAA-3′ | [52] |
Reverse | 5′-TCAGATCTGCTGTTCATAAATTGTGT-3′ | ||
cd30 | Forward | 5′-TAAGAGCTCCTAATTAATAATAGCGTGCTC-3′ | [53] |
Reverse | 5′-TAACTCGAGTCCTGATCTCCCAGCATTGCA-3′ | ||
bcl-2 | Forward | 5′-GCTAGCGACAGCCAGGAGGAAGCG-3′ | [52] |
Reverse | 5′-AAGCTTTGGGAGGGGGAGAGGAAG-3′ | ||
il-2 | Forward | 5′-GAGCTCCGTCTTTGCAAACGATGACAG-3′ | [54] |
Reverse | 5′-AAGCTTAAATACAGCCAAAGATCAGTACT-3′ |
Primer | Purpose | Type | Sequence |
---|---|---|---|
icp4 | To qualify viral load | Forward | 5′-GCATCGACAAGCACTTACGG-3′ |
Reverse | 5′-CGAGAGCGTCGTATTGTTTGG-3′ | ||
i-nos | Endogenous control for viral load | Forward | 5′-GAGTGGTTTAAGGAGTTGGATCTGA-3′ |
Reverse | 5′-TTCCAGACCTCCCACCTCAA-3′ | ||
meq | To quantify transcripts of meq | Forward | 5′-GTCCCCCCTCGATCTTTCTC-3′ |
Reverse | 5′-CGTCTGCTTCCTGCGTCTTC-3′ | ||
β-actin | Endogenous control for meq expression | Forward | 5′-GAGAAATTGTGCGTGACATCA-3′ |
Reverse | 5′-CCTGAACCTCTCATTGCCA-3′ | ||
IRL inner | To check the restoration of the IRL region | Forward | 5′-AGCTACCCCTTTCGGTTTGT-3′ |
Reverse | 5′-CACCCCCTTGTGGAAGTAGA-3′ | ||
IRL outer | To check the restoration of the IRL region | Forward | 5′-CGAACGGAATGTACAACAGCTTGC-3′ |
Reverse | 5′-GATAAGACACTTTCCCACTCATAC-3′ |
Virus | Sample Number | Lesions | Spleen | Bursa of Fabricius | Thymus | Remarks |
---|---|---|---|---|---|---|
rRB-1B_ Meq | #1 | Tumor cell infiltration | ++ | + | ++ | Solid tumors were developed in the kidneys and ovaries. The spleen was noticeably enlarged. Macrophage infiltration was observed in the red pulp of the spleen. |
Meq+ cells | ++ | + | ++ | |||
#2 | Tumor cell infiltration | ++ | + | + | Enlargement of the spleen was noted. Macrophage infiltration was observed in the red pulp of the spleen. | |
Meq+ cells | + | + | ++ | |||
#3 | Tumor cell infiltration | ++ | + | + | Enlargement of the spleen was noted. Macrophage infiltration was observed in the red pulp of the spleen. | |
Meq+ cells | + | + | + | |||
rRB-1B_ Meq71/77 | #1 | Tumor cell infiltration | − | − | − | - |
Meq+ cells | − | − | − | |||
#2 | Tumor cell infiltration | − | − | − | - | |
Meq+ cells | − | − | − | |||
#3 | Tumor cell infiltration | − | − | − | - | |
Meq+ cells | + | + | + | |||
#4 | Tumor cell infiltration | − | − | − | - | |
Meq+ cells | − | − | − | |||
#5 | Tumor cell infiltration | − | − | − | - | |
Meq+ cells | + | + | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sato, J.; Motai, Y.; Yamagami, S.; Kurokawa, A.; Win, S.Y.; Horio, F.; Saeki, H.; Maekawa, N.; Okagawa, T.; Konnai, S.; et al. Amino Acid Polymorphisms in the Basic Region of Meq of Vaccine Strain CVI988 Drastically Diminish the Virulence of Marek’s Disease Virus. Viruses 2025, 17, 907. https://doi.org/10.3390/v17070907
Sato J, Motai Y, Yamagami S, Kurokawa A, Win SY, Horio F, Saeki H, Maekawa N, Okagawa T, Konnai S, et al. Amino Acid Polymorphisms in the Basic Region of Meq of Vaccine Strain CVI988 Drastically Diminish the Virulence of Marek’s Disease Virus. Viruses. 2025; 17(7):907. https://doi.org/10.3390/v17070907
Chicago/Turabian StyleSato, Jumpei, Yoshinosuke Motai, Shunsuke Yamagami, Aoi Kurokawa, Shwe Yee Win, Fumiya Horio, Hikaru Saeki, Naoya Maekawa, Tomohiro Okagawa, Satoru Konnai, and et al. 2025. "Amino Acid Polymorphisms in the Basic Region of Meq of Vaccine Strain CVI988 Drastically Diminish the Virulence of Marek’s Disease Virus" Viruses 17, no. 7: 907. https://doi.org/10.3390/v17070907
APA StyleSato, J., Motai, Y., Yamagami, S., Kurokawa, A., Win, S. Y., Horio, F., Saeki, H., Maekawa, N., Okagawa, T., Konnai, S., Ohashi, K., & Murata, S. (2025). Amino Acid Polymorphisms in the Basic Region of Meq of Vaccine Strain CVI988 Drastically Diminish the Virulence of Marek’s Disease Virus. Viruses, 17(7), 907. https://doi.org/10.3390/v17070907