Antiviral Intervention of COVID-19: Linkage of Disease Severity with Genetic Markers FGB (rs1800790), NOS3 (rs2070744) and TMPRSS2 (rs12329760)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clinical–Demographic Characteristic of Patients
2.2. Laboratory and Clinical Data
2.3. Identifying Genetic Polymorphisms
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Di Maria, E.; Latini, A.; Borgiani, P.; Novelli, G. Genetic variants of the human host influencing the coronavirus-associated phenotypes (SARS, MERS and COVID-19): Rapid systematic review and field synopsis. Hum. Genom. 2020, 14, 30. [Google Scholar] [CrossRef] [PubMed]
- Severe Covid-19 GWAS Group; Ellinghaus, D.; Degenhardt, F.; Bujanda, L.; Buti, M.; Albillos, A.; Invernizzi, P.; Fernández, J.; Prati, D.; Baselli, G.; et al. Genomewide Association Study of Severe Covid-19 with Respiratory Failure. N. Engl. J. Med. 2020, 383, 1522–1534. [Google Scholar] [CrossRef] [PubMed]
- COVID-19 Host Genetics Initiative. The COVID-19 Host Genetics Initiative, a global initiative to elucidate the role of host genetic factors in susceptibility and severity of the SARS-CoV-2 virus pandemic. Eur. J. Hum. Genet. 2020, 28, 715–718. [Google Scholar] [CrossRef]
- Thomas, A.E.; Green, F.R.; Kelleher, C.H.; Wilkes, H.C.; Brennan, P.J.; Meade, T.W.; Humphries, E.S. Variation in the promoter region of the beta fibrinogen gene is associated with plasma fibrinogen levels in smokers and non-smokers. Thromb. Haemost. 1991, 65, 487–490. [Google Scholar]
- Kangro, K.; Wolberg, A.S.; Flick, M.J. Fibrinogen, Fibrin, and Fibrin Degradation Products in COVID-19. Curr. Drug Targets 2022, 23, 1593–1602. [Google Scholar] [CrossRef]
- Alamdari, D.H.; Moghaddam, A.B.; Amini, S.; Keramati, M.R.; Zarmehri, A.M.; Alamdari, A.H.; Damsaz, M.; Banpour, H.; Yarahmadi, A.; Koliakos, G. Application of methylene blue-vitamin C–N-acetyl cysteine for treatment of critically ill COVID-19 patients, report of a phase-I clinical trial. Eur. J. Pharmacol. 2020, 885, 173494. [Google Scholar] [CrossRef]
- Fang, W.; Jiang, J.; Su, L.; Shu, T.; Liu, H.; Lai, S.; Ghiladi, R.A.; Wang, J. The role of NO in COVID-19 and potential therapeutic strategies. Free Radic. Biol. Med. 2021, 163, 153–162. [Google Scholar] [CrossRef]
- Heurich, A.; Hofmann-Winkler, H.; Gierer, S.; Liepold, T.; Jahn, O.; Pöhlmann, S. TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein. J. Virol. 2014, 88, 1293–1307. [Google Scholar] [CrossRef] [PubMed]
- Abdollahi, S.; Izadi, P. TMPRSS2 As an Influential Human Gene for COVID-19. J. Hum. Genet. Genom. 2020, 4, e119384. [Google Scholar] [CrossRef]
- Yaghoobi, A.; Lord, J.S.; Rezaiezadeh, J.S.; Yekaninejad, M.S.; Amini, M.; Izadi, P. TMPRSS2 polymorphism (rs12329760) and the severity of the COVID-19 in Iranian population. PLoS ONE 2023, 18, e0281750. [Google Scholar] [CrossRef]
- Protocol “Provision of Medical Assistance for the Treatment of Coronavirus Disease (COVID-19)”. Approved by the Order of the Ministry of Health of Ukraine of April 2, 2020 No. 762 (as Amended by the Order of the Ministry of Health of Ukraine of May 17, 2023 No. 913. Ukrainian. Available online: https://www.dec.gov.ua/wp-content/uploads/2023/05/protokol-covid2023.pdf (accessed on 27 March 2023).
- Medical Care Standards “Coronavirus Disease (COVID-19)”. Approved by Order No. 722 of the Ministry of Health of Ukraine dated March 28, 2020. Ukrainian. Available online: https://www.dec.gov.ua/wp-content/uploads/2021/10/2020_722_standart_covid_19.pdf (accessed on 3 March 2020).
- CDC 24/7: Saving Lives, Protecting People. Prevention Actions to Use at All COVID-19 Community Levels [Internet]. Center for Disease Control and Prevention. 2023. Available online: https://www.cdc.gov/covid/prevention/index.html (accessed on 10 March 2025).
- Sokolenko, M.O.; Sydorchuk, L.P.; Sokolenko, L.S.; Sokolenko, A.A. General immunologic reactivity of patients with COVID-19 and its relation to gene polymorphism, severity of clinical course of the disease and combination with comorbidities. Medicni Perspektivi 2024, 29, 108. [Google Scholar] [CrossRef]
- Benetti, E.; Tita, R.; Spiga, O.; Ciolfi, A.; Birolo, G.; Bruselles, A.; Doddato, G.; Giliberti, A.; Marconi, C.; Musacchia, F.; et al. ACE2 gene variants may underlie interindividual variability and susceptibility to COVID-19 in the Italian population. Eur. J. Hum. Genet. 2020, 28, 1602–1614. [Google Scholar] [CrossRef] [PubMed]
- Latini, A.; Agolini, E.; Novelli, A.; Borgiani, P.; Giannini, R.; Gravina, P.; Smarrazzo, A.; Dauri, M.; Andreoni, M.; Rogliani, P.; et al. COVID-19 and genetic variants of protein involved in the SARS-CoV-2 entry into the host cells. Genes 2020, 11, 1010. [Google Scholar] [CrossRef]
- Li, P.; Ke, Y.; Shen, W.; Shi, S.; Wang, Y.; Lin, K.; Guo, X.; Wang, C.; Zhang, Y.; Zhao, Z. Targeted screening of genetic associations with COVID-19 susceptibility and severity. Front. Genet. 2022, 13, 1073880. [Google Scholar] [CrossRef]
- Downes, D.J.; Cross, A.R.; Hua, P.; Roberts, N.; Schwessinger, R.; Cutler, A.J.; Munis, A.M.; Brown, J.; Mielczarek, O.; de Andrea, C.E.; et al. COvid-19 Multi-omics Blood ATlas (COMBAT) Consortium. Identification of LZTFL1 as a candidate effector gene at a COVID-19 risk locus. Nat. Genet. 2021, 53, 1606–1615. [Google Scholar] [CrossRef]
- Mast, A.E.; Wolberg, A.S.; Gailani, D.; Garvin, M.R.; Alvarez, C.; Miller, J.I.; Aronow, B.; Jacobson, D. SARS-CoV-2 suppresses anticoagulant and fibrinolytic gene expression in the lung. Elife 2021, 10, e64330. [Google Scholar] [CrossRef] [PubMed]
- Marchetti, M.; Villa, C.; Gamba, S.; Conconi, D.; Giaccherini, C.; Russo, L.; Bolognini, S.; Tartari, C.J.; Ticozzi, C.; Verzeroli, C.; et al. The Role of Coagulation Gene Polymorphisms in Sars-CoV2 Infection in the Bergamo Area. Blood 2023, 142 (Suppl. 1), 5410. [Google Scholar] [CrossRef]
- Reiner, A.P.; Carty, C.L.; Carlson, C.S.; Wan, J.Y.; Rieder, M.J.; Smith, J.D.; Rice, K.; Fornage, M.; Jaquish, C.E.; Williams, O.D.; et al. Association between patterns of nucleotide variation across the three fibrinogen genes and plasma fibrinogen levels: The Coronary Artery Risk Development in Young Adults (CARDIA) study. J. Thromb. Haemost. 2006, 4, 1279–1287. [Google Scholar] [CrossRef]
- Jacquemin, B.; Antoniades, C.; Nyberg, F.; Plana, E.; Müller, M.; Greven, S.; Salomaa, V.; Sunyer, J.; Bellander, T.; Chalamandaris, A.-G.; et al. Common Genetic Polymorphisms and Haplotypes of Fibrinogen Alpha, Beta, and Gamma Chains Affect Fibrinogen Levels and the Response to Proinflammatory Stimulation in Myocardial Infarction Survivors: The AIRGENE Study. J. Am. Coll. Cardiol. 2008, 52, 941–952. [Google Scholar] [CrossRef]
- Van’t Hooft, F.M.; von Bahr, S.J.; Silveira, A.; Iliadou, A.; Eriksson, P.; Hamsten, A. Two common, functional polymorphisms in the promoter region of the beta-fibrinogen gene contribute to regulation of plasma fibrinogen concentration. Arterioscler. Thromb. Vasc. Biol. 1999, 19, 3063–3070. [Google Scholar] [CrossRef]
- Schwedler, C.; Heymann, G.; Bukreeva, L.; Hoppe, B. Association of Genetic Polymorphisms of Fibrinogen, Factor XIII A-Subunit and α2-Antiplasmin with Fibrinogen Levels in Pregnant Women. Life 2021, 11, 1340. [Google Scholar] [CrossRef]
- Hu, X.; Wang, J.; Li, Y.; Wu, J.; Qiao, S.; Xu, S.; Huang, J.; Chen, L. The β-fibrinogen gene 455G/A polymorphism associated with cardioembolic stroke in atrial fibrillation with low CHA2DS2-VaSc score. Sci. Rep. 2017, 7, 17517. [Google Scholar] [CrossRef]
- Antoniak, S. The coagulation system in host defense. Res. Pract. Thromb. Haemost. 2018, 2, 549–557. [Google Scholar] [CrossRef] [PubMed]
- Flick, M.J.; Du, X.; Witte, D.P.; Jiroušková, M.; Soloviev, D.A.; Busuttil, S.J.; Plow, E.F.; Degen, J.L. Leukocyte engagement of fibrin (ogen) via the integrin receptor α M β 2/Mac-1 is critical for host inflammatory response in vivo. J. Clin. Investig. 2004, 113, 1596–1606. [Google Scholar] [CrossRef] [PubMed]
- Farsalinos, K.; Barbouni, A.; Niaura, R. Systematic review of the prevalence of current smoking among hospitalized COVID-19 patients in China: Could nicotine be a therapeutic option? Intern. Emerg. Med. 2020, 15, 845–852. [Google Scholar] [CrossRef]
- Blank, M.L.; Hoek, J.; George, M.; Gendall, P.; Conner, T.S.; Thrul, J.; Ling, P.M.; Langlotz, T. An exploration of smoking-to-vaping transition attempts using a “smart” electronic nicotine delivery system. Nicotine Tob. Res. 2019, 21, 1339–1346. [Google Scholar] [CrossRef]
- Kamyshnyi, A.; Koval, H.; Kobevko, O.; Buchynskyi, M.; Oksenych, V.; Kainov, D.; Lyubomirskaya, K.; Kamyshna, I.; Potters, G.; Moshynets, O. Therapeutic Effectiveness of Interferon-A2b against COVID-19 with Community-Acquired Pneumonia: The Ukrainian Experience. Int. J. Mol. Sci. 2023, 24, 6887. [Google Scholar] [CrossRef] [PubMed]
- Treatment Guidelines Panel. Coronavirus Disease 2019 (COVID-19) Treatment Guidelines. National Institutes of Health. Available online: https://med-expert.com.ua/journals/wp-content/uploads/2022/01/15.pdf (accessed on 31 January 2023).
- Guidelines for Clinical Management of SARS-CoV-2 Infection. Taiwan Centers for Disease Control [Tranditinal Chinese Version]. Available online: https://www.cdc.gov.tw/Category/Page/xCSwc5oznwcqunujPc-qmQ (accessed on 31 January 2023).
- Kokic, G.; Hillen, H.S.; Tegunov, D.; Dienemann, C.; Seitz, F.; Schmitzova, J.; Farnung, L.; Siewert, A.; Höbartner, C.; Cramer, P. Mechanism of SARS-CoV-2 polymerase stalling by remdesivir. Nat. Commun. 2021, 12, 279. [Google Scholar] [CrossRef]
- Belenichev, I.; Popazova, O.; Bukhtiyarova, N.; Savchenko, D.; Oksenych, V.; Kamyshnyi, O. Modulating Nitric Oxide: Implications for Cytotoxicity and Cytoprotection. Antioxidants 2024, 13, 504. [Google Scholar] [CrossRef]
- Petakh, P.; Isevych, V.; Kamyshnyi, A.; Oksenych, V. Weil’s Disease-Immunopathogenesis, Multiple Organ Failure, and Potential Role of Gut Microbiota. Biomolecules 2022, 12, 1830. [Google Scholar] [CrossRef]
- Petakh, P.; Griga, V.; Mohammed, I.B.; Loshak, K.; Poliak, I.; Kamyshnyiy, A. Effects of Metformin, Insulin on Hematological Parameters of COVID-19 Patients with Type 2 Diabetes. Med. Arch. 2022, 76, 329–332. [Google Scholar] [CrossRef] [PubMed]
- Petakh, P.; Kamyshna, I.; Oksenych, V.; Kainov, D.; Kamyshnyi, A. Metformin Therapy Changes Gut Microbiota Alpha-Diversity in COVID-19 Patients with Type 2 Diabetes: The Role of SARS-CoV-2 Variants and Antibiotic Treatment. Pharmaceuticals 2023, 16, 904. [Google Scholar] [CrossRef]
- Frank, B.S.; Niemiec, S.; Khailova, L.; Mancuso, C.A.; Mitchell, M.B.; Morgan, G.J.; Twite, M.; DiMaria, M.V.; Sucharov, C.C.; Davidson, J.A. Increased Endothelin-1 Is Associated With Morbidity in Single Ventricle Heart Disease in Children Undergoing Fontan Palliation. JACC Adv. 2025, 4, 101672. [Google Scholar] [CrossRef] [PubMed]
- Zanin-Silva, D.C.; Santana-Gonçalves, M.; Kawashima-Vasconcelos, M.Y.; Oliveira, M.C. Management of Endothelial Dysfunction in Systemic Sclerosis: Current and Developing Strategies. Front. Med. 2021, 8, 788250. [Google Scholar] [CrossRef]
- Kuczmarski, A.V.; Welti, L.M.; Moreau, K.L.; Wenner, M.M. ET-1 as a Sex-Specific Mechanism Impacting Age-Related Changes in Vascular Function. Front. Aging 2021, 2, 727416. [Google Scholar] [CrossRef]
- Almulhim, A.S.; Alabdulwahed, M.A.; Aldoughan, F.F.; Aldayyen, A.M.; Alghamdi, F.; Alabdulqader, R.; Alnaim, N.; Alghannam, D.; Aljamaan, Y.; Almutairi, S.; et al. Evaluation of serial procalcitonin levels for the optimization of antibiotic use in non-critically ill COVID-19 patients. Pharmaceuticals 2024, 17, 624. [Google Scholar] [CrossRef]
- Papp, M.; Kiss, N.; Baka, M.; Trásy, D.; Zubek, L.; Fehérvári, P.; Harnos, A.; Turan, C.; Hegyi, P.; Molnár, Z. Procalcitonin-guided antibiotic therapy may shorten length of treatment and may improve survival—A systematic review and meta-analysis. Crit. Care 2023, 27, 394. [Google Scholar] [CrossRef] [PubMed]
- Overstijns, M.; Scheffler, P.; Buttler, J.; Beck, J.; El Rahal, A. Serum procalcitonin in the diagnosis of pneumonia in the neurosurgical intensive care unit. Neurosurg. Rev. 2025, 48, 373. [Google Scholar] [CrossRef] [PubMed]
- Pawluk, H.; Woźniak, A.; Tafelska-Kaczmarek, A.; Kosinska, A.; Pawluk, M.; Sergot, K.; Grochowalska, R.; Kołodziejska, R. The Role of IL-6 in Ischemic Stroke. Biomolecules 2025, 15, 470. [Google Scholar] [CrossRef]
- Jarlborg, M.; Gabay, C. Systemic effects of IL-6 blockade in rheumatoid arthritis beyond the joints. Cytokine 2022, 149, 155742. [Google Scholar] [CrossRef]
- Syed Khaja, A.S.; Binsaleh, N.K.; Beg, M.M.A.; Ashfaq, F.; Khan, M.I.; Almutairi, M.G.; Qanash, H.; Saleem, M.; Ginawi, I.A.M. Clinical importance of cytokine (IL-6, IL-8, and IL-10) and vitamin D levels among patients with Type-1 diabetes. Sci. Rep. 2024, 14, 24225. [Google Scholar] [CrossRef] [PubMed]
- Elliott, M.R.; O’Connor, A.E.; Marshall, G.D. Inflammatory pathways in patients with post-acute sequelae of COVID-19: The role of the clinical immunologist. Ann. Allergy Asthma Immunol. Off. Publ. Am. Coll. Allergy Asthma Immunol. 2024, 133, 507–515. [Google Scholar] [CrossRef] [PubMed]
- Ghanei, M. It is time to consider an anti-inflammatory therapy based on the pathophysiology of COVID-19 infection during the right time window? Arch. Med. Sci. AMS 2021, 17, 546–550. [Google Scholar] [CrossRef] [PubMed]
- Janik, E.; Niemcewicz, M.; Podogrocki, M.; Saluk-Bijak, J.; Bijak, M. Existing Drugs Considered as Promising in COVID-19 Therapy. Int. J. Mol. Sci. 2021, 22, 5434. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Y.; Zhang, S. Cardiovascular Impairment in COVID-19: Learning from Current Options for Cardiovascular Anti-Inflammatory Therapy. Front. Cardiovasc. Med. 2020, 7, 78. [Google Scholar] [CrossRef]
- Barriga Guzman, R.; Tolu-Akinnawo, O.; Awoyemi, T.; Chima-Kalu, R.; Adeleke, O.; Ezekwueme, F.; Obarombi, J.T.; Gwira-Tamattey, E.; Abib, O.; Odeyinka, O.; et al. A Systematic Review of Case Reports of New-Onset Atrial Fibrillation in COVID-19 Patients. Cureus 2025, 17, e78938. [Google Scholar] [CrossRef]
- Huang, D.; Xuan, W.; Li, Z. Impact of COVID-19 on Ocular Surface Health: Infection Mechanisms, Immune Modulation, and Inflammatory Responses. Viruses 2025, 17, 68. [Google Scholar] [CrossRef]
- Patrascu, R.; Dumitru, C.S. Advances in Understanding Inflammation and Tissue Damage: Markers of Persistent Sequelae in COVID-19 Patients. J. Clin. Med. 2025, 14, 1475. [Google Scholar] [CrossRef]
- Gomes, M.G.M.; Ferreira, M.U.; Corder, R.M.; King, J.G.; Souto-Maior, C.; Penha-Gonçalves, C.; Gonçalves, G.; Chikina, M.; Pegden, W.; Aguas, R. Individual variation in susceptibility or exposure to SARS-CoV-2 lowers the herd immunity threshold. medRxiv 2022. [Google Scholar] [CrossRef]
- Buchynskyi, M.; Oksenych, V.; Kamyshna, I.; Vorobets, I.; Halabitska, I.; Kamyshnyi, O. Modulatory Roles of AHR, FFAR2, FXR, and TGR5 Gene Expression in Metabolic-Associated Fatty Liver Disease and COVID-19 Outcomes. Viruses 2024, 16, 985. [Google Scholar] [CrossRef]
- Buchynskyi, M.; Oksenych, V.; Kamyshna, I.; Budarna, O.; Halabitska, I.; Petakh, P.; Kamyshnyi, O. Genomic insight into COVID-19 severity in MAFLD patients: A single-center prospective cohort study. Front. Genet. 2024, 15, 1460318. [Google Scholar] [CrossRef] [PubMed]
- Goldblatt, D.; Alter, G.; Crotty, S.; Plotkin, S.A. Correlates of protection against SARS-CoV-2 infection and COVID-19 disease. Immunol. Rev. 2022, 310, 6–26. [Google Scholar] [CrossRef] [PubMed]
- Peluso, M.J.; Deeks, S.G. Mechanisms of long COVID and the path toward therapeutics. Cell 2024, 187, 5500–5529. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.Y.; Chien, C.W.; Tung, T.H. Healthcare practice strategies for integrating personalized medicine: Management of COVID-19. World J. Clin. Cases 2021, 9, 8647–8657. [Google Scholar] [CrossRef]
- Arish, M.; Naz, F. Personalized therapy: Can it tame the COVID-19 monster? Pers. Med. 2021, 18, 583–593. [Google Scholar] [CrossRef]
- Stefanicka-Wojtas, D.; Kurpas, D. Personalised Medicine-Implementation to the Healthcare System in Europe (Focus Group Discussions). J. Pers. Med. 2023, 13, 380. [Google Scholar] [CrossRef]
- Li, Y.; Lan, J.; Wong, G. Advances in treatment strategies for COVID-19: Insights from other coronavirus diseases and prospects. Biosaf. Health 2023, 5, 272–279. [Google Scholar] [CrossRef]
- Buchynskyi, M.; Oksenych, V.; Kamyshna, I.; Kamyshnyi, O. Exploring Paxlovid Efficacy in COVID-19 Patients with MAFLD: Insights from a Single-Center Prospective Cohort Study. Viruses 2024, 16, 112. [Google Scholar] [CrossRef]
- Buchynskyi, M.; Oksenych, V.; Kamyshna, I.; Vari, S.G.; Kamyshnyi, A. Genetic Predictors of Comorbid Course of COVID-19 and MAFLD: A Comprehensive Analysis. Viruses 2023, 15, 1724. [Google Scholar] [CrossRef]
- Buchynskyi, M.; Kamyshna, I.; Halabitska, I.; Petakh, P.; Oksenych, V.; Kamyshnyi, O. Genetic Predictors of Paxlovid Treatment Response: The Role of IFNAR2, OAS1, OAS3, and ACE2 in COVID-19 Clinical Course. J. Pers. Med. 2025, 15, 156. [Google Scholar] [CrossRef]
- Cen, X.; Wang, F.; Huang, X.; Jovic, D.; Dubee, F.; Yang, H.; Li, Y. Towards precision medicine: Omics approach for COVID-19. Biosaf. Health 2023, 5, 78–88. [Google Scholar] [CrossRef] [PubMed]
- Molla, G.; Bitew, M. Revolutionizing Personalized Medicine: Synergy with Multi-Omics Data Generation, Main Hurdles, and Future Perspectives. Biomedicines 2024, 12, 2750. [Google Scholar] [CrossRef] [PubMed]
- Papadaki, E.; Kakkos, I.; Vlamos, P.; Petropoulou, O.; Miloulis, S.T.; Palamas, S.; Vrahatis, A.G. Recent Web Platforms for Multi-Omics Integration Unlocking Biological Complexity. Appl. Sci. 2025, 15, 329. [Google Scholar] [CrossRef]
- Vitorino, R. Transforming Clinical Research: The Power of High-Throughput Omics Integration. Proteomes 2024, 12, 25. [Google Scholar] [CrossRef]
- Rizzi, M.; D’Onghia, D.; Tonello, S.; Minisini, R.; Colangelo, D.; Bellan, M.; Castello, L.M.; Gavelli, F.; Avanzi, G.C.; Pirisi, M.; et al. COVID-19 Biomarkers at the Crossroad between Patient Stratification and Targeted Therapy: The Role of Validated and Proposed Parameters. Int. J. Mol. Sci. 2023, 24, 7099. [Google Scholar] [CrossRef]
- Dubey, S.; Verma, D.K.; Kumar, M. Real-time infectious disease endurance indicator system for scientific decisions using machine learning and rapid data processing. PeerJ Comput. Sci. 2024, 10, e2062. [Google Scholar] [CrossRef]
- Zhang, L.; Guo, H. Biomarkers of COVID-19 and technologies to combat SARS-CoV-2. Adv. Biomark. Sci. Technol. 2020, 2, 1–23. [Google Scholar] [CrossRef]
- Vo, D.-K.; Trinh, K.T.L. Emerging Biomarkers in Metabolomics: Advancements in Precision Health and Disease Diagnosis. Int. J. Mol. Sci. 2024, 25, 13190. [Google Scholar] [CrossRef]
- Vásquez, V.; Orozco, J. Detection of COVID-19-related biomarkers by electrochemical biosensors and potential for diagnosis, prognosis, and prediction of the course of the disease in the context of personalized medicine. Anal. Bioanal. Chem. 2023, 415, 1003–1031. [Google Scholar] [CrossRef]
- Elhabyan, A.; Yaacoub, S.; Sanad, E.; Mohamed, A.; Elhabyan, A.; Dinu, V. The role of Host Genetics in susceptibility to severe viral infections in humans and INSIGHTS into host genetics of severe COVID-19: A systematic review. Virus Res. 2020, 289, 198163. [Google Scholar] [CrossRef]
- Onoja, A.; Picchiotti, N.; Fallerini, C.; Baldassarri, M.; Fava, F.; Colombo, F.; Chiaromonte, F.; Renieri, A.; Furini, S.; Raimondi, F. An explainable model of host genetic interactions linked to COVID-19 severity. Commun. Biol. 2022, 5, 1133. [Google Scholar] [CrossRef] [PubMed]
- Sabit, H.; Arneth, B.; Altrawy, A.; Ghazy, A.; Abdelazeem, R.M.; Adel, A.; Abdel-Ghany, S.; Alqosaibi, A.I.; Deloukas, P.; Taghiyev, Z.T. Genetic and Epigenetic Intersections in COVID-19-Associated Cardiovascular Disease: Emerging Insights and Future Directions. Biomedicines 2025, 13, 485. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, S.; Tian, Y.; Fu, X. Host factors of SARS-CoV-2 in infection, pathogenesis, and long-term effects. Front. Cell. Infect. Microbiol. 2024, 14, 1407261. [Google Scholar] [CrossRef]
- Parker, A.M.; Brigham, E.; Connolly, B.; McPeake, J.; Agranovich, A.V.; Kenes, M.T.; Casey, K.; Reynolds, C.; Schmidt, K.F.R.; Kim, S.Y.; et al. Addressing the post-acute sequelae of SARS-CoV-2 infection: A multidisciplinary model of care. Lancet Respir. Med. 2021, 9, 1328–1341. [Google Scholar] [CrossRef]
- Spreafico, A.M.C.; Ascione, R. Digitally Enhancing Care: Innovating Health Journeys for a Sustainable and Human-Centred Future. In Healthcare in the Digital Age: Perspectives for Sustainable Innovation and Assessment; Bertolaso, M., Ilardo, M.L., Ribera, J., Eds.; Springer Nature: Singapore, 2025; pp. 89–107. [Google Scholar]
- Milic, J.; Vucurovic, M.; Jovic, D.; Stankovic, V.; Grego, E.; Jankovic, S.; Sapic, R. Exploring the Potential of Precision Medicine in Neuropsychiatry: A Commentary on New Insights for Tailored Treatments Based on Genetic, Environmental, and Lifestyle Factors. Genes 2025, 16, 371. [Google Scholar] [CrossRef]
- Schmidt, A.; Groh, A.; Frick, J.; Vehreschild, M.; Ludwig, K. Genetic Predisposition and the Variable Course of Infectious Diseases. Dtsch. Arztebl. Int. 2022, 119, 117. [Google Scholar] [CrossRef] [PubMed]
- Alyammahi, S.K.; Abdin, S.M.; Alhamad, D.W.; Elgendy, S.M.; Altell, A.T.; Omar, H.A. The dynamic association between COVID-19 and chronic disorders: An updated insight into prevalence, mechanisms and therapeutic modalities. Infect. Genet. Evol. 2021, 87, 104647. [Google Scholar] [CrossRef] [PubMed]
- Halabitska, I.; Petakh, P.; Kamyshna, I.; Oksenych, V.; Kainov, D.E.; Kamyshnyi, O. The interplay of gut microbiota, obesity, and depression: Insights and interventions. Cell. Mol. Life Sci. CMLS 2024, 81, 443. [Google Scholar] [CrossRef]
- Hirsch, C.; Kreuzberger, N.; Skoetz, N.; Monsef, I.; Kluge, S.; Spinner, C.D.; Malin, J.J. Efficacy and safety of antiviral therapies for the treatment of persistent COVID-19 in immunocompromised patients since the Omicron surge: A systematic review. J. Antimicrob. Chemother. 2025, 80, 633–644. [Google Scholar] [CrossRef]
- Vegivinti, C.T.R.; Evanson, K.W.; Lyons, H.; Akosman, I.; Barrett, A.; Hardy, N.; Kane, B.; Keesari, P.R.; Pulakurthi, Y.S.; Sheffels, E.; et al. Efficacy of antiviral therapies for COVID-19: A systematic review of randomized controlled trials. BMC Infect. Dis. 2022, 22, 107. [Google Scholar] [CrossRef]
Individual Factors | Moderate Course n = 55 | Severe Course n = 142 | χ2 | p |
---|---|---|---|---|
Age, years (M ± m) | 63.97 ± 10.58 | 68.78 ± 11.09 | - | 0.140 |
Women, n = 100 (%) | 21 (38.18) | 79 (55.63) | 4.83 | 0.028 |
Men, n = 97 (%) | 34 (61.82) | 63 (44.37) | ||
Vaccinated, n = 75 | 19 (34.55) | 56 (39.44) | 0.4 | 0.527 |
Unvaccinated, n = 122 | 36 (65.45) | 86 (60.56) | ||
Non-invasive oxygen therapy, n = 172 | 30 (54.56) | 142 (100.0) | 73.93 | <0.001 |
No oxygen therapy, n = 25 | 25 (45.45) | 0 | ||
SBP, mm/Hg | 148.47 ± 3.70 | 142.78 ± 3.66 | - | 0.077 |
DBP, mm/Hg | 88.69 ± 3.19 | 87.92 ± 3.17 | - | 0.184 |
BMI, kg/m2 | 30.23 ± 1.15 | 29.09 ± 0.88 | - | 0.211 |
SpO2, % | 0.90 ± 0.04 | 0.81 ± 0.05 | - | 0.025 |
T2DM, n = 52 | 13 (23.64) | 39 (27.46) | 0.3 | 0.584 |
Smoking, n = 50 | 25 (45.45) | 25 (17.60) | 16.23 | <0.001 |
Polymorphic Variants of Genes | Study Group, n = 72 (%) | Control Group, n = 48 (%) | χ2 | p | ||
---|---|---|---|---|---|---|
FGB gene (455G > A; rs1800790) | ||||||
FGB (455G > A), n (%) | GG | 36 (50.0) | 12 (25.0) | 7.50 | 0.006 | |
AG | 28 (38.89) | 30 (62.50) | 6.43 | 0.011 | ||
AA | 8 (11.11) | 6 (12.50) | 0.05 | 0.823 | ||
χ2; p | χ2 = 5.84 *; p = 0.016 | - | ||||
FGB (455G > A), n (%) | Allele G | 100 (69.44) | 54 (56.25) | 4.36 | 0.037 | |
Allele A | 44 (30.56) | 42 (43.75) | ||||
NOS3 gene (T-786C; rs2070744) | ||||||
NOS3 (T-786C), n (%) | TT | 28 (38.89) | 18 (37.50) | 0.02 | 0.887 | |
TC | 30 (41.67) | 21 (43.75) | 0.05 | 0.823 | ||
CC | 14 (19.44) | 9 (18.75) | 0.01 | 0.920 | ||
χ2; p | χ2 = 0.05; p = 0.823 | - | - | |||
NOS3 (T-786C), n (%) | Allele T | 86 (59.72) | 57 (59.37) | 0 | 1.0 | |
Allele C | 58 (40.28) | 39 (40.62) | ||||
TMPRSS2 gene (Val160Met C/T; rs12329760) | ||||||
TMPRSS2 (Val160Met C/T), n (%) | CC | 40 (55.56) | 18 (37.50) | 3.76 | 0.05 | |
CT | 26 (36.11) | 25 (52.08) | 3.01 | 0.061 | ||
TT | 6 (8.33) | 5 (10.42) | 0.04 | 0.467 | ||
χ2; p | χ2 = 2,62; p = 0.105 | - | - | |||
TMPRSS2 (Val160Met C/T), n (%) | Allele C | 106 (74.03) | 61 (63.54) | 2.76 | 0.065 | |
Allele T | 38 (25.97) | 35 (36.46) |
Genotypes | Study Group, n = 72 (%) | Control Group, n = 48 (%) | OR [95% CI] | p | AC |
---|---|---|---|---|---|
The codominant model | |||||
GG | 36 (50.0) | 12 (25.0) | 1.00 | 0.02 | 17.68 |
AG | 28 (38.89) | 30 (62.50) | 0.31 [0.13–0.70] | ||
AA | 8 (11.11) | 6 (12.50) | 0.44 [0.13–1.59] | ||
The dominant model | |||||
GG | 36 (50.0) | 12 (25.0) | 1.00 | 0.01 | 16.03 |
AG + AA | 36 (50.0) | 36 (75.0) | 0.33 [0.15–0.73] | ||
Recessive model | |||||
GG + AG | 64 (88.89) | 42 (87.50) | 1.00 | 0.82 | 23.70 |
AA | 8 (11.11) | 6 (12.50) | 0.87 [0.28–2.83] | ||
Super-dominant model, df = 2 | |||||
GG + AA | 44 (61.11) | 18 (37.50) | 1.00 | 0.01 | 17.27 |
AG | 28 (38.89) | 30 (62.50) | 0.38 [0.18–0.80] | ||
Additive model | |||||
GG | 36 (50.0) | 12 (25.0) | 1.00 | 0.03 | 19.14 |
2AA + AG | 44 | 42 | 0.54 [0.30–0.95] |
Genotypes | Study Group, n = 72 (%) | Control Group, n = 48 (%) | OR [95% CI] | p | AC |
---|---|---|---|---|---|
The codominant model | |||||
TT | 28 (38.89) | 18 (37.50) | 1.00 | 0.97 | 18.17 |
TC | 30 (41.67) | 21 (43.75) | 0.92 [0.40–2.07] | ||
CC | 14 (19.44) | 9 (18.75) | 1.0 [0.36–2.85] | ||
The dominant model | |||||
TT | 28 (38.89) | 18 (37.50) | 1.00 | 0.88 | 16.19 |
TC + CC | 44 (61.11) | 30 (62.50) | 0.94 [0.44–2.0] | ||
Recessive model | |||||
TT + TC | 58 (80.56) | 39 (81.25) | 1.00 | 0.92 | 16.21 |
CC | 14 (19.44) | 9 (18.75) | 1.05 [0.45–2.73] | ||
Super-dominant model, df = 2 | |||||
TT + CC | 42 (58.33) | 27 (56.25) | 1.00 | 0.82 | 16.17 |
TC | 30 (41.67) | 21 (43.75) | 0.92 [0.44–1.93] | ||
Additive model | |||||
TT | 28 (38.89) | 18 (37.50) | 1.00 | 0.96 | 16.22 |
2CC + TC | 58 | 39 | 0.99 [0.60–1.93] |
Genotypes | Study Group, n = 72 (%) | Control Group, n = 48 (%) | OR [95% CI] | p | CA |
---|---|---|---|---|---|
The codominant model, df = 1 | |||||
CC | 40 (55.56) | 18 (37.50) | 1.00 | 0.15 | 17.65 |
CT | 26 (36.11) | 25 (52.08) | 2.14 [0.98–4.73] | ||
TT | 6 (8.33) | 5 (10.42) | 1.85 [0.48–6.95] | ||
The dominant model, df = 1 | |||||
CC | 40 (55.56) | 18 (37.50) | 1.00 | 0.049 | 15.69 |
CT+ TT | 32 (44.44) | 30 (62.50) | 2.08 [1.0–4.45] | ||
Recessive model, df = 1 | |||||
CC + CT | 66 (91.67) | 43 (89.58) | 1.00 | 0.70 | 19.33 |
TT | 6 (8.33) | 5 (10.42) | 1.28 [0.35–4.50] | ||
Super-dominant model, df = 2 | |||||
CC + TT | 46 (63.89) | 23 (47.92) | 1.00 | 0.08 | 16.48 |
CT | 26 (36.11) | 25 (52.08) | 1.92 [0.92–4.08] | ||
Additive model, df = 1 | |||||
CC | 40 (55.56) | 18 (37.50) | 1.00 | 0.10 | 16.72 |
2TT + CT | 38 (52.78) | 35 (72.92) | 1.61 [0.92–2.88] |
Genes | Genotypes | Moderate Course, n = 36 (%) | Severe Course, n = 36 (%) | χ2 | p | ||
---|---|---|---|---|---|---|---|
In general, n = 197 (%) | 55 (27.92) | 142 (72.08) | 78.64 | <0.001 | |||
FGB (rs1800790) gene | |||||||
FGB (455G > A), n = 72 (%) | GG | 18 (50.0) | 18 (50.0) | 0 | 1.0 | ||
GA + AA | 18 (50.0) | 18 (50.0) | |||||
eNOS (rs2070744) gene | |||||||
eNOS (786T > C), n = 72 (%) | TT | 16 (44.44) | 12 (33.33) | 1.1 | 0.294 | ||
CT | 13 (36.11) | 17 (47.22) | |||||
CC | 7 (19.44) | 7 (19.44) | |||||
TMPRSS2 (rs12329760) gene | |||||||
TMPRSS2 (C/T), n = 72 (%) | CC | 20 (55.56) | 20 (55.56) | 0 | 1.0 | ||
CT + TT | 16 (44.44) | 16 (44.44) |
Laboratory Findings | Control | Moderate Course | Severe Course | |
---|---|---|---|---|
TMPRSS2, ng/mL | Before treatment | 1.81 ± 0.12 | 2.87 ± 0.18 p < 0.001 | 2.30 ± 0.19 p = 0.003; p # < 0.001 |
After treatment | 2.40 ± 0.11 p = 0.003; p * = 0.014 | 2.04 ± 0.06 p = 0.043; p# = 0.002; p * = 0.049 | ||
ET-1, pg/mL | Before treatment | 4.03 ± 0.55 | 13.37 ± 2.97 p < 0.001 | 10.81 ± 3.53 p = 0.047 |
After treatment | 11.56 ± 1.62 p < 0.001 | 10.11 ± 0.95 p = 0.002 | ||
IL-6, pg/mL | Before treatment | 7.79 ± 1.26 | 42.86 ± 7.48 p < 0.001 | 100.79 ± 4.96 p, p # < 0.001 |
After treatment | 25.45 ± 3.26 p, p * < 0.001 | 52.17 ± 2.85 p, p #, p * < 0.001 | ||
PCT, ng/mL | Before treatment | 0.1 ± 0.0001 | 0.29 ± 0.06 p < 0.001 | 0.28 ± 0.06 p < 0.001 |
After treatment | 0.15 ± 0.02 p, p * < 0.001 | 0.12 ± 0.02 p, p * < 0.001 | ||
SpO2, % | Before treatment | 0.98 ± 0.01 | 0.90 ± 0.04 p < 0.001 | 0.81 ± 0.05 p < 0.001; p # = 0.025 |
After treatment | 0.96 ± 0.01 p * = 0.048 | 0.93 ± 0.02 p * < 0.001 p = 0.013; p # = 0.051 | ||
Fibrinogen, g/l | Before treatment | 3.52 ± 0.22 | 4.84 ± 0.50 p < 0.001 | 5.20 ± 0.37 p < 0.001 |
After treatment | 4.30 ± 0.35 p = 0.031 | 4.71 ± 0.23 p = 0.003 | ||
D-dimer, mg/l FEU | Before treatment | 0.34 ± 0.05 | 0.91 ± 0.13 p < 0.001 | 0.86 ± 0.10 p < 0.001 |
After treatment | 0.55 ± 0.10 p = 0.032; p * = 0.015 | 0.50 ± 0.08 p = 0.045; p * = 0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sokolenko, M.; Sydorchuk, L.; Sokolenko, A.; Sydorchuk, R.; Kamyshna, I.; Sydorchuk, A.; Sokolenko, L.; Sokolenko, O.; Oksenych, V.; Kamyshnyi, O. Antiviral Intervention of COVID-19: Linkage of Disease Severity with Genetic Markers FGB (rs1800790), NOS3 (rs2070744) and TMPRSS2 (rs12329760). Viruses 2025, 17, 792. https://doi.org/10.3390/v17060792
Sokolenko M, Sydorchuk L, Sokolenko A, Sydorchuk R, Kamyshna I, Sydorchuk A, Sokolenko L, Sokolenko O, Oksenych V, Kamyshnyi O. Antiviral Intervention of COVID-19: Linkage of Disease Severity with Genetic Markers FGB (rs1800790), NOS3 (rs2070744) and TMPRSS2 (rs12329760). Viruses. 2025; 17(6):792. https://doi.org/10.3390/v17060792
Chicago/Turabian StyleSokolenko, Maksym, Larysa Sydorchuk, Alina Sokolenko, Ruslan Sydorchuk, Iryna Kamyshna, Andriy Sydorchuk, Ludmila Sokolenko, Oleksandr Sokolenko, Valentyn Oksenych, and Oleksandr Kamyshnyi. 2025. "Antiviral Intervention of COVID-19: Linkage of Disease Severity with Genetic Markers FGB (rs1800790), NOS3 (rs2070744) and TMPRSS2 (rs12329760)" Viruses 17, no. 6: 792. https://doi.org/10.3390/v17060792
APA StyleSokolenko, M., Sydorchuk, L., Sokolenko, A., Sydorchuk, R., Kamyshna, I., Sydorchuk, A., Sokolenko, L., Sokolenko, O., Oksenych, V., & Kamyshnyi, O. (2025). Antiviral Intervention of COVID-19: Linkage of Disease Severity with Genetic Markers FGB (rs1800790), NOS3 (rs2070744) and TMPRSS2 (rs12329760). Viruses, 17(6), 792. https://doi.org/10.3390/v17060792