Virucidal Approaches for Hemorrhagic Fever Viruses
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. General Considerations
3.2. Efficacy of Virucidal Approaches for Inactivating Hemorrhagic Fever Arenaviruses
3.3. Efficacy of Virucidal Approaches for Inactivating Hemorrhagic Fever Filoviruses
3.4. Efficacy of Virucidal Approaches for Inactivating Hemorrhagic Fever Flaviviruses
3.5. Efficacy of Virucidal Approaches for Inactivating Hemorrhagic Fever Hantaviruses
3.6. Efficacy of Virucidal Approaches for Inactivating Hemorrhagic Fever Nairoviruses
3.7. Efficacy of Virucidal Approaches for Inactivating Non-Typical Hemorrhagic Fever Paramyxoviruses
3.8. Efficacy of Virucidal Approaches for Inactivating Hemorrhagic Fever Phenuiviruses
4. Discussion
- Since the stated goal of the review was to identify inactivation efficacy information specifically for the HFVs, certain information available for family members not considered to be HFVs (especially of the Flaviviridae and the Paramyxoviridae) have not been included in the tabular summaries;
- Secondly, the emergence of new HFVs within the various virus families discussed in this review is very dynamic. Not all currently known HFVs within these families may have been mentioned. This is especially true for the arenaviruses and the hantaviruses. On the other hand, our tabular summaries provide information for two paramyxoviruses that may be considered non-typical HFVs as the resulting symptoms—though more neurological in nature—do include hemorrhages [2,113,114];
- Thirdly, the tabular information assembled represents primary empirical data only. Secondary literature information has been excluded from the tables. In addition, there are some predictive data that have not been included in the tables presented. An example of this type of data is the prediction of the susceptibilities of HFVs to ultraviolet light in the C range (UV-C, 254 nm) by Lytle and Sagripanti [115]. The predicted UV-C susceptibilities were found to be similar for the various HFVs considered (Marburg virus, Ebola virus, Hanta virus, Rift Valley fever virus, Lassa virus, and Junin virus), with decimal reduction (D) values (the fluence of 254 nm radiation required to inactivate 1 log10 of HFVs) ranging from 1.7 to 3.0 mJ/cm2 [115];
- Fourthly, the efficacies of certain less commonly used inactivation approaches for HFVs, including photodynamic methods (e.g., psoralen + ultraviolet light in the A range [116,117]; methylene blue + visible light [72]) and high-hydrostatic pressure inactivation [118], have not been included within the tables provided in this review as the methods are rather niche approaches for the described applications or require specialized devices that are not widely available in research and diagnostic laboratories globally.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ijaz, M.K.; Nims, R.W.; Cutts, T.A.; McKinney, J.; Gerba, C.P. Predicted and measured virucidal efficacies of microbicides for emerging and reemerging viruses associated with WHO priority diseases. In Disinfection of Viruses; Nims, R.W., Ijaz, M.K., Eds.; Intech Open: London, UK, 2022. [Google Scholar] [CrossRef]
- U.S. CDC. About Viral Hemorrhagic Fevers. Fact Sheet. Available online: https://www.cdc.gov/viral-hemorrhagic-fevers/about/index.html (accessed on 10 April 2025).
- Pigott, D.C. Hemorrhagic fever viruses. Crit. Care Clin. 2005, 21, 765–783. [Google Scholar] [CrossRef] [PubMed]
- Flórez-Álvarez, L.; de Souza, E.E.; Botosso, V.F.; de Oliveira, D.B.L.; Ho, P.L.; Taborda, C.P.; Palmisano, G.; Capurro, M.L.; Pinho, J.R.R.; Ferreira, H.L.; et al. Hemorrhagic fever viruses: Pathogenesis, therapeutics, and emerging and re-emerging potential. Front. Microbiol. 2022, 13, 1040093. [Google Scholar] [CrossRef]
- World Health Organization. Prioritizing Diseases for Research and Development in Emergency Contexts. 2021. Available online: https://www.who.int/activities/prioritizing-diseases-for-research-and-development-in-emergency-contexts (accessed on 10 April 2025).
- Spaulding, E.H. Chemical disinfection of medical and surgical materials. In Disinfection, Sterilization, & Preservation, 3rd ed.; Block, S., Ed.; Lea & Febiger: Philadelphia, PA, USA, 1968. [Google Scholar]
- U.S. Environmental Protection Agency. Guidance to Registrants: Process for Making Claims Against Emerging Viral Pathogens not on EPA-Registered Disinfectant Labels. 2016. Available online: https://www.epa.gov/sites/default/files/2016-09/documents/emerging_viral_pathogen_program_guidance_final_8_19_16_001_0.pdf (accessed on 10 April 2025).
- U.S. Environmental Protection Agency. Emerging Viral Pathogen Guidance for Antimicrobial Pesticides. 2021. Available online: https://www.epa.gov/pesticide-registration/emerging-viral-pathogen-guidance-antimicrobial-pesticides (accessed on 10 April 2025).
- Eggers, M.; Schwebke, I.; Suchomel, M.; Fotheringham, V.; Gebel, J.; Meyer, B.; Morace, G.; Roedger, H.J.; Roques, C.; Visa, P.; et al. The European tiered approach for virucidal efficacy testing–rationale for rapidly selecting disinfectants against emerging and re-emerging viral diseases. EuroSurveillance 2021, 26, 2000708. [Google Scholar] [CrossRef]
- Nims, R.W.; Zhou, S.S. Intra-family differences in efficacy of inactivation of small, non-enveloped viruses. Biologicals 2016, 44, 456–462. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.S. Variation in resistance among enveloped and non-enveloped viruses to chemical treatments. In Disinfection of Viruses; Nims, R.W., Ijaz, M.K., Eds.; Intech Open: London, UK, 2022; Available online: https://www.intechopen.com/chapters/80772 (accessed on 10 April 2025).
- Elveborg, S.; Monteil, V.M.; Mirazimi, A. Methods of inactivation of highly pathogenic viruses for molecular, serology or vaccine development purposes. Pathogens 2022, 11, 271. [Google Scholar] [CrossRef]
- Hossain, F. Sources, enumerations and inactivation mechanisms of four emerging viruses in aqueous phase. J. Water Health 2022, 20, 396–440. [Google Scholar] [CrossRef]
- Gerba, C.P.; Boone, S.; Nims, R.W.; Maillard, J.-Y.; Sattar, S.A.; Rubino, J.R.; McKinney, J.; Ijaz, M.K. Mechanisms of action of microbicides commonly used in infection prevention and control. Microbiol. Mol. Biol. Rev. 2024, 88, e0020522. [Google Scholar] [CrossRef] [PubMed]
- Nims, R.W.; Plavsic, M. Physical inactivation of SARS-CoV-2 and other coronaviruses: A review. In Disinfection of Viruses; Nims, R.W., Ijaz, M.K., Eds.; Intech Open: London, UK, 2022; Available online: https://www.intechopen.com/chapters/81019 (accessed on 10 April 2025).
- ASTM E1053-20; Standard Practice to Assess Virucidal Activity of Chemicals Intended for Disinfection of Inanimate, Nonporous Environmental Surfaces. ASTM International: West Conshohocken, PA, USA, 2020. Available online: https://store.astm.org/standards/e1053 (accessed on 10 April 2025).
- ASTM E1052-20; Standard Practice to Assess the Activity of Microbicides Against Viruses in Suspension. ASTM International: West Conshohocken, PA, USA, 2020. Available online: https://store.astm.org/e1052-20.html (accessed on 10 April 2025).
- BS EN 14476:2013+A2:2019; Chemical Disinfectants and Antiseptics. Quantitative Suspension Test for the Evaluation of Virucidal Activity in the Medical Area. Test Method and Requirements (Phase 2/Step 1). British Standards Institute: London, UK, 2019. Available online: https://www.en-standard.eu/bs-en-14476-2013-a2-2019-chemical-disinfectants-and-antiseptics-quantitative-suspension-test-for-the-evaluation-of-virucidal-activity-in-the-medical-area-test-method-and-requirements-phase-2-step-1/ (accessed on 10 April 2025).
- U.S. Environmental Protection Agency. OCSPP 810.2500-Air Sanitizers_2012-03-12 [EPA 730-C-11-003]. 2012. Available online: https://www.regulations.gov/document/EPA-HQ-OPPT-2009-0150-0025 (accessed on 10 April 2025).
- E3273-21; Standard Practice to Assess Microbial Decontamination of Indoor Air Using an Aerobiology Chamber. ASTM International: West Conshohocken, PA, USA, 2021. [CrossRef]
- Ijaz, M.K.; Zargar, B.; Nims, R.W.; McKinney, J.; Sattar, S.A. Rapid virucidal activity of an air sanitizer against airborne bacteriophage Phi6 and MS2 surrogates for non-enveloped and enveloped vertebrate viruses, including SARS-CoV-2. Appl. Environ. Microbiol. 2024, 91, e01426-24. [Google Scholar] [CrossRef]
- Springthorpe, V.S.; Sattar, S.A. Application of a quantitative carrier test to evaluate microbicides against mycobacteria. J. AOAC Int. 2007, 90, 817–824. [Google Scholar] [CrossRef]
- U.S. CDC. About Lassa Fever. 2024. Available online: https://www.cdc.gov/lassa-fever/about/index.html (accessed on 10 April 2025).
- Olschewski, S.; Thielbein, A.; Hoffmann, C.; Blake, O.; Müller, J.; Bockholt, S.; Pallasch, E.; Hinzmann, J.; Wurr, S.; Neddersen, N.; et al. Validation of inactivation methods for arenaviruses. Viruses 2021, 13, 968. [Google Scholar] [CrossRef]
- Sagripanti, J.-L.; Lytle, C.D. Sensitivity to ultraviolet radiation of Lassa, vaccinia, and Ebola viruses dried on surfaces. J. Arch. Virol. 2011, 156, 489–494. [Google Scholar] [CrossRef] [PubMed]
- Sagripanti, J.-L.; Routson, L.B.; Lytle, C.D. Virus inactivation by copper or iron ions alone and in the presence of peroxide. Appl. Environ. Microbiol. 1993, 59, 4374–4376. [Google Scholar] [CrossRef] [PubMed]
- Shaffer, M.; Fischer, R.J.; Gallogly, S.; Ginn, O.; Munster, V.; Bibby, K. Environmental persistence and disinfection of Lassa virus. Emerg. Infect. Dis. 2023, 29, 2285–2291. [Google Scholar] [CrossRef]
- Cutts, T.A.; Nims, R.W.; Rubino, J.R.; McKinney, J.; Kuhn, J.; Ijaz, M.K. Efficacy of microbicidal actives and formulations for inactivation of Lassa virus in suspension. Sci. Rep. 2023, 13, 12983. [Google Scholar] [CrossRef] [PubMed]
- Elliott, L.H.; McCormick, J.B.; Johnson, K.M. Inactivation of Lassa, Marburg, and Ebola viruses by gamma irradiation. J. Clin. Med. 1982, 16, 704–708. [Google Scholar] [CrossRef]
- Mitchell, S.W.; McCormick, J.B. Physicochemical inactivation of Lassa, Ebola, and Marburg viruses and effect on clinical laboratory analyses. J. Clin. Microbiol. 1984, 20, 486–489. [Google Scholar] [CrossRef]
- Kochel, T.J.; Kocher, G.A.; Ksiazek, T.G.; Burans, J.P. Evaluation of Trizol LS inactivation of viruses. ABSA Int. 2017, 22, 52–55. [Google Scholar] [CrossRef]
- Cutts, T.; Leung, A.; Banadyga, L.; Krishnan, J. Inactivation validation of Ebola, Marburg, and Lassa viruses in AVL and ethanol-treated viral cultures. Viruses 2024, 16, 1354. [Google Scholar] [CrossRef]
- Lloyd, G.; Bowen, E.T.W.; Slade, J.H.R. Physical and chemical methods of inactivating Lassa virus. Lancet 1982, 1, 1046–1048. [Google Scholar] [CrossRef]
- Retterer, C.; Kenny, T.; Zamani, R.; Altamura, L.A.; Kearney, B.; Jaissle, J.; Coyne, S.; Olschner, S.; Harbourt, D. Strategies for validation of inactivation of viruses with Trizol® LS and formalin solutions. Appl. Biosaf. 2020, 25, 74–82. [Google Scholar] [CrossRef]
- Feldmann, F.; Shupert, W.L.; Haddock, E.; Twardoski, B.; Feldmann, H. Gamma irradiation as an effective method for inactivation of emerging viruses. Am. J. Trop. Med. Hyg. 2019, 100, 1275–1277. [Google Scholar] [CrossRef]
- Olejnik, J.; Hume, A.J.; Ross, S.J.; Scoon, W.A.; Seitz, S.; White, M.R.; Slutzky, B.; Yun, N.E.; Mühlberger, E. Art of the kill: Designing and testing viral inactivation procedures for highly pathogenic negative sense RNA viruses. Pathogens 2023, 12, 952. [Google Scholar] [CrossRef]
- Kuhn, J.H.; Amarasinghe, G.K.; Basler, C.F.; Bavari, S.; Bukreyev, A.; Chandran, K.; Crozier, I.; Dolnick, O.; Dye, J.M.; Formenty, P.B.H.; et al. ICTV virus taxonomy profile: Filoviridae. J. Gen. Virol. 2019, 100, 911–912. [Google Scholar] [CrossRef]
- Cook, B.W.M.; Cutts, T.A.; Nikiforuk, A.M.; Poliquin, P.G.; Court, D.A.; Strong, J.E.; Theriault, S.S. Evaluating environmental persistence and disinfection of the Ebola virus Makona variant. Viruses 2015, 7, 1975–1986. [Google Scholar] [CrossRef]
- Cook, B.W.M.; Cutts, T.A.; Nikiforuk, A.M.; Leung, A.; Kobasa, D.; Theriault, S.S. The disinfection characteristics of Ebola virus outbreak variants. Sci. Rep. 2016, 6, 38293. [Google Scholar] [CrossRef]
- Smither, S.J.; Eastaugh, L.; Filone, C.M.; Freeburger, D.; Herzog, A.; Lever, M.S.; Miller, D.M.; Mitzel, D.; Noah, J.W.; Reddick-Elick, M.S.; et al. Two-center evaluation of disinfectant efficacy against Ebola virus in clinical and laboratory matrices. Emerg. Infect. Dis. 2018, 24, 135–139. [Google Scholar] [CrossRef]
- Cutts, T.A.; Robertson, C.; Theriault, S.S.; Nims, R.W.; Kasloff, S.B.; Rubino, J.R.; Ijaz, M.K. Efficacy of microbicides for inactivation of Ebola-Makona virus on a non-porous surface: A targeted hygiene intervention for reducing virus spread. Sci. Rep. 2020, 10, 15247. [Google Scholar] [CrossRef]
- Cutts, T.A.; Kasloff, S.B.; Krishnan, J.; Nims, R.W.; Theriault, S.S.; Rubino, J.R.; Ijaz, M.K. Comparison of the efficacy of disinfectant pre-impregnated wipes for decontaminating stainless steel carriers experimentally inoculated with Ebola virus and vesicular stomatitis virus. Front. Publ. Health 2021, 9, 657443. [Google Scholar] [CrossRef]
- Smither, S.; Phelps, A.; Eastaugh, L.; Ngugi, S.; O’Brien, L.; Dutch, A.; Lever, M.S. Effectiveness of four disinfectants against Ebola virus on different materials. Viruses 2016, 8, 185. [Google Scholar] [CrossRef]
- Bibby, K.; Fischer, R.J.; Casson, L.W.; de Carvalho, N.A.; Haas, C.N.; Munster, V.J. Disinfection of Ebola virus in sterilized municipal wastewater. PLoS Negl. Trop. Dis. 2017, 11, e0005299. [Google Scholar] [CrossRef]
- Eggers, M.; Eickmann, M.; Kowalski, K.; Zorn, J.; Reimer, K. Povidone-iodine hand wash and hand rub products demonstrated excellent in vitro virucidal efficacy against Ebola virus and modified vaccinia virus Ankara, the new European test virus for enveloped viruses. BMC Infect. Dis. 2015, 15, 375. [Google Scholar] [CrossRef]
- Lupton, H.W. Inactivation of Ebola virus with 60Co irradiation. J. Infect. Dis. 1981, 143, 291. [Google Scholar] [CrossRef]
- Cutts, T.A.; Ijaz, M.K.; Nims, R.W.; Rubino, J.R.; Theriault, S.S. Effectiveness of Dettol Antiseptic Liquid for inactivation of Ebola virus in suspension. Sci. Rep. 2019, 9, 6590. [Google Scholar] [CrossRef]
- Cutts, T.A.; Nims, R.W.; Theriault, S.S.; Bruning, E.; Rubino, J.R.; Ijaz, M.K. Hand hygiene: Virucidal efficacy of a liquid hand wash product against Ebola virus. Infect. Prev. Pract. 2021, 3, 100122. [Google Scholar] [CrossRef]
- Siddharta, A.; Pfaender, S.; Vielle, N.J.; Dijkman, R.; Friesland, M.; Becker, B.; Yang, J.; Engelmann, M.; Todt, D.; Windisch, M.P.; et al. Virucidal activity of World Health Organization-recommended formulations against enveloped viruses, including Zika, Ebola, and emerging coronaviruses. J. Infect. Dis. 2017, 215, 902–906. [Google Scholar] [CrossRef]
- Colavita, F.; Quartu, S.; Lalle, E.; Bordi, L.; Lapa, D.; Meschi, S.; Vulcano, A.; Toffoletti, A.; Bordi, E.; Paglia, M.G.; et al. Evaluation of the inactivation effect of Triton X-100 on Ebola virus infectivity. J. Clin. Virol. 2017, 86, 27–30. [Google Scholar] [CrossRef]
- van Kampen, J.J.A.; Tintu, A.; Russcher, H.; Fraaij, P.L.A.; Reusken, C.B.E.M.; Rijken, M.; van Hellemond, J.J.; van Genderen, P.J.; Koelewijn, R.; de Jong, M.D.; et al. Ebola virus inactivation by detergents is annulled in serum. J. Infect. Dis. 2017, 216, 859–866. [Google Scholar] [CrossRef]
- Boytz, R.; Seitz, S.; Guadiano, E.; Patten, J.J.; Keiser, P.T.; Connor, J.H.; Sharpe, A.H.; Davey, R.A. Inactivation of Ebola virus and SARS-CoV-2 in cell culture supernatants and cell pellets by gamma irradiation. Viruses 2023, 15, 43. [Google Scholar] [CrossRef]
- Burton, J.E.; Easterbrook, L.; Pitman, J.; Anderson, D.; Roddy, S.; Bailey, D.; Vipond, R.; Bruce, C.B.; Roberts, A.D. The effect of a non-denaturing detergent and a guanidinium-based inactivation agent on the viability of Ebola virus in mock clinical serum samples. J. Virol. Meth. 2017, 250, 34–40. [Google Scholar] [CrossRef]
- Blow, J.A.; Dohm, D.J.; Negley, D.L.; Mores, C.N. Virus inactivation by nucleic acid extraction reagents. J. Virol. Meth. 2004, 119, 195–198. [Google Scholar] [CrossRef]
- Alfson, K.J.; Griffiths, A. Development and testing of a method for validating chemical inactivation of Ebola virus. Viruses 2018, 10, 126. [Google Scholar] [CrossRef]
- Smither, S.J.; Weller, S.A.; Phelps, A.; Eastaugh, L.; Ngugi, S.; O’Brien, L.M.; Steward, J.; Lonsdale, S.G.; Lever, M.S. Buffer AVL alone does not inactivate Ebola virus in a representative clinical sample type. J. Clin. Microbiol. 2015, 53, 3148–3154. [Google Scholar] [CrossRef]
- Bhatia, B.; Feldmann, H.; Marzi, A. Kyasanur Forest disease and Alkhurma hemorrhagic fever virus—Two neglected zoonotic pathogens. Microorganisms 2020, 8, 1406. [Google Scholar] [CrossRef]
- Meister, T.L.; Frericks, N.; Kleinert, R.D.V.; Rodriguez, E.; Steinmann, J.; Todt, D.; Brown, R.J.P.; Steinmann, E. Inactivation of yellow fever virus by WHO-recommended hand rub formulations and surface disinfectants. PLoS Negl. Trop. Dis. 2024, 18, e0012264. [Google Scholar] [CrossRef]
- Amanna, I.J.; Raué, H.P.; Slifka, M.K. Development of a new hydrogen peroxide-based vaccine platform. Nat. Med. 2012, 18, 974–979. [Google Scholar] [CrossRef]
- Gröner, A.; Broumis, C.; Fang, R.; Nowak, T.; Popp, B.; Schäfer, W.; Roth, N.J. Effective inactivation of a wide range of viruses by pasteurization. Transfusion 2018, 58, 41–51. [Google Scholar] [CrossRef]
- Madani, T.A.; Abuelzein, E.-T.M.E.; Azhar, E.I.; Al-Bar, H.M.S. Thermal inactivation of Alkhumra hemorrhagic fever virus. Arch. Virol. 2014, 159, 2687–2691. [Google Scholar] [CrossRef]
- Loterio, R.K.; Rosevear, K.; Edenborough, K.; Fraser, J.E. Complete inactivation of orthoflavi- and alphaviruses by acetone for safe titering by ELISA. J. Virol. Meth. 2025, 335, 115146. [Google Scholar] [CrossRef]
- Idris, F.; Muharram, S.H.; Zaini, Z.; Diah, S. Effectiveness of physical inactivation methods of dengue virus: Heat-versus UV-inactivation. bioRxiv 2018. Available online: https://www.biorxiv.org/content/10.1101/427666v1 (accessed on 10 April 2025).
- Jacob, A.T.; Ziegler, B.M.; Farha, S.M.; Vivian, L.R.; Zilinski, C.A.; Armstrong, A.R.; Burdette, A.J.; Beachboard, D.C.; Stobart, C.C. Sin Nombre virus and the emergence of other hantaviruses: A review of the biology, ecology, and disease of a zoonotic pathogen. Biology 2023, 12, 1413. [Google Scholar] [CrossRef]
- The Center for Food Security and Public Health, Iowa State University. Hantavirus Disease. 2018. Available online: https://www.cfsph.iastate.edu/Factsheets/pdfs/hantavirus.pdf (accessed on 10 April 2025).
- Kallio, E.R.; Klingström, J.; Gustafsson, E.; Manni, T.; Vaheri, A.; Henttonen, H.; Vapalahti, O.; Lundkvist, A. Prolonged survival of Puumala hantavirus outside of the host: Evidence for indirect transmission via the environment. J. Gen. Virol. 2006, 87, 2127–2134. [Google Scholar] [CrossRef]
- Hardestam, J.; Simon, M.; Hedlund, K.O.; Vaheri, A.; Klingström, J.; Lundkvist, Å. Ex vivo stability of the rodent-borne Hantaan virus in comparison to that of arthropod-borne members of the Bunyaviridae family. Appl. Environ. Microbiol. 2007, 73, 2547–2551. [Google Scholar] [CrossRef]
- Maes, P.; Li, S.; Verbeek, J.; Keyaerts, E.; Clement, J.; Van Ranst, M. Evaluation of the efficacy of disinfectants against Puumala hantavirus by real-time RT-PCR. J. Virol. Meth. 2007, 141, 111–115. [Google Scholar] [CrossRef]
- Egorova, M.S.; Kurashova, S.S.; Dzagurova, T.K.; Balovneva, M.V.; Ishmukhametov, A.A.; Tkachenko, E.A. Effect of virus-inactivating agents on the immunogenicity of hantavirus vaccines against hemorrhagic fever with renal syndrome. Appl. Biochem. Microbiol. 2020, 56, 940–947. [Google Scholar] [CrossRef]
- Kraus, A.A.; Priemer, C.; Heider, H.; Kruger, D.H.; Ulrich, R. Inactivation of Hantaan virus-containing samples for subsequent investigations outside biosafety level 3 facilities. Intervirology 2005, 48, 255–261. [Google Scholar] [CrossRef]
- Mishra, A.K.; Mover, C.L.; Abelson, D.M.; Deer, D.J.; El Omari, K.; Duman, R.; Lobel, L.; Lutwama, J.J.; Dye, J.M.; Wagner, A.; et al. Structure and characterization of Crimean-Congo hemorrhagic fever virus GP38. J. Virol. 2020, 94, e02005-19. [Google Scholar] [CrossRef]
- Eickmann, M.; Gravemann, U.; Handke, W.; Tolksdorf, F.; Reichenberg, S.; Müller, T.H.; Seltsam, A. Inactivation of three emerging viruses—Severe acute respiratory syndrome coronavirus, Crimean-Congo haemorrhagic fever virus and Nipah virus—In platelet concentrates by ultraviolet C light, and in plasma by methylene blue plus visible light. Vox Sanguin. 2020, 115, 146–151. [Google Scholar] [CrossRef]
- The Center for Food Security and Public Health, Iowa State University, College of Veterinary Medicine. Crimean-Congo Hemorrhagic Fever. 2019. Available online: https://www.cfsph.iastate.edu/Factsheets/pdfs/crimean_congo_hemorrhagic_fever.pdf (accessed on 10 April 2025).
- Ferraris, O.; Gay-Andrieu, F.; Moroso, M.; Jarjaval, F.; Miller, M.; Peyrefitte, C.N. Complete hemorrhagic fever virus inactivation during lysis in the FilmArray BioThreat-E assay demonstrates the biosafety of this test. In Proceedings of the 3rd International CBRNE Research & Innovation Conference, Nantes, France, 20–23 May 2019; Available online: https://www.biofiredefense.com/wp-content/uploads/2019/06/20180529_Poster-Biofire_CBRNE-2019.pdf (accessed on 10 April 2025).
- Saluzzo, J.F.; Leguenno, B.; Van der Groen, G. Use of heat inactivated viral haemorrhagic fever antigens in serological assays. J. Virol. Meth. 1988, 22, 165–172. [Google Scholar] [CrossRef]
- Afrough, B.; Eakins, J.; Durley-White, S.; Dowall, S.; Findlay-Wilson, S.; Graham, V.; Lewandowski, K.; Carter, D.P.; Hewson, R. X-ray inactivation of RNA viruses without loss of biological characteristics. Sci. Rep. 2020, 10, 21431. [Google Scholar] [CrossRef]
- World Health Organization. Pathogens Prioritization. 2024. Available online: https://cdn.who.int/media/docs/default-source/consultation-rdb/prioritization-pathogens-v6final.pdf?sfvrsn=c98effa7_7&download=true (accessed on 10 April 2025).
- The Center for Food Security and Public Health, Iowa State University, College of Veterinary Medicine. Nipah Virus Infection. 2016. Available online: https://www.cfsph.iastate.edu/Factsheets/pdfs/nipah.pdf (accessed on 10 April 2025).
- Branda, F.; Ceccarelli, G.; Giovenetti, M.; Albanese, M.; Binetti, E.; Ciccozzi, M.; Scarpa, F. Nipah virus: A zoonotic threat reemerging in the wake of global public health challenges. Microorganisms 2025, 13, 124. [Google Scholar] [CrossRef]
- The Center for Food Security and Public Health, Iowa State University, College of Veterinary Medicine. Hendra Virus Infection. 2024. Available online: https://www.cfsph.iastate.edu/Factsheets/pdfs/hendra.pdf (accessed on 10 April 2025).
- Huang, Y.; Xiao, S.; Song, D.; Yuan, Z. Evaluation and comparison of three virucidal agents on inactivation of Nipah virus. Sci. Rep. 2022, 12, 11365. [Google Scholar] [CrossRef]
- Smither, S.J.; Eastaugh, L.S.; O’Brien, L.M.; Phelps, A.L.; Lever, M.S. Aerosol survival, disinfection and formalin inactivation of Nipah virus. Viruses 2022, 14, 2057. [Google Scholar] [CrossRef] [PubMed]
- Fogarty, R.; Halpin, K.; Hyatt, A.D.; Daszak, P.; Mungall, B.A. Henipavirus susceptibility to environmental variables. Virus Res. 2008, 132, 140–144. [Google Scholar] [CrossRef]
- Widerspick, L.; Vázquez, C.A.; Niemetz, L.; Heung, M.; Olal, C.; Bencsik, A.; Henkel, C.; Pfister, A.; Brunetti, J.E.; Kucinskaite-Kodze, I.; et al. Inactivation methods for experimental Nipah virus infection. Viruses 2022, 14, 1052. [Google Scholar] [CrossRef]
- Watanabe, S.; Fukushi, S.; Harada, T.; Shimojima, M.; Yoshikawa, T.; Kurosu, T.; Kaku, Y.; Morikawa, S.; Saijo, M. Effective inactivation of Nipah virus in serum samples for safe processing in low-containment laboratories. Virol. J. 2020, 17, 151. [Google Scholar] [CrossRef]
- Edwards, S.J.; Caruso, S.; Suen, W.W.; Jackson, S.; Rowe, B.; Marsh, G.A. Evaluation of henipavirus chemical inactivation methods for the safe removal of samples from the high-containment PC4 laboratory. J. Virol. Meth. 2021, 298, 114287. [Google Scholar] [CrossRef]
- Hume, A.J.; Olejnik, J.; White, M.R.; Huang, J.; Turcinovic, J.; Heiden, B.; Bawa, P.S.; Williams, C.J.; Gorman, N.G.; Alekseyev, Y.O.; et al. Heat inactivation of Nipah virus for downstream single-cell RNA sequencing does not interfere with sample quality. Pathogens 2024, 13, 62. [Google Scholar] [CrossRef]
- Bergren, N.A.; Patterson, E.I.; Blair, H.; Ellis, R.P.; Kading, R.C. Methods for successful inactivation of Rift Valley fever virus in infected mosquitos. J. Virol. Meth. 2020, 276, 113794. [Google Scholar] [CrossRef]
- Harada, T.; Fukushi, S.; Kurosu, T.; Yoshikawa, T.; Shimojima, M.; Tanabayashi, K.; Saijo, M. Inactivation of severe fever with thrombocytopenia syndrome virus for improved laboratory safety. J. Biosaf. Biosec. 2020, 2, 31–35. [Google Scholar] [CrossRef]
- Dembek, Z.F.; Mothershead, J.L.; Cirimotich, C.M.; Wu, A. Heartland virus disease—An underreported emerging infection. Microorganisms 2024, 12, 286. [Google Scholar] [CrossRef] [PubMed]
- Kading, R.; Crabtree, M.; Miller, B. Inactivation of infectious virus and serological detection of virus antigen in Rift Valley fever virus-exposed mosquitos fixed with paraformaldehyde. J. Virol. Meth. 2013, 189, 184–188. [Google Scholar] [CrossRef]
- Romeo, M.A.; Specchiarello, E.; Mija, C.; Zulian, V.; Francalancia, M.; Maggi, F.; Garbuglia, A.R.; Lapa, D. Heat treatment as a safe-handling procedure for Rift Valley fever virus. Pathogens 2024, 13, 1089. [Google Scholar] [CrossRef]
- Al-Olayan, E.M.; Mohamed, A.F.; El-Khadraqy, M.F.; Shebl, R.I.; Yehia, H.M. An alternative inactivant for Rift Valley fever virus using cobra venom-derived L-amino oxidase, which is related to its immune potential. Braz. Arch. Biol. Technol. 2016, 59, e16160044. [Google Scholar] [CrossRef]
- Hartman, A.L.; Cole, K.S.; Homer, L.C. Verification of inactivation methods for removal of biological materials from a biosafety level 3 select agent facility. Appl. Biosaf. 2012, 17, 70–75. [Google Scholar] [CrossRef]
- Rangel, M.V.; Bourguet, F.A.; Hall, C.I.; Weilhammer, D.R. Evaluation of inactivation methods for Rift Valley fever virus in mouse microglia. Pathogens 2024, 13, 159. [Google Scholar] [CrossRef]
- Confort, M.-P.; Ratinier, M.; Arnaud, F. Validated methods for effective decontamination and inactivation of Rift Valley fever virus. In Rift Valley Fever Virus. Methods in Molecular Biology; Lozach, P.Y., Ed.; Humana: New York, NY, USA, 2024; Volume 2824. [Google Scholar] [CrossRef]
- Zargar, B.; Sattar, S.A.; McKinney, J.; Ijaz, M.K. The stability and elimination of mammalian enveloped and non-enveloped respiratory viruses in indoor air: Testing using a room-sized aerobiology chamber. J. Virol. Meth. 2025, 8, 115144. [Google Scholar] [CrossRef]
- Ijaz, M.K.; Sattar, S.A.; Rubino, J.R.; Nims, R.W.; Gerba, C.P. Combating SARS-CoV-2: Leveraging microbicidal experiences with other emerging/re-emerging viruses. PeerJ 2020, 8, e9914. [Google Scholar] [CrossRef]
- Ijaz, M.K.; Nims, R.W.; McKinney, J. Emerging SARS-CoV-2 mutational variants of concern should not vary in susceptibility to microbicidal actives. Life 2022, 12, 987. [Google Scholar] [CrossRef] [PubMed]
- Weber, D.J.; Rutala, W.A.; Fischer, W.A.; Kanamori, H.; Sickbert-Bennett, E.E. Emerging infectious diseases: Focus on infection control issues for novel coronaviruses (Severe Acute Respiratory Syndrome-CoV and Middle East Respiratory Syndrome-CoV), hemorrhagic fever viruses (Lassa and Ebola), and highly pathogenic avian influenza viruses, A(H5N1) and A(H7N9). Am. J. Infect. Control 2016, 44 (Suppl. S5), E91–E100. [Google Scholar] [CrossRef] [PubMed]
- U.S. Environmental Protection Agency. Disinfectants for Emerging Viral Pathogens (EVPs): List Q. 2024. Available online: https://www.epa.gov/pesticide-registration/disinfectants-emerging-viral-pathogens-evps-list-q (accessed on 10 April 2025).
- Hewson, R. Understanding viral haemorrhagic fevers: Virus diversity, vector ecology, and public health strategies. Pathogens 2024, 13, 909. [Google Scholar] [CrossRef]
- Madueme, P.-G.U.; Chirove, F. Understanding the transmission pathways of Lassa fever: A mathematical modeling approach. Infect. Dis. Model. 2023, 8, 27–57. [Google Scholar] [CrossRef]
- Stephenson, E.H.; Larson, E.W.; Dominik, J.W. Effect of environmental factors on aerosol-induced Lassa virus infection. J. Med. Virol. 1984, 14, 295–303. [Google Scholar] [CrossRef] [PubMed]
- Sagripanti, J.-L.; Rom, A.M.; Holland, L.E. Persistence in darkness of virulent alphaviruses, Ebola virus, and Lassa virus deposited on solid surfaces. Arch. Virol. 2010, 155, 2035–2039. [Google Scholar] [CrossRef] [PubMed]
- Mekibib, B.; Ariën, K.K. Aerosol transmission of filoviruses. Viruses 2016, 8, 148. [Google Scholar] [CrossRef]
- Lantagne, D.S.; Hunter, P.R. Comment on “Ebola virus persistence in the environment: State of the knowledge and research needs”. Env. Sci. Technol. 2015, 2, 48–49. [Google Scholar] [CrossRef]
- Osterholm, M.T.; Moore, K.A.; Kelley, N.S.; Brosseau, L.M.; Wong, G.; Murphy, F.A.; Peters, C.J.; LeDuc, J.W.; Russell, P.K.; Van Herp, M.; et al. Transmission of Ebola viruses: What we know and what we do not know. mBio 2015, 6, e00137-15. [Google Scholar] [CrossRef]
- Piercy, T.J.; Smither, S.J.; Steward, J.A.; Eastaugh, L.; Lever, M.S. The survival of filoviruses in liquids, on solid substrates and in a dynamic aerosol. J. Appl. Microbiol. 2010, 109, 1531–1539. [Google Scholar] [CrossRef] [PubMed]
- McMillen, C.M.; Hartman, A.L. Rift Valley fever in animals and humans: Current perspectives. Antivir. Res. 2018, 156, 29–37. [Google Scholar] [CrossRef]
- Talukdar, P.; Dutta, D.; Ghosh, E.; Bose, I.; Bhattacharjee, S. Molecular pathogenesis of Nipah virus. Appl. Biochem. Biotechnol. 2023, 195, 2451–2462. [Google Scholar] [CrossRef]
- Soni, M.; Kumar, V.; Singh, M.P.; Shabil, M.; Sah, S. Nipah virus resurgence: A call for preparedness across states. Infect. Med. 2024, 3, 100145. [Google Scholar] [CrossRef]
- Wong, K.T.; Shieh, W.-J.; Kumar, S.; Norain, K.; Abdullah, W.; Guarner, J.; Goldsmith, C.S.; Chua, K.B.; Lam, S.K.; Tan, C.T.; et al. Nipah virus infection. Pathology and pathogenesis of an emerging paramyxoviral zoonosis. Am. J. Pathol. 2022, 161, 2153–2167. [Google Scholar] [CrossRef]
- Rybicki, E.P. Panics and pandemics. In Cann’s Principles of Molecular Virology; Academic Press: Cambridge, MA, USA, 2023; pp. 307–355. [Google Scholar] [CrossRef]
- Lytle, C.D.; Sagripanti, J.-L. Predicted inactivation of viruses of relevance to biodefense by solar radiation. J. Virol. 2005, 79, 14244–14252. [Google Scholar] [CrossRef] [PubMed]
- Schneider, K.; Wronka-Edwards, L.; Leggett-Embrey, M.; Walker, E.; Sun, P.; Ondov, B.; Wyman, T.H.; Rosovitz, M.J.; Bohn, S.S.; Burans, J.; et al. Psoralen inactivation of viruses: A process for the safe manipulation of viral antigen and nucleic acid. Viruses 2015, 7, 5875–5888. [Google Scholar] [CrossRef] [PubMed]
- Lanteri, M.C.; Santa-Maria, F.; Laughhunn, A.; Girard, Y.A.; Picard-Maureau, M.; Payrat, J.-M.; Irsch, J.; Stassinopoulos, A.; Bringmann, P. Inactivation of a broad spectrum of viruses and parasites by photochemical treatment of plasma and platelets using amotosalen and ultraviolet A light. Transfusion 2020, 60, 1319–1331. [Google Scholar] [CrossRef] [PubMed]
- Gaspar, L.P.; Mendes, Y.S.; Yamamura, A.M.Y.; Almeida, L.F.C.; Caride, E.; Gonçalves, R.B.; Silva, J.L.; Oliveira, A.C.; Galler, R.; Freire, M.S. Pressure-inactivated yellow fever 17DD virus: Implications for vaccine development. J. Virol. Meth. 2008, 150, 57–62. [Google Scholar] [CrossRef]
Virus/Strain | Active Ingredient | Inactivating Agent Type | Contact Time (min) a | Concentration in Test | Efficacy (log10 Reduction) b | Ref. |
---|---|---|---|---|---|---|
Surface hygiene (glass carriers) | ||||||
Lassa | N/A c | UV-C (254 nm) | N/A | N/A | 0.27 log10/mJ/cm2 | [25] |
Suspension inactivation | ||||||
Junin | Copper II ions, H2O2 | Microbicide | Various | 1 mg/L, 100 mg/L | D = 33 min | [26] |
Lassa/Josiah | Sodium hypochlorite | Microbicide | Various | 5000, 10,000 ppm | ≥8 log10 in 5 min | [27] |
Lassa/Sauerwald | Sodium hypochlorite | Microbicide | Various | 5000, 10,000 ppm | ≥8 log10 in 5 min | [27] |
Lassa/Josiah | Sodium hypochlorite | Microbicide | Various | 5000 ppm | ≥6.7 log10 in 1 min | [27] |
Ethanol | Microbicide | Various | 67% | ≥6.7 log10 in 0.5 min | [28] | |
Dual QAC d | Microbicide | Various | 2% | ≥6.2 log10 in 0.5 min | [28] | |
Accelerated H2O2 | Microbicide | Various | 2.5% | ≥7.3 log10 in 1 min | [28] | |
Lassa | N/A | Gamma irradiation | N/A @ −60 °C | N/A | 0.53 log10/kGy | [29] |
Hand/skin hygiene | ||||||
Lassa/Josiah | Chloroxylenol (PCMX) | Antiseptic liquid | Various | 0.12% | ≥7.8 log10 in 1 min | [28] |
Sample disinfection procedures | ||||||
Lassa/Josiah | Acetic acid | Sample inactivant | 15 | 3% (pH 2.5) | ≥3 | [30] |
Lassa | Phenol/guanidine thiocyanate | Nucleic acid extractant | 10 | 80% of neat | ≥5.0 | [31] |
Lujo | Phenol/guanidine thiocyanate | Nucleic acid extractant | 10 | 80% of neat | ≥5.1 | [31] |
Guanarito | Phenol/guanidine thiocyanate | Nucleic acid extractant | 10 | 80% of neat | ≥6.3 | [31] |
Machupo | Phenol/guanidine thiocyanate | Nucleic acid extractant | 10 | 80% of neat | ≥5.3 | [31] |
Sabiá | Phenol/guanidine thiocyanate | Nucleic acid extractant | 10 | 80% of neat | ≥6.1 | [31] |
Lassa/Josiah | Guanidine thiocyanate, ethanol | Lysis buffer | 10, 3 | 50–70%, 95% | 8.0 | [32] |
Lassa/GA391 | β-propiolactone | Sample inactivant | 30 @ 37 °C | 0.2% | ≥7 | [33] |
Lassa/Josiah | Formalin | Cell fixative | 20 days | Neat | Complete | [34] |
N/A | Gamma irradiation | N/A @ −60 °C | N/A | ~0.15 log10/kGy | [35] | |
N/A | Heat | N/A @ 60 °C | N/A | D = 7.4 min | [30] | |
Lassa/GA391 | N/A | Heat | N/A @ 60 °C | N/A | D = 6.0 min | [33] |
Lassa/Josiah | Phenol/guanidine thiocyanate | Nucleic acid extractant | 10 | Neat | Complete | [36] |
Formalin | Sample inactivant | 360 @ 4 °C | 10% | Complete | [36] | |
Phenol/guanidine thiocyanate | Nucleic acid extractant | 10 | 75% | 8 | [36] |
Virus/Strain | Active Ingredient | Inactivating Agent Type | Contact Time (min) a | Concentration in Test | Efficacy (log10 Reduction) b | Ref. |
---|---|---|---|---|---|---|
Surface hygiene (steel or aluminum carriers) | ||||||
EBOV/Mak | Sodium hypochlorite | Microbicide | 5 | 0.5% | ≥6.6 | [38] |
Sodium hypochlorite | Microbicide | 5 | 0.5% | ≥6.8 | [39] | |
Sodium hypochlorite | Microbicide | 15 | 0.5% | ≥2.0 | [40] | |
Sodium hypochlorite | Microbicide | 15 | 0.5% | <1 | [40] | |
Sodium hypochlorite | Microbicide | 5 | 0.5% | ≥5.1 | [41] | |
Sodium hypochlorite d | Pre-impregnated wipe | 0.08 | 1% | 6.3 | [42] | |
Ethanol | Alcohol | 5 | 67% | ≥7.3 | [38] | |
Ethanol | Alcohol | 2.5 | 70% | ≥6.8 | [39] | |
Ethanol | Alcohol | 5 | 70% | ≥6.9 | [41] | |
Ethanol | Disinfectant spray | 5 | 58% | ≥4.5 | [41] | |
Ethanol | Pre-impregnated wipe | 0.08 | 66.5% | 6.6 | [42] | |
Ethanol | Alcohol | 2 | 70% | 1.7 | [40] | |
Ethanol | Alcohol | 2 | 70% | <1 | [40] | |
Peracetic acid | Microbicide | 5% | ≥1.0 | [40] | ||
Peracetic acid | Microbicide | 5% | ≥2.0 | [40] | ||
Chloroxylenol (PCMX) c | Microbicide | 5 | 0.48% | ≥5.1 | [41] | |
H2O2 | Pre-impregnated wipe | 1 | 2.5% | 6.4 | [42] | |
H2O2, peroxyacetic acid | Microbicide | 5 | Net | 2.6 | [40] | |
H2O2, peroxyacetic acid | Microbicide | 5 | Neat | <1 | [40] | |
QAC | Microbicide | 10 | 1.5% | <1 | [40] | |
QAC | Pre-impregnated wipe | 1 | As supplied | 6.6 | [42] | |
QAC | Pre-impregnated wipe | 0.08 | 5% | 6.0 | [42] | |
EBOV/May | Sodium hypochlorite | Microbicide | 5 | 0.5% | ≥6.6 | [39] |
Ethanol | Alcohol | 1 | 70% | ≥6.6 | [39] | |
EBOV/Kik | Sodium hypochlorite | Microbicide | 5 | 0.5% | ≥6.5 | [39] |
Ethanol | Alcohol | 1 | 70% | ≥6.5 | [39] | |
EBOV/Yam-Ecr | Sodium hypochlorite | Microbicide | 10 | 0.75% | ≥6.5 | [43] |
Alcohol formulation | Microbicide | 10 | 50% | 5.3 | [43] | |
QAC, alcohol | Microbicide | 10 | 1.5% | 2.5 | [43] | |
QAC, alkylamine | Microbicide | 10 | 2.5% | 4.2 | [43] | |
Suspension inactivation | ||||||
EBOV/Mak | Sodium hypochlorite | Microbicide | 0.33 | 5 ppm | ≥4.2 | [44] |
EBOV | Povidone-iodine | Microbicide | 0.25 | 1:10 | ≥5.5 | [45] |
N/A | Gamma irradiation | N/A @ −60 °C | N/A | 0.84 log10/kGy | [29] | |
N/A | Gamma irradiation | N/A | N/A | 0.44 log10/kGy | [46] | |
Sudan | N/A | Gamma irradiation | N/A | N/A | 0.44 log10/kGy | [46] |
Marburg | N/A | Gamma irradiation | N/A @ −60 °C | N/A | 0.68 log10/kGy | [29] |
Hand/skin hygiene | ||||||
EBOV/Mak | Chloroxylenol (PCMX) | Antiseptic liquid | 1 | 0.48% | ≥4.8 | [47] |
Salicylic acid, citric acid | Liquid hand wash | 0.5 | 1:4 | 4.8 | [48] | |
EBOV | Povidone-iodine | Skin cleanser | 0.5 | 1:10 | ≥4.5 | [45] |
Povidone-iodine | Surgical scrub | 0.25 | 1:10 | ≥5.5 | [45] | |
Povidone-iodine, alcohol | Skin cleanser | 0.25 | Neat | ≥5.7 | [45] | |
EBOV/May | Ethanol, H2O2 | WHO formulation I hand rub (original) | 0.5 | 32%, 0.05% | ≥5 | [49] |
2-Propanol, H2O2 | WHO formulation II hand rub (original) | 0.5 | 24%, 0.04% | ≥5 | [49] | |
Sample disinfection procedures | ||||||
EBOV | nonionic surfactants | Detergent | 60 | 0.1% | 4 | [50] |
EBOV/Mak | nonionic surfactants | Detergent | 60 | 0.1% | ≥3 | [51] |
Phenol/guanidine thiocyanate | Nucleic acid extractant | 10 | 80% of neat | ≥5.7 | [31] | |
Sodium dodecyl sulfate | Detergent | 60 | 0.1% | ≥3 | [51] | |
Sodium dodecyl sulfate | Detergent | 60 | 0.1% | ~1 | [51] | |
Guanidine thiocyanate, ethanol | Lysis buffer | 10, 3 | 50–70%, 95% | 7.4 to 7.6 | [32] | |
Reston | Phenol/guanidine thiocyanate | Nucleic acid extractant | 10 | 80% of neat | ≥5.1 | [31] |
Sudan | Phenol/guanidine thiocyanate | Nucleic acid extractant | 10 | 80% of neat | ≥5.1 | [31] |
EBOV/May | Acetic acid | Sample inactivant | 15 | 3% (pH 2.5) | ≥3 | [30] |
N/A | Heat | N/A @ 60 °C | N/A | D = 4.4 min | [30] | |
N/A | Heat | 10 @ >99 °C | N/A | Complete | [36] | |
N/A | Heat | 10 @ >99 °C | N/A | >8 | [36] | |
Phenol/guanidine thiocyanate | Nucleic acid extractant | 10 | N/A | Complete | [36] | |
Phenol/guanidine thiocyanate | Nucleic acid extractant | 10 | N/A | 8 | [36] | |
N/A | Gamma irradiation | N/A @ −60 °C | N/A | ~0.3 log10/kGy | [35] | |
N/A | Gamma irradiation | N/A @ −60 °C | N/A | 0.31 log10/kGy | [52] | |
EBOV | Formalin | Sample inactivant | 360 @ 4 °C | 10% | 8.4 | [36] |
nonionic surfactants | Sample inactivant | 20 | 0.8% | Incomplete | [53] | |
nonionic surfactants + phenol/guanidine thiocyanate | Nucleic acid extractant | 10 | 0.08% | Complete (6.0) | [53] | |
EBOV | Phenol/guanidine thiocyanate | Nucleic acid extractant | 10 | 80% of neat | ≥5.3 | [54] |
Phenol/guanidine thiocyanate | Nucleic acid extractant | 10 | 80% of neat | ≥5.3 | [55] | |
Neutral buffered formalin | Tissue fixative | ≤1 week | 10% | 9.08 | [55] | |
Osmium tetroxide | Tissue fixative | 60 | 1% | 4.9 | [55] | |
EBOV/Kik | Phenol/guanidine thiocyanate | Nucleic acid extractant | 10 | 80% of neat | Incomplete (<6) | [56] |
Phenol/guanidine thiocyanate + ethanol | Nucleic acid extractant | 10 | 80% of neat | 6 | [56] | |
Marburg/Ci67 | Phenol/guanidine thiocyanate | Nucleic acid extractant | 10 | 80% of neat | ≥6.5 | [31] |
Phenol/guanidine thiocyanate | Nucleic acid extractant | 10 | 80% of neat | ≥6.8 | [54] | |
N/A | Gamma irradiation | N/A @ −60 °C | N/A | ~0.3 log10/kGy | [35] | |
Marburg/371Bat | Guanidine thiocyanate, ethanol | Lysis buffer | 10, 3 | 50–70%, 95% | 6.5 | [32] |
Marburg/Musokee | Acetic acid | Sample inactivant | 15 | 3% (pH 2.5) | ≥3 | [30] |
Phenol/guanidine thiocyanate | Nucleic acid extractant | 10 | 80% of neat | ≥6.7 | [54] | |
N/A | Heat | N/A @ 60 °C | N/A | D = 7.4 min | [30] |
Virus/Strain | Active Ingredient | Inactivating Agent Type | Contact Time (min) a | Concentration in Test | Efficacy (log10 Reduction) b | Ref. |
---|---|---|---|---|---|---|
Surface hygiene (stainless steel carriers) | ||||||
Yellow fever/17D | 1-Propanol, 2-propanol, ethanol d | Microbicide | 0.5 | 80% | ≥3.4 | [58] |
Ethanol, 2-propanol | Microbicide | 0.5 | 80% | ≥3.4 | [58] | |
Glutaraldehyde, QAC c | Microbicide | 5 | 0.5% | ≥2.4 | [58] | |
Glutaraldehyde, QAC | Microbicide | 5 | 0.5% | ≥2.4 | [58] | |
H2O2 | Microbicide | 0.5 | 80% | 1.7 | [58] | |
Suspension inactivation | ||||||
Yellow fever/17D | Ethanol | Microbicide | 0.5 | 40% | ≥5.5 | [58] |
2-Propanol | Microbicide | 0.5 | 20% | ≥5.5 | [58] | |
H2O2 | Microbicide | 120 | 3% | ≥6 | [59] | |
Yellow fever | N/A | Heat | N/A @ 60 °C | N/A | D = 13.2 min | [60] |
Alkhumra fever/AHFV/997/NJ/09/SA | N/A | Heat | N/A @ 60 °C | N/A | D = 0.32 min | [61] |
N/A | Heat | N/A @ 45 °C | N/A | D = 11.1 min | [61] | |
Hand/skin hygiene | ||||||
Yellow fever/17D | Ethanol, H2O2 | WHO formulation I hand rub (original) | 0.5 | 40% | ≥5.5 | [58] |
2-Propanol, H2O2 | WHO formulation II hand rub (original) | 0.5 | 30% | ≥5.5 | [58] | |
Sample disinfection procedures | ||||||
Dengue serotype 1/Hawaii | Phenol/guanidine thiocyanate | Nucleic acid extractant | 10 | 80% of neat | ≥4.1 | [54] |
Dengue serotype 2/S16803 | Phenol/guanidine thiocyanate | Nucleic acid extractant | 10 | 80% of neat | ≥5.0 | [54] |
Dengue serotype 3/CH53489 | Phenol/guanidine thiocyanate | Nucleic acid extractant | 10 | 80% of neat | ≥3.3 | [54] |
Dengue serotype 4/H241 | Phenol/guanidine thiocyanate | Nucleic acid extractant | 10 | 80% of neat | ≥1.9 | [54] |
Dengue serotype 2/92T | Phenol/guanidine thiocyanate | Nucleic acid extractant | 10 | 80% of neat | ≥5.1 | [31] |
Acetone | Cell fixative | 1440 @ 4°C | 50% | Incomplete | [62] | |
Paraformaldehyde | Cell fixative | 180 | 4% | Complete | [62] | |
Dengue/serotypes 1–4 | N/A | Heat | 30 @ 56 °C | N/A | ≥3.4 log10 | [63] |
Virus/Strain | Active Ingredient | Inactivating Agent Type | Contact Time (min) a | Concentration in Test | Efficacy (log10 Reduction) b | Ref. |
---|---|---|---|---|---|---|
Surface hygiene (glass carriers) | ||||||
Puumala | N/A c | Heat | 60 @ 56 °C | N/A | Incomplete (<5.8) | [66] |
Tula | N/A | Heat | 60 @ 56 °C | N/A | Complete (5.9) | [66] |
Suspension inactivation | ||||||
Hantaan/76–118 | Ethanol | Microbicide | 2 | 30% to 70% | Complete (6.5) | [67] |
Puumala | N/A | Heat | 15 @ 56 °C | N/A | Complete (5.8) | [66] |
Puumala/CG1829 | Ethanol | Microbicide | 30 | 70% | ≥3.7 | [68] |
Peracetic acid | Microbicide | 10 | 1% | ≥3.7 | [68] | |
Sodium hypochlorite | Microbicide | 10 | 1% (1000 ppm) | ≥3.7 | [68] | |
Chlorine dioxide d | Microbicide | 10 | 1% | ≥3.7 | [68] | |
Chloroxylenol (PCMX) | Microbicide | 10 | 1% | ≥3.7 | [68] | |
Sodium p-toluenesulfonchloramide, trihydrate | Microbicide | 10 | 1% | ≥3.7 | [68] | |
Potassium peroxymonosulfate | Microbicide | 10 | 1% | ≥3.7 | [68] | |
Tula | N/A | Heat | 15 @ 56 °C | N/A | Complete (5.9) | [66] |
Hand/skin hygiene | ||||||
No primary literature was identified | ||||||
Sample disinfection procedures | ||||||
Hantaan/76–118 | Methanol | Sample fixative | 8 | Absolute | ≥5.5 | [69] |
Paraformaldehyde | Sample fixative | 20 | 1% | ≥4.3 | [69] | |
Acetone/methanol | Sample fixative | 10 | 50%/50% | ≥5.6 | [69] | |
Lysis buffer + detergent | Sample extractant | 10 | 1% detergent | ≥2 | [69] | |
N/A | UV-C (254 nm) | N/A | 500 mJ/cm2 | Incomplete (3.9) | [69] | |
N/A | UV-C (254 nm) | N/A | 1400 mJ/cm2 | Complete (≥5.2) | [69] | |
Puumala/CG1829 | ß-propiolactone | Vaccine inactivant | 30 | 0.025% | ≥5.4 | [70] |
Formaldehyde | Vaccine inactivant | 14 | 0.025% | ≥5.4 | [70] |
Virus/Strain | Active Ingredient | Product Type | Contact Time (min) a | Concentration in Test | Efficacy (log10) b | Ref. |
---|---|---|---|---|---|---|
Surface hygiene | ||||||
No primary literature was identified | ||||||
Hand/skin hygiene | ||||||
No primary literature was identified | ||||||
Suspension inactivation | ||||||
CCHFV/IbAr 10200 | Ethanol | Microbicide | 2 | 20% to 70% | Complete (4.6) | [67] |
Sample disinfection procedures | ||||||
CCHFV/IbAr 10200 | N/A c | Heat | 60 @ 60 °C | N/A | 3.5 | [75] |
Hazara/JC280 d | N/A | X-irradiation | N/A | N/A | 1.04 log10/kGy | [76] |
Virus/Strain | Active Ingredient | Product Type | Contact Time (min) a | Concentration in Test | Efficacy (log10) b | Ref. |
---|---|---|---|---|---|---|
Surface hygiene | ||||||
No primary literature was identified | ||||||
Suspension inactivation | ||||||
Nipah/Bangladesh | Dual QAC c,d | Microbicide | 0.5 | 0.28% | >4 | [81] |
Dual QAC | Microbicide | 1 | 0.095% | >4 | [81] | |
Ethanol | Microbicide | 0.25 | 19% | >4 | [81] | |
Nipah/Malaysia | Sodium hypochlorite | Microbicide | 1 | 10% | ≥5.5 | [82] |
Ethanol | Microbicide | 1 | 80% | ≥5.5 | [82] | |
Nipah | Low pH | HCl | 60 | pH 2 | ≥3 | [83] |
High pH | NaOH | 60 | pH 12 | ≥3 | [83] | |
Hendra | Low pH | HCl | 60 | pH 3 | ≥3 | [83] |
High pH | NaOH | 60 | pH 12 | ≥3 | [83] | |
Hand/skin hygiene agents | ||||||
No primary literature was identified | ||||||
Sample disinfection procedures | ||||||
Nipah/Malaysia | Formalin | Fixative | 1440 | 10% | ≥5 | [82] |
Paraformaldehyde | Sample inactivant | 30 | 4% | Complete | [84] | |
N/A | Gamma irradiation | N/A @ −60 °C | N/A | ~0.15 log10/kGy | [35] | |
Nipah/Ma-JMR-01-98 | N/A | Heat | 60 @ 56 °C | N/A | ≥4.9 | [85] |
N/A | Heat | 30 @ 60 °C | N/A | ≥4.9 | [85] | |
N/A | UV-C (312 nm) | 30 | N/A | 0.0075 log10/mJ/cm2 | [85] | |
N/A | UV-C (312 nm) | 30 | N/A | 0.0033 log10/mJ/cm2 | [85] | |
Nipah | Paraformaldehyde | Sample inactivant | 15 | 4% | Complete | [86] |
Formalin | Tissue fixative | 2880 | 10% | Complete | [86] | |
Nipah/Bangladesh | Phenol/guanidine thiocyanate | Nucleic acid extractant | 10 | Neat | Complete | [36] |
Formalin | Sample inactivant | 360 @ 4 °C | 10% | Complete | [36] | |
Phenol/guanidine thiocyanate | Nucleic acid extractant | 10 | 75% | 7.1 | [36] | |
N/A | Heat | 30 @ 60 °C | N/A | Complete | [87] | |
Hendra | N/A | Gamma irradiation | N/A @ −60 °C | N/A | ~0.15 log10/kGy | [35] |
Virus/Strain | Active Ingredient | Product Type | Contact Time (min) a | Concentration in Test | Efficacy (log10) b | Ref. |
---|---|---|---|---|---|---|
Surface hygiene | ||||||
No primary literature was identified | ||||||
Hand/skin hygiene | ||||||
No primary literature was identified | ||||||
Suspension inactivation | ||||||
RVFV | N/A c | Heat | N/A @ 70 °C | N/A | D = 2.2 min | [92] |
N/A | Heat | N/A @ 80 °C | N/A | D = 1.2 min | [92] | |
RVFV/Menya/Sheep/258 | N/A | Heat | N/A @ 95 °C | N/A | D = 0.34 min | [92] |
β-propiolactone | Vaccine inactivant | 240 | 3.5 mM | ≥5.5 | [93] | |
Formalin d | Vaccine inactivant | 360 | 0.2% | ≥5.4 | [93] | |
Sample disinfection procedures e | ||||||
RVFV/AH-501 | Phenol/guanidine thiocyanate | Nucleic acid extractant | 10 | 80% of neat | ≥6.8 | [31] |
RVFV | Formaldehyde | Cell fixative | 1080 | 0.4% | ≥7.1 | [94] |
RVFV/MP12 | Formalin | Cell fixative | 210 @ 4 °C | Neat | Complete | [34] |
RVFV/ArB 1976 | N/A | Heat | 60 @ 60 °C | N/A | 6.7 | [75] |
RVFV | N/A | Heat | 5 @ 95 °C | N/A | Complete | [92] |
RVFV/MP12 | Guanidine isothiocyanate | Nucleic acid extractant | Not given | Neat | Complete | [95] |
RVFV/ZH501 | Guanidine isothiocyanate | Nucleic acid extractant | Not given | Neat | Complete | [95] |
RVFV/MP12 | Formaldehyde | Cell fixative | 20 @ 4 °C | 4.2% | Complete | [95] |
RVFV/ZH501 | Formaldehyde | Cell Fixative | 20 @ 4 °C | 4.2% | Complete | [95] |
N/A | Gamma irradiation | N/A @ −60 °C | N/A | ~0.15 log10/kGy | [35] | |
N/A | X-irradiation | N/A | N/A | 0.38 log10/kGy | [76] | |
N/A | X-irradiation | N/A @ −30 °C | N/A | 0.26 log10/kGy | [76] | |
SFTSV/YGI | N/A | Heat | N/A0 @ 60 °C | N/A | ≥4.8 | [89] |
N/A | UV-C (312 nm) | 30 @ 60 °C | 52 mJ/cm2 | ≥4.8 | [89] | |
N/A | UV-C (312 nm) | 30 @ 60 °C | 1548 mJ/cm2 | ≥4.5 | [89] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nims, R.W.; Ijaz, M.K. Virucidal Approaches for Hemorrhagic Fever Viruses. Viruses 2025, 17, 663. https://doi.org/10.3390/v17050663
Nims RW, Ijaz MK. Virucidal Approaches for Hemorrhagic Fever Viruses. Viruses. 2025; 17(5):663. https://doi.org/10.3390/v17050663
Chicago/Turabian StyleNims, Raymond W., and M. Khalid Ijaz. 2025. "Virucidal Approaches for Hemorrhagic Fever Viruses" Viruses 17, no. 5: 663. https://doi.org/10.3390/v17050663
APA StyleNims, R. W., & Ijaz, M. K. (2025). Virucidal Approaches for Hemorrhagic Fever Viruses. Viruses, 17(5), 663. https://doi.org/10.3390/v17050663