Novel Minimal Absent Words Detected in Influenza A Virus
Abstract
1. Introduction
- estimation of the disease dissemination within groups or communities as well as within and between countries,
- appraisal of the isolation options,
- contribution to future epidemics preparedness,
- tracing the pathogen(s) evolution.
2. Materials and Methods
2.1. IAV Nucleotide Sequences
2.2. Phylogenetic İnference
2.3. Minimal Absent Words
3. Results
3.1. Phylogenetic Analysis of IAV Sequences
3.1.1. Phylogenetic Analysis of A/H1N1 Sequences
3.1.2. Phylogenetic Analysis of A/H5N1 Sequences
3.2. Prevalent Minimal Sequences
4. Discussion
- In 1357, when the influenza term first appeared.
- In 1510, a pandemic originating from Asia, possibly China, spread through Africa to Europe; coccolucio (in Italian) or coqueluche (in French).
- In 1889–1890, the Asiatic flu.
- In 1918, in Spain, H1N1 infected 30% of the world population, killing millions of people.
- In 1933, the virus was discovered.
- In 1957, when H2N2 caused the so-called “Asian flu” in Asia.
- In 1967, H3N2 brought about the Hong Kong flu.
- In 1968, the Hong Kong flu invaded Japan.
- In 1977–1979, H1N1 gave rise to the Russian flu pandemic (in children).
- In 1996, when H5N1 was isolated in a farmed goose in China.
- In 1997, an H5 substrain in poultry was identified in Hong Kong.
- In 2003, H5N1 was spread in poultry across Southeastern Asia.
- In 2004, H5N1 expanded further in Eastern Asia, infecting poultries, other birds, and even felidae.
- In 2005, H5N1 was found in Turkey, Romania, and Ukraine (Middle East and Europe).
- In 2009, the swine flu passed on to Japan after Mexico and North America.
- In 2013, H7N9 had been isolated in China, disseminating among humans effectively. As vaccines against this strain were produced and applied, the population reached herd immunity; thus, the epidemic is considered eradicated since 2019.
- In 2014, H5N8 led to outbreaks in Europe in wild birds, mostly in poultry.
- In 2015–2016, H1N1 predominated in Europe.
- In 2016–2018, H3N2 dominated in Europe.
- In 2018–2019, H1N1pdm09, A/H3N2 prevailed in Western countries.
- In 2019–2020, A/H1N1pdm09, B were mainly isolated across Western countries.
- In 2021–2022, A/H3N2 was spread along with SARS-CoV-2.
- In 2022–2024, A/H1N1pdm09 predominated, although isolation (due to Coronavirus co-contagion) and wide vaccination eventually decreased the incidence of the disease.
- Typical seasonal flu.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HA | hemagglutinin |
IAV | Influenza A virus |
IBV | Influenza B virus |
ICV | Influenza C virus |
M1 | matrix protein 1 |
M2 | matrix protein 2 |
NA | neuraminidase |
NEP | nuclear export protein |
NP | nucleocapsid protein |
NS1 | nonstructural protein 1 |
PA | nonstructural protein 1 |
PrMAW | prevalent minimal absent words |
References
- Bouvier, N.M.; Palese, P. The biology of influenza viruses. Vaccine 2008, 26, D49–D53. [Google Scholar] [CrossRef] [PubMed]
- CDC. Available online: https://www.cdc.gov/flu/about/viruses-types.html (accessed on 13 February 2025).
- Littre, E. Hippocrates, On Epidemics. Br. Med. J. 1862, 1, 153–154. [Google Scholar]
- Vijaykrishna, D.; Holmes, E.C.; Joseph, U.; Fourment, M.; Su, Y.C.; Halpin, R.; Lee, R.T.; Deng, Y.-M.; Gunalan, V.; Lin, X.; et al. The contrasting phylodynamics of human influenza B viruses. eLife 2015, 4, e05055. [Google Scholar] [CrossRef]
- Vega-Rodriguez, W.; Ly, H. Epidemiological, serological, and genetic evidence of influenza D virus infection in humans: Is it a justifiable cause for concern? Virulence 2023, 14, 2150443. [Google Scholar] [CrossRef] [PubMed]
- Acquisti, C.; Poste, G.; Curtiss, D.; Kumar, S. Nullomers: Really a matter of natural selection? PLoS ONE 2007, 2, e1022. [Google Scholar] [CrossRef] [PubMed]
- Koulouras, G.; Frith, M.C. Significant non-existence of sequences in genomes and proteomes. Nucleic Acids Res. 2021, 49, 3139–3155. [Google Scholar] [CrossRef]
- Pinho, A.J.; Ferreira, P.J.; Garcia, S.P.; Rodrigues, J.M. On finding minimal absent words. BMC Bioinform. 2009, 10, 137. [Google Scholar] [CrossRef]
- Hampikian, G.; Andersen, T. Absent sequences: Nullomers and primes. In Biocomputing; World Scientific: Singapore, 2007; pp. 355–366. [Google Scholar]
- Alileche, A.; Hampikian, G. The effect of Nullomer-derived peptides 9R, 9S1R and 124R on the NCI-60 panel and normal cell lines. BMC Cancer 2017, 17, 533. [Google Scholar] [CrossRef]
- Alileche, A.; Goswami, J.; Bourland, W.; Davis, M.; Hampikian, G. Nullomer derived anticancer peptides (NulloPs): Differential lethal effects on normal and cancer cells in vitro. Peptides 2012, 38, 302–311. [Google Scholar] [CrossRef]
- Goswami, J.; Davis, M.C.; Andersen, T.; Alileche, A.; Hampikian, G. Safeguarding forensic DNA reference samples with nullomer barcodes. J. Forensic. Leg. Med. 2013, 20, 513–519. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Rozewicki, J.; Yamada, K.D. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 2019, 20, 1160–1166. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Suleski, M.; Sanderford, M.; Sharma, S.; Tamura, K. MEGA12: Molecular Evolutionary Genetic Analysis version 12 for adaptive and green computing. Mol. Biol. Evol. 2024, 41, msae263. [Google Scholar] [CrossRef]
- Posada, D.; Crandall, K.A. MODELTEST: Testing the model of DNA substitution. Bioinformatics 1998, 14, 817–818. [Google Scholar] [CrossRef] [PubMed]
- Silva, R.M.; Pratas, D.; Castro, L.; Pinho, A.J.; Ferreira, P.J. Three minimal sequences found in Ebola virus genomes and absent from human DNA. Bioinformatics 2015, 31, 2421–2425. [Google Scholar] [CrossRef]
- Pratas, D.; Silva, J.M. Persistent minimal sequences of SARS-CoV-2. Bioinformatics 2021, 36, 5129–5132. [Google Scholar] [CrossRef]
- Birney, E.; Clamp, M.; Durbin, R. GeneWise and Genomewise. Genome Res. 2004, 14, 988–995. [Google Scholar] [CrossRef]
- Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar]
- Glud, H.A.; George, S.; Skovgaard, K.; Larsen, L.E. Zoonotic and reverse zoonotic transmission of viruses between humans and pigs. Apmis 2021, 129, 675–693. [Google Scholar] [CrossRef]
- Bhat, S.; James, J.; Sadeyen, J.-R.; Mahmood, S.; Everest, H.J.; Chang, P.; Walsh, S.K.; Byrne, A.M.P.; Mollett, B.; Lean, F.; et al. Coinfection of Chickens with H9N2 and H7N9 Avian Influenza Viruses Leads to Emergence of Reassortant H9N9 Virus with Increased Fitness for Poultry and a Zoonotic Potential. J. Virol. 2022, 96, e0185621. [Google Scholar] [CrossRef]
- World Health Organization. Available online: https://www.who.int/news-room/fact-sheets/detail/influenza-(seasonal) (accessed on 13 February 2025).
- Kosik, I.; Yewdell, J.W. Influenza Hemagglutinin and Neuraminidase: Yin–Yang Proteins Coevolving to Thwart Immunity. Viruses 2019, 11, 346. [Google Scholar] [CrossRef]
- Sederdahl, B.K.; Williams, J.V. Epidemiology and Clinical Characteristics of Influenza C Virus. Viruses 2020, 12, 89. [Google Scholar] [CrossRef] [PubMed]
- Vo, V.; Harrington, A.; Chang, C.-L.; Baker, H.; Moshi, M.A.; Ghani, N.; Itorralba, J.Y.; Tillett, R.L.; Dahlmann, E.; Basazinew, N.; et al. Identification and genome sequencing of an influenza H3N2 variant in wastewater from elementary schools during a surge of influenza A cases in Las Vegas, Nevada. Sci. Total Environ. 2023, 872, 162058. [Google Scholar] [CrossRef]
- Baldo, V.; Bertoncello, C.; Cocchio, S.; Fonzo, M.; Pillon, P.; Buja, A.; Baldovin, T. The new pandemic influenza A/(H1N1)pdm09 virus: Is it really “new”? J. Prev. Med. Hyg. 2016, 57, E19–E22. [Google Scholar]
- ECDC. Available online: https://www.ecdc.europa.eu/en/swine-influenza/factsheet (accessed on 14 February 2025).
- Kilbourne, E.D. Influenza pandemics of the 20th century. Emerg. Infect. Dis. 2006, 12, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Potter, C.W. A history of influenza. J. Appl. Microbiol. 2001, 91, 572–579. [Google Scholar] [CrossRef]
- Hall, B.G. Building phylogenetic trees from molecular data with MEGA. Mol. Biol. Evol. 2013, 30, 1229–1235. [Google Scholar] [CrossRef] [PubMed]
- Esposito, M.M.; Turku, S.; Lehrfield, L.; Shoman, A. The Impact of Human Activities on Zoonotic Infection Transmissions. Animals 2023, 13, 1646. [Google Scholar] [CrossRef]
- Anjum, N.; Nabil, R.L.; Rafi, R.I.; Bayzid, M.S.; Rahman, M.S. CD-MAWS: An Alignment-Free Phylogeny Estimation Method Using Cosine Distance on Minimal Absent Word Sets. IEEE/ACM Trans. Comput. Biol. Bioinform. 2023, 20, 196–205. [Google Scholar] [CrossRef]
- Peukes, J.; Xiong, X.; Erlendsson, S.; Qu, K.; Wan, W.; Calder, L.J.; Schraidt, O.; Kummer, S.; Freund, S.M.V.; Kräusslich, H.-G.; et al. The native structure of the assembled matrix protein 1 of influenza A virus. Nature 2020, 587, 495–498. [Google Scholar] [CrossRef]
- Wandzik, J.M.; Kouba, T.; Cusack, S. Structure and Function of Influenza Polymerase. Cold Spring Harb. Perspect. Med. 2021, 11, a038372. [Google Scholar] [CrossRef] [PubMed]
- Zeldovich, K.B.; Liu, P.; Renzette, N.; Foll, M.; Pham, S.T.; Venev, S.V.; Gallagher, G.R.; Bolon, D.N.; Kurt-Jones, E.A.; Jensen, J.D.; et al. Positive Selection Drives Preferred Segment Combinations during Influenza Virus Reassortment. Mol. Biol. Evol. 2015, 32, 1519–1532. [Google Scholar] [CrossRef] [PubMed]
- Gentles, A.J.; Karlin, S. Genome-scale compositional comparisons in eukaryotes. Genome Res. 2001, 11, 540–546. [Google Scholar] [CrossRef] [PubMed]
- Maguire, C.; Wang, C.; Ramasamy, A.; Fonken, C.; Morse, B.; Lopez, N.; Wylie, D.; Melamed, E. Molecular mimicry as a mechanism of viral immune evasion and autoimmunity. Nat. Commun. 2024, 15, 9403. [Google Scholar] [CrossRef]
- Kilbourne, E.D. Future influenza vaccines and the use of genetic recombinants. Bull. World Health Organ. 1969, 41, 643–645. [Google Scholar]
Segment | Sequences Analyzed | Sequences Detected | Subtypes/Subtypes | PrMAW | Motif | Peptide |
---|---|---|---|---|---|---|
M1/M2 | 711 | 637 | H1-H7, H9-H13 | PrMAW1 | TCGAAACGTACG | xETYx |
PA and PA-X | 588 | 466 | H1-H7, H9-H13 | PrMAW2 | CGAACCGAACGG | xEPNx |
PA and PA-X | 38 | 37 | H7N9, H9N2, H9N9 | PrMAW3 | CGACGAACGAG | xDERx |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bigiş, E.Z.; Yıldız, E.; Tagka, A.; Pavlopoulou, A.; Chrousos, G.P.; Geronikolou, S. Novel Minimal Absent Words Detected in Influenza A Virus. Viruses 2025, 17, 659. https://doi.org/10.3390/v17050659
Bigiş EZ, Yıldız E, Tagka A, Pavlopoulou A, Chrousos GP, Geronikolou S. Novel Minimal Absent Words Detected in Influenza A Virus. Viruses. 2025; 17(5):659. https://doi.org/10.3390/v17050659
Chicago/Turabian StyleBigiş, Elif Zülal, Elif Yıldız, Anna Tagka, Athanasia Pavlopoulou, George P. Chrousos, and Styliani Geronikolou. 2025. "Novel Minimal Absent Words Detected in Influenza A Virus" Viruses 17, no. 5: 659. https://doi.org/10.3390/v17050659
APA StyleBigiş, E. Z., Yıldız, E., Tagka, A., Pavlopoulou, A., Chrousos, G. P., & Geronikolou, S. (2025). Novel Minimal Absent Words Detected in Influenza A Virus. Viruses, 17(5), 659. https://doi.org/10.3390/v17050659