Human Microglia Models for NeuroHIV
Abstract
:1. Introduction
1995 | 2001 | 2017 | 2016 | 2017 | 2016–2018 | 2013 | 2020 | |
---|---|---|---|---|---|---|---|---|
Model | Human microglia line | Monocyte-derived microglial cells | Microglia lines for latent infection | iPSC-derived microglia | Cerebral organoids | Monocyte-containing cerebral organoids from iPSC | ||
HMC3 [6,9,10] | HMO6 [11,12,13] | MMG [14] | C20 [15] | HC69.5 [16,17,18] | iMg [6,10] | Cos [19] | MCOs [6,20,21] | |
Microglia markers | IBA-1, P2RY12 | CD11b, CD68, CD86, HLA-DR, HLA-ABC | CD11b, CD11c, CD80, IBA-1, P2RY12 | IBA-1 CD64 CD86, | P2RY12, CD11b | P2RY12, TREM2, IBA-1, CD11b, TMEM119 | NA | AIF1, TMEM119, TREM2, P2RY12 |
HIV entry | CD4- | CD4- | CD4+ | CD4- | CD4- | CD4+ | NA | CD4+ |
receptors | CCR5+ | NA | CCR5+ | CCR5+ | CCR5- | CCR5+ | NA | CCR5+ |
2. Primary Human Microglia
3. Microglial Cell Lines (HMC3 and HMO6)
4. Microglial Cell Line for Latent HIV Infection (C20 and HC69.5)
5. Human Peripheral Blood Monocyte-Derived Microglia (MMG)
6. Human Induced Pluripotent Stem Cell (iPSC)-Derived Microglia (iMg)
7. Microglia-Containing Cerebral Organoids (MCOs) Derived from Human iPSCs
Model | iPSC Origin | Organoid Age | HIV Strain | HIV Infection | Microglia Markers * | HIV Receptor | Reference | |
---|---|---|---|---|---|---|---|---|
Acute | Latent | |||||||
MG-hBORG, hBORG | fetal brain-derived neural progenitor cells | Day 30 | NL (YU2-Env)- EGFP strain | peaked at NA day 11 post- infection | NA | IBA1 | NA | [64] |
o-MG | fibroblast | Week 1 | Bal | peaked at day 6 post- infection | IBA1, AIF1, TMEM119, P2RY12, TREM2, CSF1R, CX3CR1 | CCR5+, CD4+, CXCR4+ | [20] | |
CEREBRAL AND CHOROID PLEXUS [ChP] BRAIN ORGANOID | mixed culture of wild-type iPSCs and modified iPSCs programmed for microglia differentiation | Day 14 | ADA | peaked at day 30 post- infection | NA | IBA1 TREM2 | CCR5+, CD4+, CXCR4+ | [21] |
CO-iMs | Hematopoietic progenitor and fibroblast | Day 50 | Bal and Gag- iGFP-JRFL | peaked at day 5 post- infection | NA | TMEM119, IBA1, CX3CR1, CSF1R, P2RY12 | NA | [65] |
HUMAN NEUROSPHERES | neural Progenitor Cells (NPCs) | Week 12–14 | 89.6, JRCSF and CH040 | peaked at day 14 post- infection | NA | IBA1 | NA | [66] |
8. Discussion: Pros and Cons of Human Microglial Models
Model | Microglia Markers | CD4 | CCR5 | CXCR4 | HIV Infection | Pros | Cons | References | |
---|---|---|---|---|---|---|---|---|---|
Acute | Latent | ||||||||
Primary Human Microglia | + | + | + | + | + | +/− | Acute HIV infection | Limited availability | [5,6,17] |
Microglia Lines (HMC3, HMO6) | + | − | + | + | − | − | Microglia function | No CD4 | [10,11,12,13,15,31,32,33] |
HIV Latently Infected Microglia Line (HC69.5) | + | +/− | − | + | − | + | HIV latency activation | No CD4 | [16,17,18] |
Peripheral Blood Monocyte- derived Microglia (MMG) | + | + | + | + | + | +/− | Acute HIV infection | Added growth factors might affect HIV infection | [14,35,36] |
iPSC-derived Microglia (iMg) | + | + | + | + | + | +/− | Acute HIV infection | Donor variability, limited quantity | [6,20,44,45] |
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CNS | Central nervous system |
HIV | Human immunodeficiency virus |
HAND | HIV-associated neurocognitive disorder |
MMG | Monocyte-derived microglia |
iPSC | Induced pluripotent stem cell |
iMg | Induced pluripotent stem cell (iPSC)-derived microglia |
MCOs | Microglia-containing cerebral organoids |
NGF-β | Nerve growth factor -β |
CCL2 | C-C chemokine ligand 2 |
COs | Cerebral organoids |
BBB | Blood–brain barrier |
CXCR4 | C-X-C chemokine receptor 4 |
CD4 | Cluster of differentiation 4 |
CCR5 | C-C chemokine receptor type 5 |
M-CSF | Macrophage colony-stimulating factor |
P2RY12 | Purinergic receptor P2Y12 |
IBA1 | Ionized calcium-binding adaptor molecule 1 |
hBORG | Human brain organoid model |
MG-hBORG | Microglia incorporated into hBORG |
NPC | Neural progenitor cell |
NSC | Neural stem cell |
o-MG | Organoid-derived microglia |
ChP | Choroid plexus |
References
- O’Brien, C.A.; Bennett, F.C.; Bennett, M.L. Microglia in Antiviral Immunity of the Brain and Spinal Cord. Semin. Immunol. 2022, 60, 101650. [Google Scholar] [CrossRef] [PubMed]
- Borrajo, A.; Spuch, C.; Penedo, M.A.; Olivares, J.M.; Agís-Balboa, R.C. Important Role of Microglia in HIV-1 Associated Neurocognitive Disorders and the Molecular Pathways Implicated in Its Pathogenesis. Ann. Med. 2021, 53, 43–69. [Google Scholar] [CrossRef] [PubMed]
- Cosenza, M.A.; Zhao, M.-L.; Si, Q.; Lee, S.C. Human Brain Parenchymal Microglia Express CD14 and CD45 and Are Productively Infected by HIV-1 in HIV-1 Encephalitis. Brain Pathol. 2006, 12, 442–455. [Google Scholar] [CrossRef] [PubMed]
- Schlachetzki, J.C.M.; Zhou, Y.; Glass, C.K. Human Microglia Phenotypes in the Brain Associated with HIV Infection. Curr. Opin. Neurobiol. 2022, 77, 102637. [Google Scholar] [CrossRef]
- Wahl, A.; Al-Harthi, L. HIV Infection of Non-Classical Cells in the Brain. Retrovirology 2023, 20, 1. [Google Scholar] [CrossRef]
- Gumbs, S.B.H.; Kübler, R.; Gharu, L.; Schipper, P.J.; Borst, A.L.; Snijders, G.J.L.J.; Ormel, P.R.; Van Berlekom, A.B.; Wensing, A.M.J.; De Witte, L.D.; et al. Human Microglial Models to Study HIV Infection and Neuropathogenesis: A Literature Overview and Comparative Analyses. J. Neurovirol. 2022, 28, 64–91. [Google Scholar] [CrossRef]
- Saylor, D.; Dickens, A.M.; Sacktor, N.; Haughey, N.; Slusher, B.; Pletnikov, M.; Mankowski, J.L.; Brown, A.; Volsky, D.J.; McArthur, J.C. HIV-Associated Neurocognitive Disorder—Pathogenesis and Prospects for Treatment. Nat. Rev. Neurol. 2016, 12, 234–248. [Google Scholar] [CrossRef]
- Nickoloff-Bybel, E.A.; Festa, L.; Meucci, O.; Gaskill, P.J. Co-Receptor Signaling in the Pathogenesis of neuroHIV. Retrovirology 2021, 18, 24. [Google Scholar] [CrossRef]
- Janabi, N.; Peudenier, S.; Héron, B.; Ng, K.H.; Tardieu, M. Establishment of Human Microglial Cell Lines after Transfection of Primary Cultures of Embryonic Microglial Cells with the SV40 Large T Antigen. Neurosci. Lett. 1995, 195, 105–108. [Google Scholar] [CrossRef]
- Rai, M.A.; Hammonds, J.; Pujato, M.; Mayhew, C.; Roskin, K.; Spearman, P. Comparative Analysis of Human Microglial Models for Studies of HIV Replication and Pathogenesis. Retrovirology 2020, 17, 35. [Google Scholar] [CrossRef]
- Nagai, A.; Nakagawa, E.; Hatori, K.; Choi, H.B.; McLarnon, J.G.; Lee, M.A.; Kim, S.U. Generation and Characterization of Immortalized Human Microglial Cell Lines: Expression of Cytokines and Chemokines. Neurobiol. Dis. 2001, 8, 1057–1068. [Google Scholar] [CrossRef]
- Nagai, A.; Mishima, S.; Ishida, Y.; Ishikura, H.; Harada, T.; Kobayashi, S.; Kim, S.U. Immortalized Human Microglial Cell Line: Phenotypic Expression. J. Neurosci. Res. 2005, 81, 342–348. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.B.; Nagai, A.; Kim, S.U. Cytokines, Chemokines, and Cytokine Receptors in Human Microglia. J. Neurosci. Res. 2002, 69, 94–103. [Google Scholar] [CrossRef] [PubMed]
- Rawat, P.; Spector, S.A. Development and Characterization of a Human Microglia Cell Model of HIV-1 Infection. J. Neurovirol. 2017, 23, 33–46. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Mesa, Y.; Jay, T.R.; Checkley, M.A.; Luttge, B.; Dobrowolski, C.; Valadkhan, S.; Landreth, G.E.; Karn, J.; Alvarez-Carbonell, D. Immortalization of Primary Microglia: A New Platform to Study HIV Regulation in the Central Nervous System. J. Neurovirol. 2017, 23, 47–66. [Google Scholar] [CrossRef]
- Alvarez-Carbonell, D.; Garcia-Mesa, Y.; Milne, S.; Das, B.; Dobrowolski, C.; Rojas, R.; Karn, J. Toll-like Receptor 3 Activation Selectively Reverses HIV Latency in Microglial Cells. Retrovirology 2017, 14, 9. [Google Scholar] [CrossRef]
- Alvarez-Carbonell, D.; Ye, F.; Ramanath, N.; Garcia-Mesa, Y.; Knapp, P.E.; Hauser, K.F.; Karn, J. Cross-Talk between Microglia and Neurons Regulates HIV Latency. PLoS Pathog. 2019, 15, e1008249. [Google Scholar] [CrossRef]
- Alvarez-Carbonell, D.; Ye, F.; Ramanath, N.; Dobrowolski, C.; Karn, J. The Glucocorticoid Receptor Is a Critical Regulator of HIV Latency in Human Microglial Cells. J. Neuroimmune Pharmacol. 2019, 14, 94–109. [Google Scholar] [CrossRef]
- Lancaster, M.A.; Renner, M.; Martin, C.-A.; Wenzel, D.; Bicknell, L.S.; Hurles, M.E.; Homfray, T.; Penninger, J.M.; Jackson, A.P.; Knoblich, J.A. Cerebral Organoids Model Human Brain Development and Microcephaly. Nature 2013, 501, 373–379. [Google Scholar] [CrossRef]
- Donadoni, M.; Cakir, S.; Bellizzi, A.; Swingler, M.; Sariyer, I.K. Modeling HIV-1 Infection and NeuroHIV in hiPSCs-Derived Cerebral Organoid Cultures. J. Neurovirol. 2024, 30, 362–379. [Google Scholar] [CrossRef]
- Gumbs, S.B.H.; Berdenis Van Berlekom, A.; Kübler, R.; Schipper, P.J.; Gharu, L.; Boks, M.P.; Ormel, P.R.; Wensing, A.M.J.; De Witte, L.D.; Nijhuis, M. Characterization of HIV-1 Infection in Microglia-Containing Human Cerebral Organoids. Viruses 2022, 14, 829. [Google Scholar] [CrossRef] [PubMed]
- Mizee, M.R.; Miedema, S.S.M.; Van Der Poel, M.; Adelia; Schuurman, K.G.; Van Strien, M.E.; Melief, J.; Smolders, J.; Hendrickx, D.A.; Heutinck, K.M.; et al. Isolation of Primary Microglia from the Human Post-Mortem Brain: Effects of Ante- and Post-Mortem Variables. Acta Neuropathol. Commun. 2017, 5, 16. [Google Scholar] [CrossRef] [PubMed]
- Moore, C.S.; Ase, A.R.; Kinsara, A.; Rao, V.T.S.; Michell-Robinson, M.; Leong, S.Y.; Butovsky, O.; Ludwin, S.K.; Séguéla, P.; Bar-Or, A.; et al. P2Y12 Expression and Function in Alternatively Activated Human Microglia. Neurol. Neuroimmunol. Neuroinflamm. 2015, 2, e80. [Google Scholar] [CrossRef] [PubMed]
- Ghorpade, A.; Nukuna, A.; Che, M.; Haggerty, S.; Persidsky, Y.; Carter, E.; Carhart, L.; Shafer, L.; Gendelman, H.E. Human Immunodeficiency Virus Neurotropism: An Analysis of Viral Replication and Cytopathicity for Divergent Strains in Monocytes and Microglia. J. Virol. 1998, 72, 3340–3350. [Google Scholar] [CrossRef]
- Borgmann, K.; Gendelman, H.E.; Ghorpade, A. Isolation and HIV-1 Infection of Primary Human Microglia From Fetal and Adult Tissue. In Human Retrovirus Protocols; Humana Press: Totowa, NJ, USA, 2005; Vol. 304, pp. 049–070. ISBN 978-1-59259-907-3. [Google Scholar]
- Olah, M.; Raj, D.; Brouwer, N.; De Haas, A.H.; Eggen, B.J.L.; Den Dunnen, W.F.A.; Biber, K.P.H.; Boddeke, H.W.G.M. An Optimized Protocol for the Acute Isolation of Human Microglia from Autopsy Brain Samples. Glia 2012, 60, 96–111. [Google Scholar] [CrossRef]
- Rustenhoven, J.; Park, T.I.-H.; Schweder, P.; Scotter, J.; Correia, J.; Smith, A.M.; Gibbons, H.M.; Oldfield, R.L.; Bergin, P.S.; Mee, E.W.; et al. Isolation of Highly Enriched Primary Human Microglia for Functional Studies. Sci. Rep. 2016, 6, 19371. [Google Scholar] [CrossRef]
- Zhang, Y.; Sloan, S.A.; Clarke, L.E.; Caneda, C.; Plaza, C.A.; Blumenthal, P.D.; Vogel, H.; Steinberg, G.K.; Edwards, M.S.B.; Li, G.; et al. Purification and Characterization of Progenitor and Mature Human Astrocytes Reveals Transcriptional and Functional Differences with Mouse. Neuron 2016, 89, 37–53. [Google Scholar] [CrossRef]
- Wang, X.; Douglas, S.D.; Song, L.; Wang, Y.-J.; Ho, W.-Z. Neurokinin-1 Receptor Antagonist (Aprepitant) Suppresses HIV-1 Infection of Microglia/Macrophages. J. Neuroimmune Pharmacol. 2008, 3, 257–264. [Google Scholar] [CrossRef]
- Cenker, J.J.; Stultz, R.D.; McDonald, D. Brain Microglial Cells Are Highly Susceptible to HIV-1 Infection and Spread. AIDS Res. Hum. Retroviruses 2017, 33, 1155–1165. [Google Scholar] [CrossRef]
- Flynn, G.; Maru, S.; Loughlin, J.; Romero, I.A.; Male, D. Regulation of Chemokine Receptor Expression in Human Microglia and Astrocytes. J. Neuroimmunol. 2003, 136, 84–93. [Google Scholar] [CrossRef]
- Dello Russo, C.; Cappoli, N.; Coletta, I.; Mezzogori, D.; Paciello, F.; Pozzoli, G.; Navarra, P.; Battaglia, A. The Human Microglial HMC3 Cell Line: Where Do We Stand? A Systematic Literature Review. J. Neuroinflamm. 2018, 15, 259. [Google Scholar] [CrossRef] [PubMed]
- Timmerman, R.; Burm, S.M.; Bajramovic, J.J. An Overview of In Vitro Methods to Study Microglia. Front. Cell. Neurosci. 2018, 12, 242. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhou, R.-H.; Liu, Y.; Guo, L.; Wang, X.; Hu, W.-H.; Ho, W.-Z. HIV Infection Suppresses TLR3 Activation-Mediated Antiviral Immunity in Microglia and Macrophages. Immunology 2020, 160, 269–279. [Google Scholar] [CrossRef] [PubMed]
- Leone, C.; Le Pavec, G.; Même, W.; Porcheray, F.; Samah, B.; Dormont, D.; Gras, G. Characterization of Human Monocyte-Derived Microglia-like Cells. Glia 2006, 54, 183–192. [Google Scholar] [CrossRef]
- Ohgidani, M.; Kato, T.A.; Setoyama, D.; Sagata, N.; Hashimoto, R.; Shigenobu, K.; Yoshida, T.; Hayakawa, K.; Shimokawa, N.; Miura, D.; et al. Direct Induction of Ramified Microglia-like Cells from Human Monocytes: Dynamic Microglial Dysfunction in Nasu-Hakola Disease. Sci. Rep. 2014, 4, 4957. [Google Scholar] [CrossRef]
- Akiyama, H.; Jalloh, S.; Park, S.; Lei, M.; Mostoslavsky, G.; Gummuluru, S. Expression of HIV-1 Intron-Containing RNA in Microglia Induces Inflammatory Responses. J. Virol. 2021, 95, e01386-20. [Google Scholar] [CrossRef]
- Sheridan, S.D.; Thanos, J.M.; De Guzman, R.M.; McCrea, L.T.; Horng, J.E.; Fu, T.; Sellgren, C.M.; Perlis, R.H.; Edlow, A.G. Umbilical Cord Blood-Derived Microglia-like Cells to Model COVID-19 Exposure. Transl. Psychiatry 2021, 11, 179. [Google Scholar] [CrossRef]
- Muffat, J.; Li, Y.; Yuan, B.; Mitalipova, M.; Omer, A.; Corcoran, S.; Bakiasi, G.; Tsai, L.-H.; Aubourg, P.; Ransohoff, R.M.; et al. Efficient Derivation of Microglia-like Cells from Human Pluripotent Stem Cells. Nat. Med. 2016, 22, 1358–1367. [Google Scholar] [CrossRef]
- Haenseler, W.; Sansom, S.N.; Buchrieser, J.; Newey, S.E.; Moore, C.S.; Nicholls, F.J.; Chintawar, S.; Schnell, C.; Antel, J.P.; Allen, N.D.; et al. A Highly Efficient Human Pluripotent Stem Cell Microglia Model Displays a Neuronal-Co-Culture-Specific Expression Profile and Inflammatory Response. Stem Cell Rep. 2017, 8, 1727–1742. [Google Scholar] [CrossRef]
- Douvaras, P.; Sun, B.; Wang, M.; Kruglikov, I.; Lallos, G.; Zimmer, M.; Terrenoire, C.; Zhang, B.; Gandy, S.; Schadt, E.; et al. Directed Differentiation of Human Pluripotent Stem Cells to Microglia. Stem Cell Rep. 2017, 8, 1516–1524. [Google Scholar] [CrossRef]
- Pandya, H.; Shen, M.J.; Ichikawa, D.M.; Sedlock, A.B.; Choi, Y.; Johnson, K.R.; Kim, G.; Brown, M.A.; Elkahloun, A.G.; Maric, D.; et al. Differentiation of Human and Murine Induced Pluripotent Stem Cells to Microglia-like Cells. Nat. Neurosci. 2017, 20, 753–759. [Google Scholar] [CrossRef] [PubMed]
- Abud, E.M.; Ramirez, R.N.; Martinez, E.S.; Healy, L.M.; Nguyen, C.H.H.; Newman, S.A.; Yeromin, A.V.; Scarfone, V.M.; Marsh, S.E.; Fimbres, C.; et al. iPSC-Derived Human Microglia-like Cells to Study Neurological Diseases. Neuron 2017, 94, 278–293.e9. [Google Scholar] [CrossRef] [PubMed]
- Ihnatovych, I.; Birkaya, B.; Notari, E.; Szigeti, K. iPSC-Derived Microglia for Modeling Human-Specific DAMP and PAMP Responses in the Context of Alzheimer’s Disease. Int. J. Mol. Sci. 2020, 21, 9668. [Google Scholar] [CrossRef] [PubMed]
- Badanjak, K.; Mulica, P.; Smajic, S.; Delcambre, S.; Tranchevent, L.-C.; Diederich, N.; Rauen, T.; Schwamborn, J.C.; Glaab, E.; Cowley, S.A.; et al. iPSC-Derived Microglia as a Model to Study Inflammation in Idiopathic Parkinson’s Disease. Front. Cell. Dev. Biol. 2021, 9, 740758. [Google Scholar] [CrossRef]
- Almeida, S.; Zhang, Z.; Coppola, G.; Mao, W.; Futai, K.; Karydas, A.; Geschwind, M.D.; Tartaglia, M.C.; Gao, F.; Gianni, D.; et al. Induced Pluripotent Stem Cell Models of Progranulin-Deficient Frontotemporal Dementia Uncover Specific Reversible Neuronal Defects. Cell Rep. 2012, 2, 789–798. [Google Scholar] [CrossRef]
- McMillan, R.E.; Wang, E.; Carlin, A.F.; Coufal, N.G. Human Microglial Models to Study Host–Virus Interactions. Exp. Neurol. 2023, 363, 114375. [Google Scholar] [CrossRef]
- Ryan, S.K.; Gonzalez, M.V.; Garifallou, J.P.; Bennett, F.C.; Williams, K.S.; Sotuyo, N.P.; Mironets, E.; Cook, K.; Hakonarson, H.; Anderson, S.A.; et al. Neuroinflammation and EIF2 Signaling Persist despite Antiretroviral Treatment in an hiPSC Tri-Culture Model of HIV Infection. Stem Cell Rep. 2020, 14, 703–716. [Google Scholar] [CrossRef]
- Wang, P.; Liu, J.; Wang, X.; Meng, F.; Xiao, Q.; Liu, L.; Zhu, J.; Hu, W.; Ho, W. Activation of Toll-like Receptor 3 Inhibits HIV Infection of Human iPSC-derived Microglia. J. Med. Virol. 2023, 95, e29217. [Google Scholar] [CrossRef]
- Ryan, S.K.; Jordan-Sciutto, K.L.; Anderson, S.A. Protocol for Tri-Culture of hiPSC-Derived Neurons, Astrocytes, and Microglia. STAR Protoc. 2020, 1, 100190. [Google Scholar] [CrossRef]
- McQuade, A.; Coburn, M.; Tu, C.H.; Hasselmann, J.; Davtyan, H.; Blurton-Jones, M. Development and Validation of a Simplified Method to Generate Human Microglia from Pluripotent Stem Cells. Mol. Neurodegener. 2018, 13, 67. [Google Scholar] [CrossRef]
- Abreu, C.M.; Gama, L.; Krasemann, S.; Chesnut, M.; Odwin-Dacosta, S.; Hogberg, H.T.; Hartung, T.; Pamies, D. Microglia Increase Inflammatory Responses in iPSC-Derived Human BrainSpheres. Front. Microbiol. 2018, 9, 2766. [Google Scholar] [CrossRef] [PubMed]
- Barak, M.; Fedorova, V.; Pospisilova, V.; Raska, J.; Vochyanova, S.; Sedmik, J.; Hribkova, H.; Klimova, H.; Vanova, T.; Bohaciakova, D. Human iPSC-Derived Neural Models for Studying Alzheimer’s Disease: From Neural Stem Cells to Cerebral Organoids. Stem Cell Rev. Rep. 2022, 18, 792–820. [Google Scholar] [CrossRef] [PubMed]
- Bodnar, B.; Zhang, Y.; Liu, J.; Lin, Y.; Wang, P.; Wei, Z.; Saribas, S.; Zhu, Y.; Li, F.; Wang, X.; et al. Novel Scalable and Simplified System to Generate Microglia-Containing Cerebral Organoids from Human Induced Pluripotent Stem Cells. Front. Cell. Neurosci. 2021, 15, 682272. [Google Scholar] [CrossRef] [PubMed]
- Bershteyn, M.; Nowakowski, T.J.; Pollen, A.A.; Di Lullo, E.; Nene, A.; Wynshaw-Boris, A.; Kriegstein, A.R. Human iPSC-Derived Cerebral Organoids Model Cellular Features of Lissencephaly and Reveal Prolonged Mitosis of Outer Radial Glia. Cell Stem Cell 2017, 20, 435–449.e4. [Google Scholar] [CrossRef]
- Wei, Z.; Bodnar, B.; Zhao, R.-T.; Xiao, Q.; Saribas, S.; Wang, X.; Ho, W.-Z.; Hu, W. Human iPSC-Derived Brain Organoids: A 3D Mini-Brain Model for Studying HIV Infection. Exp. Neurol. 2023, 364, 114386. [Google Scholar] [CrossRef]
- Amiri, A.; Coppola, G.; Scuderi, S.; Wu, F.; Roychowdhury, T.; Liu, F.; Pochareddy, S.; Shin, Y.; Safi, A.; Song, L.; et al. Transcriptome and Epigenome Landscape of Human Cortical Development Modeled in Organoids. Science 2018, 362, eaat6720. [Google Scholar] [CrossRef]
- Velasco, S.; Kedaigle, A.J.; Simmons, S.K.; Nash, A.; Rocha, M.; Quadrato, G.; Paulsen, B.; Nguyen, L.; Adiconis, X.; Regev, A.; et al. Individual Brain Organoids Reproducibly Form Cell Diversity of the Human Cerebral Cortex. Nature 2019, 570, 523–527. [Google Scholar] [CrossRef]
- Marx, V. Reality Check for Organoids in Neuroscience. Nat. Methods 2020, 17, 961–964. [Google Scholar] [CrossRef]
- Park, D.S.; Kozaki, T.; Tiwari, S.K.; Moreira, M.; Khalilnezhad, A.; Torta, F.; Olivié, N.; Thiam, C.H.; Liani, O.; Silvin, A.; et al. iPS-Cell-Derived Microglia Promote Brain Organoid Maturation via Cholesterol Transfer. Nature 2023, 623, 397–405. [Google Scholar] [CrossRef]
- Ormel, P.R.; Vieira De Sá, R.; Van Bodegraven, E.J.; Karst, H.; Harschnitz, O.; Sneeboer, M.A.M.; Johansen, L.E.; Van Dijk, R.E.; Scheefhals, N.; Berdenis Van Berlekom, A.; et al. Microglia Innately Develop within Cerebral Organoids. Nat. Commun. 2018, 9, 4167. [Google Scholar] [CrossRef]
- Premeaux, T.A.; Mediouni, S.; Leda, A.; Furler, R.L.; Valente, S.T.; Fine, H.A.; Nixon, D.F.; Ndhlovu, L.C. Next-Generation Human Cerebral Organoids as Powerful Tools To Advance NeuroHIV Research. mBio 2021, 12, e00680-21. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Jiang, J.; Xu, Z.; Yan, H.; Tang, B.; Liu, C.; Chen, C.; Meng, Q. Microglia-Containing Human Brain Organoids for the Study of Brain Development and Pathology. Mol. Psychiatry 2023, 28, 96–107. [Google Scholar] [CrossRef] [PubMed]
- Dos Reis, R.S.; Sant, S.; Keeney, H.; Wagner, M.C.E.; Ayyavoo, V. Modeling HIV-1 Neuropathogenesis Using Three-Dimensional Human Brain Organoids (hBORGs) with HIV-1 Infected Microglia. Sci. Rep. 2020, 10, 15209. [Google Scholar] [CrossRef] [PubMed]
- Narasipura, S.D.; Zayas, J.P.; Ash, M.K.; Reyes, A.; Shull, T.; Gambut, S.; JSzczerkowski, J.; McKee, C.; Schneider, J.R.; Lorenzo-Redondo, R.; et al. Inflammatory responses revealed through HIV infection of microglia-containing cerebral organoids. J. Neuroinflamm. 2025, 22, 36. [Google Scholar] [CrossRef]
- Branscome, H.; Khatkar, P.; Al Sharif, S.; Yin, D.; Jacob, S.; Cowen, M.; Kim, Y.; Erickson, J.; Brantner, C.A.; El-Hage, N.; et al. Retroviral Infection of Human Neurospheres and Use of Stem Cell EVs to Repair Cellular Damage. Sci. Rep. 2022, 12, 2019. [Google Scholar] [CrossRef]
- Kong, W.; Frouard, J.; Xie, G.; Corley, M.J.; Helmy, E.; Zhang, G.; Schwarzer, R.; Montano, M.; Sohn, P.; Roan, N.R.; et al. Neuroinflammation Generated by HIV-Infected Microglia Promotes Dysfunction and Death of Neurons in Human Brain Organoids. PNAS Nexus 2024, 3, pgae179. [Google Scholar] [CrossRef]
Company | Format | Culture Media/Protocol Availability | iPSC Origin | Microglia Markers |
---|---|---|---|---|
Applied Stem cell (Milpitas, CA, USA) | cryopreserved, fully differentiated | Yes | fibroblasts from Caucasian/African American male | P2RY12, CX3CR1, TMEM119, and IBA1 |
Axol Biosciences (Cambridge, UK) | cryopreserved, mature microglia | Yes | monocytes from 40–50 years old male donor | TREM2, IBA1, and TMEM119 |
Fujifilm Cellular Dynamics Inc. (Madison, WI, USA) | frozen, differentiated | Yes | fibroblasts and PBMC from a female/male Caucasian donor | TREM2, and IBA1 |
Bit.Bio (Cambridge, UK) | cryopreserved, immature | No | skin fibroblast from Caucasian adult male and female | TMEM119, IBA1, CD11b, CD45, P2RY12, TREM2, CX3CR1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarkar, P.; Wang, X.; Hu, W.; Zhu, J.; Ho, W.-Z. Human Microglia Models for NeuroHIV. Viruses 2025, 17, 641. https://doi.org/10.3390/v17050641
Sarkar P, Wang X, Hu W, Zhu J, Ho W-Z. Human Microglia Models for NeuroHIV. Viruses. 2025; 17(5):641. https://doi.org/10.3390/v17050641
Chicago/Turabian StyleSarkar, Priyanka, Xu Wang, Wenhui Hu, Jian Zhu, and Wen-Zhe Ho. 2025. "Human Microglia Models for NeuroHIV" Viruses 17, no. 5: 641. https://doi.org/10.3390/v17050641
APA StyleSarkar, P., Wang, X., Hu, W., Zhu, J., & Ho, W.-Z. (2025). Human Microglia Models for NeuroHIV. Viruses, 17(5), 641. https://doi.org/10.3390/v17050641