Harnessing the Activity of Lytic Bacteriophages to Foster the Sustainable Development Goals and the “One Health” Strategy
Abstract
1. Introduction
2. Bacteriophages and Sustainable Development Goals
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Clokie, M.R.; Millard, A.D.; Letarov, A.V.; Heaphy, S. Phages in Nature. Bacteriophage 2011, 1, 31–45. [Google Scholar] [CrossRef] [PubMed]
- Naureen, Z.; Dautaj, A.; Anpilogov, K.; Camilleri, G.; Dhuli, K.; Tanzi, B.; Maltese, P.E.; Cristofoli, F.; DeAntoni, L.; Beccari, T.; et al. Bacteriophages Presence in Nature and Their Role in the Natural Selection of Bacterial Populations. Acta Biomed. 2020, 91, e2020024. [Google Scholar] [CrossRef]
- Abril, A.G.; Carrera, M.; Notario, V.; Sánchez-Pérez, Á.; Villa, T.G. The Use of Bacteriophages in Biotechnology and Recent Insights Into Proteomics. Antibiotics 2022, 11, 653. [Google Scholar] [CrossRef]
- Jo, S.J.; Kwon, J.; Kim, S.G.; Lee, S.J. The Biotechnological Application of Bacteriophages: What to Do and Where to Go in the Middle of the Post-Antibiotic Era. Microorganisms 2023, 11, 2311. [Google Scholar] [CrossRef]
- García, P.; Tabla, R.; Anany, H.; Bastias, R.; Brøndsted, L.; Casado, S.; Cifuentes, P.; Deaton, J.; Denes, T.G.; Islam, M.A.; et al. ECOPHAGE: Combating Antimicrobial Resistance Using Bacteriophages for Eco-Sustainable Agriculture and Food Systems. Viruses 2023, 15, 2224. [Google Scholar] [CrossRef]
- Álvarez, B.; Biosca, E.G. Potential of the Bacteriophage-Based Therapy for a More Eco-Sustainable Agriculture. Int. J. Biol. Nat. Sci. 2024, 4, 1–9. [Google Scholar] [CrossRef]
- Haq, I.U.; Rahim, K.; Paker, N.P. Exploring the Historical Roots, Advantages and Efficacy of Phage Therapy in Plant Diseases Management. Plant Sci. 2024, 346, 112164. [Google Scholar] [CrossRef] [PubMed]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development. A/RES/70/1.2015. Available online: https://www.refworld.org/legal/resolution/unga/2015/en/111816 (accessed on 26 January 2025).
- European Commission. A European One Health Action Plan Against Antimicrobial Resistance (AMR). 2017. Available online: https://health.ec.europa.eu/system/files/2020-01/amr_2017_action-plan_0.pdf (accessed on 26 January 2025).
- Erez, Z.; Steinberger-Levy, I.; Shamir, M.; Doron, S.; Stokar-Avihail, A.; Peleg, Y.; Melamed, S.; Leavitt, A.; Savidor, A.; Albeck, S.; et al. Communication Between Viruses Guides Lysis-Lysogeny Decisions. Nature 2017, 541, 488–493. [Google Scholar] [CrossRef]
- Makky, S.; Dawoud, A.; Safwat, A.; Abdelsattar, A.S.; Rezk, N.; El-Shibiny, A. The Bacteriophage Decides Own Tracks: When They Are With or Against the Bacteria. Curr. Res. Microb. Sci. 2021, 2, 100050. [Google Scholar] [CrossRef]
- Principi, N.; Silvestri, E.; Esposito, S. Advantages and Limitations of Bacteriophages for the Treatment of Bacterial Infections. Front. Pharmacol. 2019, 10, 513. [Google Scholar] [CrossRef]
- Lin, D.M.; Koskella, B.; Lin, H.C. Phage Therapy: An Alternative to Antibiotics in the Age of Multi-Drug Resistance. World J. Gastrointest. Pharmacol. Ther. 2017, 8, 162–173. [Google Scholar] [CrossRef] [PubMed]
- Behera, M.; De, S.; Ghorai, S.M. The Synergistic and Chimeric Mechanism of Bacteriophage Endolysins: Opportunities for Application in Biotherapeutics, Food, and Health Sectors. Probiotics Antimicrob. Proteins 2024, 17, 807–831. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Lu, H.; Zhang, S.; Shi, Y.; Chen, Q. Phages Against Pathogenic Bacterial Biofilms and Biofilm-Based Infections: A Review. Pharmaceutics 2022, 14, 427. [Google Scholar] [CrossRef]
- Biosca, E.G.; Català-Senent, J.F.; Figàs-Segura, À.; Bertolini, E.; López, M.M.; Álvarez, B. Genomic Analysis of the First European Bacteriophages With Depolymerase Activity and Biocontrol Efficacy Against the Phytopathogen Ralstonia solanacearum. Viruses 2021, 13, 2539. [Google Scholar] [CrossRef]
- Islam, M.M.; Mahbub, N.U.; Shin, W.S.; Oh, M.H. Phage-Encoded Depolymerases as a Strategy for Combating MultiDrug-Resistant Acinetobacter baumannii. Front. Cell Infect. Microbiol. 2024, 14, 1462620. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, J.; Zhang, C.; Xu, S.; Ren, H.; Zou, L.; Ma, J.; Liu, W. Characterization of a Salmonella abortus equi phage 4FS1 and Its Depolymerase. Front. Vet. Sci. 2024, 11, 1496684. [Google Scholar] [CrossRef] [PubMed]
- Bertolini, E.; Figàs-Segura, À.; Álvarez, B.; Biosca, E.G. Development of TaqMan Real-Time PCR Protocols for Simultaneous Detection and Quantification of the Bacterial Pathogen Ralstonia solanacearum and Their Specific Lytic Bacteriophages. Viruses 2023, 15, 841. [Google Scholar] [CrossRef]
- Ranveer, S.A.; Dasriya, V.; Ahmad, M.F.; Dhillon, H.S.; Samtiya, M.; Shama, E.; Anand, T.; Dhewa, T.; Chaudhary, V.; Chaudhary, P.; et al. Positive and Negative Aspects of Bacteriophages and Their Immense Role in the Food Chain. NPJ Sci. Food 2024, 8, 1. [Google Scholar] [CrossRef]
- Rogovski, P.; Cadamuro, R.D.; da Silva, R.; de Souza, E.B.; Bonatto, C.; Viancelli, A.; Michelon, W.; Elmahdy, E.M.; Treichel, H.; Rodríguez-Lázaro, D.; et al. Uses of Bacteriophages as Bacterial Control Tools and Environmental Safety Indicators. Front. Microbiol. 2021, 12, 793135. [Google Scholar] [CrossRef]
- Duan, Y.; Llorente, C.; Lang, S.; Brandl, K.; Chu, H.; Jiang, L.; White, R.C.; Clarke, T.H.; Nguyen, K.; Torralba, M.; et al. Bacteriophage Targeting of Gut Bacterium Attenuates Alcoholic Liver Disease. Nature 2019, 575, 505–511. [Google Scholar] [CrossRef]
- Grubb, D.S.; Wrigley, S.D.; Freedman, K.E.; Wei, Y.; Vázquez, A.R.; Trotter, R.E.; Wallace, T.C.; Johnson, S.A.; Weir, T.L. PHAGE-2 Study: Supplemental Bacteriophages Extend Bifidobacterium animalis subsp. lactis BL04 Benefits on Gut Health and Microbiota in Healthy Adults. Nutrients 2020, 12, 2474. [Google Scholar] [CrossRef]
- Zhang, Y.; Sharma, S.; Tom, L.; Liao, Y.T.; Wu, V.C.H. Gut Phageome—An Insight Into the Role and Impact of Gut Microbiome and Their Correlation With Mammal Health and Diseases. Microorganisms 2023, 11, 2454. [Google Scholar] [CrossRef]
- Milijasevic, M.; Veskovic-Moracanin, S.; Babic Milijasevic, J.; Petrovic, J.; Nastasijevic, I. Antimicrobial Resistance in Aquaculture: Risk Mitigation Within the One Health Context. Foods 2024, 13, 2448. [Google Scholar] [CrossRef]
- Lobo, R.R.; Faciola, A.P. Ruminalphages—A Review. Front. Microbiol. 2021, 12, 763416. [Google Scholar] [CrossRef]
- Aydin, S.; Can, K.; Çalışkan, M.; Balcazar, J.L. Bacteriophage Cocktail as a Promising Bio-Enhancer for Methanogenic Activities in Anaerobic Membrane Bioreactors. Sci. Total Environ. 2022, 832, 154716. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.Y.; Liu, S.; Patel, M.H.; Glenzinski, K.M.; Skory, C.D. Saccharomyces cerevisiae Surface Display of Endolysin LysKB317 for Control of Bacterial Contamination in Corn Ethanol Fermentations. Front. Bioeng. Biotechnol. 2023, 11, 1162720. [Google Scholar] [CrossRef]
- Loc-Carrillo, C.; Abedon, S.T. Pros and Cons of Phage Therapy. Bacteriophage 2011, 1, 111–114. [Google Scholar] [CrossRef]
- Gundersen, M.S.; Fiedler, A.W.; Bakke, I.; Vadstein, O. The Impact of Phage Treatment on Bacterial Community Structure is Minor Compared to Antibiotics. Sci. Rep. 2023, 13, 21032. [Google Scholar] [CrossRef]
- Koskella, B.; Hernandez, C.A.; Wheatley, R.M. Under Standing the Impacts of Bacteriophage Viruses: From Laboratory Evolution to Natural Ecosystems. Annu. Rev. Virol. 2022, 9, 57–78. [Google Scholar] [CrossRef]
- Tokuda, M.; Shintani, M. Microbial Evolution Through Horizontal Gene Transfer by Mobile Genetic Elements. Microb. Biotechnol. 2024, 17, e14408. [Google Scholar] [CrossRef]
- Durbas, I.; Machnik, G. Phage Therapy: An Old Concept With New Perspectives. J. Appl. Pharm. Sci. 2022, 12, 27–38. [Google Scholar] [CrossRef]
- Chen, B.; Ponce Benavente, L.; Chittò, M.; Post, V.; Constant, C.; Zeiter, S.; Nylund, P.; D’Este, M.; González Moreno, M.; Trampuz, A.; et al. Combination of Bacteriophages and Vancomycin in a Co-Delivery Hydrogel for Localized Treatment of Fracture-Related Infections. NPJ Biofilms Microbiomes 2024, 10, 77. [Google Scholar] [CrossRef]
- Mirzaei, A.; Esfahani, B.N.; Ghanadian, M.; Wagemans, J.; Lavigne, R.; Moghim, S. Alhagi maurorum Extract in Combination With Lytic Phage Cocktails: A Promising Therapeutic Approach Against Biofilms of Multi-Drug Resistant P. mirabilis. Front. Pharmacol. 2024, 15, 1483055. [Google Scholar] [CrossRef] [PubMed]
- Rastegar, S.; Skurnik, M.; Tadjrobehkar, O.; Samareh, A.; Samare-Najaf, M.; Lotfian, Z.; Khajedadian, M.; Hosseini-Nave, H.; Sabouri, S. Synergistic Effects of Bacteriophage Cocktail and Antibiotics Combinations Against Extensively Drug-Resistant Acinetobacter baumannii. BMC Infect. Dis. 2024, 24, 1208. [Google Scholar] [CrossRef]
- Shymialevich, D.; Wójcicki, M.; Sokołowska, B. The Novel Concept of Synergically Combining: High Hydrostatic Pressure and Lytic Bacteriophages to Eliminate Vegetative and Spore-Forming Bacteria in Food Products. Foods 2024, 13, 2519. [Google Scholar] [CrossRef] [PubMed]
- Álvarez, B.; Biosca, E.G. Bacteriophage-Based Bacterial Wilt Biocontrol for an Environmentally Sustainable Agriculture. Front. Plant Sci. 2017, 8, 1218. [Google Scholar] [CrossRef]
- Álvarez, B.; Gadea-Pallás, L.; Rodríguez, A.; Vicedo, B.; Figàs-Segura, À.; Biosca, E.G. Viability, Stability and Biocontrol Activity In Planta of Specific Ralstonia solanacearum Bacteriophages After Their Conservation Prior to Commercialization and Use. Viruses 2022, 14, 183. [Google Scholar] [CrossRef]
- Jo, S.J.; Giri, S.S.; Lee, S.B.; Jung, W.J.; Park, J.H.; Hwang, M.H.; Park, D.S.; Park, E.; Kim, S.W.; Jun, J.W.; et al. Optimization of the Large-Scale Production for Erwinia amylovora Bacteriophages. Microb. Cell Fact. 2024, 23, 342. [Google Scholar] [CrossRef]
- Krysiak-Baltyn, K.; Martin, G.J.O.; Gras, S.L. Computational Modelling of Large Scale Phage Production Using a Two-Stage Batch Process. Pharmaceuticals 2018, 11, 31. [Google Scholar] [CrossRef]
- Álvarez, B.; López, M.M.; Biosca, E.G. Biocontrol of the Major Plant Pathogen Ralstonia solanacearum in Irrigation Water and Host Plants by Novel Water Borne Lytic Bacteriophages. Front. Microbiol. 2019, 10, 2813. [Google Scholar] [CrossRef]
- Oechslin, F. Resistance Development to Bacteriophages Occurring During Bacteriophage Therapy. Viruses 2018, 10, 351. [Google Scholar] [CrossRef]
- Lopatina, A.; Tal, N.; Sorek, R. Abortive Infection: Bacterial Suicide as an Antiviral Immune Strategy. Annu. Rev. Virol. 2020, 7, 371–384. [Google Scholar] [CrossRef]
- Zou, H.; Huang, X.; Xiao, W.; He, H.; Liu, S.; Zeng, H. Recent Advancements in Bacterial Anti-Phage Strategies and the Underlying Mechanisms Altering Susceptibility to Antibiotics. Microbiol. Res. 2025, 295, 128107. [Google Scholar] [CrossRef] [PubMed]
- Chung, K.M.; Nang, S.C.; Tang, S.S. The Safety of Bacteriophages in Treatment of Diseases Caused by MultiDrug-Resistant Bacteria. Pharmaceuticals 2023, 16, 1347. [Google Scholar] [CrossRef]
- Liu, D.; van Belleghem, J.D.; de Vries, C.R.; Burgener, E.; Chen, Q.; Manasherob, R.; Aronson, J.R.; Amanatullah, D.F.; Tamma, P.D.; Suh, G.A. The Safety and Toxicity of Phage Therapy: A Review of Animal and Clinical Studies. Viruses 2021, 13, 1268. [Google Scholar] [CrossRef] [PubMed]
- Faltus, T. The Medicinal Phage-Regulatory Roadmap for Phage Therapy Under EU Pharmaceutical Legislation. Viruses Mar. 2024, 16, 443. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Le, S.; Zhu, T.; Wu, N. Regulations of Phage Therapy Across the World. Front. Microbiol. 2023, 14, 1250848. [Google Scholar] [CrossRef]
- Crowther, T.W.; Rappuoli, R.; Corinaldesi, C.; Danovaro, R.; Donohue, T.J.; Huisman, J.; Stein, L.Y.; Timmis, J.K.; Timmis, K.; Anderson, M.Z.; et al. Scientists’Call to Action: Microbes, Planetary Health, and the Sustainable Development Goals. Cell 2024, 187, 5195–5216. [Google Scholar] [CrossRef]
- Mohsin, S.; Amin, M.N. Superbugs: A Constraint to Achieving the Sustainable Development Goals. Bull. Natl. Res. Cent. 2023, 47, 63. [Google Scholar] [CrossRef]
- Samson, R.; Dharne, M.; Khairnar, K. Bacteriophages: Status Quo and Emerging Trends Toward One Health Approach. Sci. Total Environ. 2024, 908, 168461. [Google Scholar] [CrossRef]
- Summer, E.J.; Liu, M. Application of Bacteriophages for the Control of Unwanted Bacteria in Biofuel Production Mediated by Non-Bacterial Reactive Agents. U.S. Patent US-9453247-B2, 27 September 2016. [Google Scholar]
- González Biosca, E.; López González, M.M.; Álvarez Ortega, B. Procedimiento para la Prevención y/o el Control Biológico de la Marchitez Causada por Ralstonia solanacearum, a Través del Uso de Bacteriófagos Útiles para Ello y Composiciones de los Mismos. Spain Patent ES2592352B2, 10 July 2017. [Google Scholar]
- González Biosca, E.; López González, M.M.; Álvarez Ortega, B. Method for the Prevention and/or the Biological Control of Bacterial Wilt Caused by Ralstonia solanacearum, via the Use of Bacteriophages Suitable for This Purpose and Compositions Thereof. U.S. Patent US10508266B2, 17 December 2019. [Google Scholar]
- González Biosca, E.; López González, M.M.; Álvarez Ortega, B. Method for the Prevention and/or the Biological Control of Bacterial Wilt Caused by Ralstonia solanacearum, via the Use of Bacteriophages Suitable for this Purpose and Compositions Thereof. Eur. Patent EP3305892B1, 9 September 2020. [Google Scholar]
- Gutiérrez, D.; Fernández, L.; Rodríguez, A.; García, P. Role of Bacteriophages in the Implementation of a Sustainable Dairy Chain. Front. Microbiol. 2019, 10, 12. [Google Scholar] [CrossRef] [PubMed]
- Siyanbola, K.F.; Ejiohuo, O.; Ade-adekunle, O.A.; Adekunle, F.O.; Onyeaka, H.; Furr, C.-L.L.; Hodges, F.E.; Carvalho, P.; Oladipo, E.K. Bacteriophages: Sustainable and Effective Solution for Climate-Resilient Agriculture. Sustain. Microbiol. 2024, 1, qvae025. [Google Scholar] [CrossRef]
- Vikram, A.; Callahan, M.T.; Woolston, J.W.; Sharma, M.; Sulakvelidze, A. Phage Biocontrol for Reducing Bacterial Food Borne Pathogens in Produce and other Foods. Curr. Opin. Biotechnol. 2022, 78, 102805. [Google Scholar] [CrossRef]
- Batinovic, S.; Wassef, F.; Knowler, S.A.; Rice, D.T.F.; Stanton, C.R.; Rose, J.; Tucci, J.; Nittami, T.; Vinh, A.; Drummond, G.R.; et al. Bacteriophages in Natural and Artificial Environments. Pathogens 2019, 8, 100. [Google Scholar] [CrossRef] [PubMed]
- Holtappels, D.; Fortuna, K.; Lavigne, R.; Wagemans, J. The Future of Phage Biocontrol in Integrated Plant Protection for Sustainable Crop Production. Curr. Opin. Biotechnol. 2021, 68, 60–71. [Google Scholar] [CrossRef]
- Garvey, M. Bacteriophages and Food Production: Biocontrol and Bio-Preservation Options for Food Safety. Antibiotics 2022, 11, 1324. [Google Scholar] [CrossRef] [PubMed]
- Biosca, E.G.; Delgado-Santander, R.; Morán, F.; Figàs-Segura, À.; Vázquez, R.; Català-Senent, J.F.; Álvarez, B. First European Erwinia amylovora Lytic Bacteriophage Cocktails Effective in the Host: Characterization and Prospects for Fire Blight Biocontrol. Biology 2024, 13, 176. [Google Scholar] [CrossRef]
- Suja, E.; Gummadi, S.N. Advances in the Applications of Bacteriophages and Phage Products Against Food-Contaminating Bacteria. Crit. Rev. Microbiol. 2024, 50, 702–727. [Google Scholar] [CrossRef]
- Pirnay, J.P.; Djebara, S.; Steurs, G.; Griselain, J.; Cochez, C.; DeSoir, S.; Glonti, T.; Spiessens, A.; Vanden Berghe, E.; Green, S.; et al. Personalized Bacteriophage Therapy Outcomes for 100 Consecutive Cases: A Multicentre, Multinational, Retrospective Observational Study. Nat. Microbiol. 2024, 9, 1434–1453. [Google Scholar] [CrossRef]
- McCammon, S.; Makarovs, K.; Banducci, S.; Gold, V. Phage Therapy and the Public: Increasing Awareness Essential to Widespread Use. PLoS ONE 2023, 18, e0285824. [Google Scholar] [CrossRef]
- Thompson, T.; Kilders, V.; Widmar, N.; Ebner, P. Consumer Acceptance of Bacteriophage Technology for Microbial Control. Sci. Rep. 2024, 14, 25279. [Google Scholar] [CrossRef] [PubMed]
- Heller, D.M.; Sivanathan, V.; Asai, D.J.; Hatfull, G.F. SEA-PHAGES and SEA-GENES: Advancing Virology and Science Education. Annu. Rev. Virol. 2024, 11, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Maicas, S.; Fouz, B.; Figàs-Segura, À.; Zueco, J.; Rico, H.; Navarro, A.; Carbó, E.; Segura-García, J.; Biosca, E.G. Implementation of Antibiotic Discovery by Student Crowdsourcing in the Valencian Community Through a Service Learning Strategy. Front. Microbiol. 2020, 11, 564030. [Google Scholar] [CrossRef] [PubMed]
- Timmis, K.; Hallsworth, J.E.; McGenity, T.J.; Armstrong, R.; Colom, M.F.; Karahan, Z.C.; Chavarría, M.; Bernal, P.; Boyd, E.S.; Ramos, J.L.; et al. A Concept for International Societally Relevant Microbiology Education and Microbiology Knowledge Promulgation in Society. Microb. Biotechnol. 2024, 17, e14456. [Google Scholar] [CrossRef]
- Hatfull, G.F. Wildy Prize Lecture, 2020-2021: Who Wouldn’t Want to Discover a New Virus? Microbiology 2021, 167, 001094. [Google Scholar] [CrossRef]
- Citizen Phage Library. Developing Therapeutic Phages to Fight Antimicrobial Resistance With Citizen Science. 2025. Available online: https://www.citizenphage.com (accessed on 26 January 2025).
- Hitchcock, N.M.; Devequi Gomes Nunes, D.; Shiach, J.; Valeria Saraiva Hodel, K.; Dantas Viana Barbosa, J.; Alencar Pereira Rodrigues, L.; Coler, B.S.; Botelho Pereira Soares, M.; Badaró, R. Current Clinical Landscape and Global Potential of Bacteriophage Therapy. Viruses 2023, 15, 1020. [Google Scholar] [CrossRef]
- Khan, A.N.; Soomro, M.A.; Khan, N.A.; Bodla, A.A. Psychological Dynamics of over Qualification: Career Anxiety and Decision Commitment in STEM. BMC Psychol. 2024, 12, 686. [Google Scholar] [CrossRef]
- Sieiro, C.; Areal-Hermida, L.; Pichardo-Gallardo, Á.; Almuiña-González, R.; de Miguel, T.; Sánchez, S.; Sánchez-Pérez, Á.; Villa, T.G. A Hundred Years of Bacteriophages: Can Phages Replace Antibiotics in Agriculture and Aquaculture? Antibiotics 2020, 9, 493. [Google Scholar] [CrossRef]
- Khalid, A.; Lin, R.C.Y.; Iredell, J.R. A Phage Therapy Guide for Clinicians and Basic Scientists: Background and Highlighting Applications for Developing Countries. Front. Microbiol. 2021, 11, 599906. [Google Scholar] [CrossRef]
- Huang, D.; Xia, R.; Chen, C.; Liao, J.; Chen, L.; Wang, D.; Alvarez, P.J.J.; Yu, P. Adaptive Strategies and Ecological Roles of Phages in Habitats Under Physicochemical Stress. Trends Microbiol. 2024, 32, 902–916. [Google Scholar] [CrossRef]
- Fiedler, A.W.; Gundersen, M.S.; Vo, T.P.; Almaas, E.; Vadstein, O.; Bakke, I. Phage Therapy Minimally Affects the Water Microbiota in an Atlantic Salmon (Salmo salar) Rearing System While Still Preventing Infection. Sci. Rep. 2023, 13, 19145. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Álvarez, B.; Biosca, E.G. Harnessing the Activity of Lytic Bacteriophages to Foster the Sustainable Development Goals and the “One Health” Strategy. Viruses 2025, 17, 549. https://doi.org/10.3390/v17040549
Álvarez B, Biosca EG. Harnessing the Activity of Lytic Bacteriophages to Foster the Sustainable Development Goals and the “One Health” Strategy. Viruses. 2025; 17(4):549. https://doi.org/10.3390/v17040549
Chicago/Turabian StyleÁlvarez, Belén, and Elena G. Biosca. 2025. "Harnessing the Activity of Lytic Bacteriophages to Foster the Sustainable Development Goals and the “One Health” Strategy" Viruses 17, no. 4: 549. https://doi.org/10.3390/v17040549
APA StyleÁlvarez, B., & Biosca, E. G. (2025). Harnessing the Activity of Lytic Bacteriophages to Foster the Sustainable Development Goals and the “One Health” Strategy. Viruses, 17(4), 549. https://doi.org/10.3390/v17040549